
A Generic Load/Extract Utility for Data Transfer Between XML Documents and
Relational Databases

R. Bourret, C. Bornhövd, A. Buchmann
Department of Computer Science

Darmstadt University of Technology
Darmstadt, Germany, D-64283

{rbourret, bornhoev, buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract
XML is rapidly gaining momentum in e-commerce and
Internet-based information exchange, where its simplicity
and custom-defined tags make it usable as a semantics-
preserving data exchange format. However, to realize this
potential, it is necessary to be able to extract structured
data from XML documents and store it in a database, as
well as to generate XML documents from data extracted
from a database. Although many DBMS vendors are scram-
bling to extend their products to handle XML, there is a
need for a lightweight, DBMS- and platform-independent
load/extract utility as well. In this paper we describe such a
utility, that solves the following problems: 1) loading data
from XML documents into relational tables with a known
schema, 2) creating XML documents according to a known
DTD from data extracted from a database, 3) generating re-
lational schemas from XML DTDs for on-the-fly storage of
XML documents, and 4) generating XML DTDs from rela-
tional schemas for on-the-fly extraction of relational data.
We introduce a language to describe a mapping between an
existing XML DTD and an existing relational schema and
discuss some of the interesting issues arising from such a
mapping.

1. Introduction
The Internet has evolved into a global platform for e-
commerce and information exchange. XML supports this
by allowing the definition of semantically meaningful tags.
Generic applications, such as search engines, can make lim-
ited decisions about the data in XML documents simply
by comparing tag names and analyzing document structure.
Applications that use a domain-specific language can recog-
nize a particular set of predefined XML tags, and can per-
form more sophisticated tasks, such as automated billing,
subject-specific searches, and summarizing and comparing
information from multiple, independent providers of similar
services.

Because reliability is crucial in e-commerce transac-
tions and a significant amount of today’s business data is
stored in relational databases, an essential part of many
applications that use XML as a data exchange format is
transferring data between relational databases and XML
documents. In this context, we identify four problems:

1. loading data from XML documents into relational
tables with a known schema,

2. creating XML documents with a known DTD from
data extracted from a database,

3. generating relational schemas from XML DTDs for
on-the-fly loading of XML documents,

4. generating XML DTDs from relational schemas for
on-the-fly extraction of relational data.

This paper describes an implemented utility, XML-
DBMS, that solves these problems, exploiting and expand-
ing on principles previously developed for mapping be-
tween object models and relational schemas. The utility is
based on a view of the data in an XML document as a tree
of objects, which allows us to use known object-relational
mapping techniques modified to handle problems unique to
XML. The utility is based on widely accepted standards –
JDBC for database access, SAX and DOM for XML doc-
ument access, and DDML for XML schema information1

– so it can be used to build applications independent of

1JDBC is a java API for SQL-based access to relational databases.
The API is implemented separately by each DBMS. SAX (Simple API
for XML) provides a Java API for event-based parsing. Applications im-
plement methods for events such as the start and end of an element, and
register these methods with a parser. The parser calls the methods when the
events occur. DOM (Document Object Model) specifies an object model
for XML documents, with objects for elements, PCDATA, entity refer-
ences, and so on. DDML (Document Definition Markup Language) is an
XML schema language that was submitted to the W3C and is being incor-
porated in the W3C’s XML Schema language.

1



DBMS, XML parser, and DOM implementations. It in-
cludes a simple language with which users can specify map-
pings between existing XML DTDs and relational schemas
(cases 1 and 2 above), as well as components to dynami-
cally generate relational schemas and mappings from XML
DTDs and vice versa (cases 3 and 4).

Through its custom mapping language, it also accommo-
dates the extreme flexibility with which data can be repre-
sented in an XML document. This flexibility distinguishes
XML-DBMS from utilities that are being offered by DBMS
vendors, which are mostly DBMS specific and make lim-
iting assumptions about the XML documents and the re-
quired DBMS (for details see Section 8).

The main contribution of the work presented in this paper
is the integration of previously developed concepts into a
practical and flexible data transfer utility that realizes the
mapping between two of the most important data handling
technologies: XML documents and relational databases.

Section 2 presents a motivating example and application
scenario, Section 3 briefly describes XML and its use as a
data exchange format, Section 4 describes the object view,
Section 5 describes the mapping and the mapping language,
Section 6 describes how to generate XML DTDs from
relational schemas and vice versa, Section 7 describes the
software for transferring data, Section 8 discusses related
work, and Section 9 provides conclusions.

2. Motivating Example and Scenario
WE-trade is an international B2B electronic trading center
that is being funded by the European Commission to fos-
ter the trade between East and West Europe. One of the
core components of WE-trade is the multilingual broker.
The broker can match offers and requests both for prod-
ucts and for services that are formulated in the user’s na-
tive language. Offers are submitted as XML documents that
conform to a given DTD and the essential information is ex-
tracted and stored as structured data in a relational database.
Offers and requests are matched with the help of underlying
ontologies, that make it possible to match requests and of-
fers not only based on direct concept matches but also based
on sub- and super-categories. Concepts of the ontologies
are translated and serve for the multilingual matching. The
brokering service is intended to offer hints in addition to
performing the match between offers and requests.

If a cherry grower from Bulgaria wants to sell 5 tons
of cherries, the broker makes use of the product ontology
to find a proper match, for example with an importer from
Italy requesting fruit, but also alerts the seller with the help
of the service ontology about the need to contact a customs
agent familiar with European agricultural tariffs, a lawyer
familiar with the appropriate laws, etc. The brokering ser-
vice may even suggest candidates to contact based on WE-
trade’s database. The result of any matches are placed into

XML documents in the appropriate language.
XML is particularly well suited for use in WE-trade be-

cause it allows us to structure documents with well-defined
text portions in multiple languages into which we can place
data that is identified through the appropriate tags. Since
XML uses Unicode, all the necessary alphabets that must
be supported in WE-trade can be handled.

A second major concern of WE-trade is the support of
negotiations and the elaboration of the corresponding docu-
ments. XML is also well suited for this function. Structured
documents can be expressed in XML and stored either as
combinations of standard text elements and data or simply
as BLOBs.

The delays that major DBMS vendors were experiencing
in releasing their XML-enabled products motivated the
development of a platform-independent load and extract
utility that is based on standard structures and interfaces,
such as DOM, JDBC and SAX. The need for a platform-
independent, light-weight yet flexible utility becomes more
evident as limiting assumptions about document structure
and DBMS-specific implementations become apparent as
XML-enabled DBMSs are released.

3. XML as a Common Data Exchange Format
XML [6] is a subset of SGML [14] defined for use on the
Web. It defines a meta-language for defining XML markup
languages as well as the rules that documents conforming
to these languages must follow.

Although XML was originally conceived as a replace-
ment for HTML [22], it has emerged as a generic data ex-
change format. Its hierarchical structure and user-defined
tags can be adapted to a wide variety of structured and semi-
structured data, and many operations on XML documents –
parsing, editing, validation, transformation, and so on – can
be performed independent of the actual tags in the docu-
ment, which has led to a growing market of standard com-
ponents from which XML applications can be assembled.

XML has several advantages over other data exchange
formats. Its support of Unicode makes it highly portable
and capable of representing most of the world’s string data.
Its use of tags to label data means that documents are self-
describing, makes them readable by humans and allows
them to be used by applications not initially intended as tar-
gets. Its predictable format means that any application can
read a document, even if it doesn’t understand the semantics
of the tags.

XML also has disadvantages, the most obvious being
size and lack of data types. Although the repetitive nature
of tags lends itself to compression, documents with large
amounts of numeric or binary data represented as strings
will always be larger than if they used a binary format. The
lack of data types is expected to be resolved in the future
by the introduction of data type attributes, but conversion

2



to and from strings will always be slower than using binary
formats.

XML does not enforce unique tags. Although this
problem will never completely be solved, many industry
groups are standardizing tags and the W3C is working on
technologies to simplify the reuse of standard tags, for
example, by encoding UN/EDIFACT and STEP standards
in XML.

<Orders>
<SalesOrder SONumber=“12345”>
<Customer CustNumber=“543”>
<CustName>Blue River Fruits</CustName>
<Address>
<Street>24 Templerd.</Street>
<City>Dublin</City>
<Country>Ireland</Country>
<PostCode>0802871</PostCode>

</Address>
</Customer>
<OrderDate>150999</OrderDate>
<Line LineNumber=“1”>
<Product Name=“Rainier Cherries”>
<Description>
<P><B>Rainier cherries:</B><BR />
Large, golden, and honey-sweet,
best quality.</P>

</Description>
<Price Currency=“EUR”>310</Price>

</Product>
<Quantity Unit=“ton”>2</Quantity>

</Line>
<Line LineNumber=“2”>
<Product Name=“Gala Apples”>
<Description>
<P><B>Gala apples:</B><BR />
Good-quality, firm with smooth and clean skin.</P>

</Description>
<Price Currency=“EUR”>170</Price>

</Product>
<Quantity Unit=“ton”>5</Quantity>

</Line>
</SalesOrder>

</Orders>

Figure 1. Sales order example.

By defining domain-specific tags, special-purpose
markup languages can be defined. These fall into two rough
categories. Data-centric languages describe discrete pieces
of data and are typically used to transfer data between ap-
plications and data stores. They are characterized by fairly
regular structure, fine-grained data (the smallest indepen-
dent unit of data is usually at the attribute or PCDATA-only
element level), and little or no mixed content2. The order in
which sibling elements and PCDATA occurs is usually not
significant. For example, a sales order written in a “sales
order language” might look like the example in Figure 1.

Document-centric languages are used to create docu-
ments for human consumption, such as contracts, books,
and advertisements. They are characterized by less pre-
dictable structures, coarser-grained data, and large amounts
of mixed content. The order in which sibling elements and

2Technically, mixed content means any content that contains PCDATA,
including PCDATA-only content. In common usage, as in this paper, mixed
content refers to a mixture of elements and text.

PCDATA occurs is usually significant. For example, a lease
written in a simple “contract language” might look like the
following:

<LeaseContract>
<Lessee>ABC Industries</Lessee> agrees to lease the property
at <Address>123 Main St., Dublin, Ireland</Address> from
<Lessor>XYZ Properties</Lessor> for a term of not less than
<LeaseTerm TimeUnit=“Months”>18</LeaseTerm> at a cost of
<Price Currency=“EUR”>1000</Price>.

</LeaseContract>

Figure 2. Contract example.

XML-DBMS is capable of handling the full spectrum of
XML markup languages. Because it stores the necessary
linkage and order information it is able to store and
reconstruct XML documents written in document-centric
as well as data-centric languages.

4. An Object View of an XML Document

To simplify the mapping process, we view the content
of a document as a tree of objects to which existing
object-relational mapping techniques can be applied. This
view is not the DOM (Document Object Model), which
models a documents’s structure with standard tags (e.g.,
PCDATA, entity references, etc.) as opposed to the content
of the document that is represented in our object tree. For
example, the XML document shown in Figure 1 might be
modeled with sales order, line, customer, and part objects.
The remainder of this section describes how the parts of an
XML document can be viewed.

4.1. Element Types
Element types can be viewed either as classes or proper-
ties. Element types with element or mixed content, such as
the SalesOrder element type or the LeaseContract element
type are generally viewed as classes. Element types with
PCDATA-only content, such as the OrderDate and Post-
Code element types are generally viewed as properties.

The view of element types as properties is not limited to
element types with PCDATA-only content. To see why this
is useful for element types with mixed or element content,
consider the Description element type, which contains an
HTML description of a product. Although such an element
can contain subelements such as <B> and <P>, its con-
tent is useful only as a whole. That is, its subelements and
PCDATA cannot be meaningfully interpreted on their own
and it makes sense to view it as a property.

When an element type is viewed as a property, it belongs
to the class of its parent, i.e., containing element type.
Because element types can have more than one parent
type, an element type-as-property can be viewed as a
property of more than one class. The value of an element
whose type is viewed as a property is its content; for
storage in the database, this is serialized as XML, using

3



markup for subelements and their attributes. For example,
the content of the second Description element in Figure 1 is:

<P><B>Gala apples:</B><BR />
Good-quality, firm with smooth and clean skin.</P>

4.2. PCDATA and Attributes
When an element type is viewed as a class, its PCDATA
and attributes are viewed as properties of that class. When
an element type is viewed as a property, its PCDATA is
viewed as part of its value and its attributes are viewed as
properties of the element type’s parent class. The reason
for this latter view is that the element type, being viewed as
a property, cannot itself have properties.

4.3. Hierarchy
Elements in an XML document are organized in a hi-
erarchy. How the parent/child relationship between two
elements in an XML document is viewed depends on how
their respective element types are viewed. If both element
types are viewed as classes, then the relationship is viewed
as an inter-class relationship. If the child element type is
viewed as a property, then the relationship is viewed as a
class-property relationship. If the parent element type is
viewed as a property, then the child element is part of the
value of that property.

4.4. Order
The order in which elements and PCDATA appear in an
XML document may be significant, as can be seen in our
contract example. If this case, inter-class relationships (be-
tween two element types-as-classes) are considered to be or-
dered, as are the properties corresponding to element types-
as-properties and PCDATA. That is, each inter-class rela-
tionship and each of these properties is considered to have
a parallel property that tracks its order in its parent. For
a given parent, all of these order properties share a single
order space.

The order in which values in a multi-valued (IDREFS,
NMTOKENS, or ENTITIES) attribute occur may also be
significant. In this case, the properties of such attributes are
ordered. Each attribute has its own order space.

5. Mapping Data Between XML and Rela-
tional Databases

We use an object-relational mapping to map an object view
to a relational schema: we map classes to tables, proper-
ties to columns, and inter-class relationships to candidate
key/foreign key pairs. However, to provide more flexibility,
we add some features not found in most object-relational
mappings.

First, single-valued properties can be mapped to a col-
umn in the class table or a column in a separate table; the
latter is useful for storing BLOBs separately. Multi-valued
properties must currently be mapped to multiple rows in a

separate table. We are considering one additional mapping
to a fixed set of columns in the class table (when the number
of property values has a known maximum).

Second, we allow the mapping to specify whether ob-
ject IDs (keys) and order information are generated by the
system or use existing data. For example, we might des-
ignate that the SONumber attribute in our sales order lan-
guage contains the key for the sales order table, but state that
we want the system to generate a unique ID for each con-
tract in our contract language. Similarly, we might use the
LineNumber attribute to specify the order of Line elements
in their parent, but have the system generate order informa-
tion about the PCDATA and subelements of the LeaseCon-
tract element.

Third, we provide two different ways to ignore structure
that exists in an XML document but not in the database. The
first is to ignore the root element. This is useful when the
root element type exists only to satisfy XML’s requirement
that there be a single root element, such as the Orders ele-
ment in our sales order language, which exists only so we
can place more than one sales order in a single document.
The second is to “pass through” an element type-as-class,
treating its properties as properties of its parent class. For
example, the Address element type in our sales order lan-
guage exists only for clarity. We can treat its properties
(Street, City, Country, and PostCode) as properties of its
parent class (Customer). When an element type is ignored
or passed-through, its structure is removed when transfer-
ring data to the database and recreated when extracting data
from the database.

Finally, we do not require that any given class or prop-
erty (or table or column) be mapped at all. Anything that
is not mapped is simply not transferred; in the case of an
element whose type is not mapped, its children are also not
transferred because there is no way to link them to higher
level elements.

We enforce the usual inferential integrity notion. Order-
ing information is stored on the “many-side” of a 1:N rela-
tionship.

The mapping between an object view and a relational
schema can be specified by the user or generated dynami-
cally by the utility. In the former case, both the XML DTD
and the relational schema must exist and the user specifies
the object view, as well as the mapping, with the mapping
language we have developed. The latter case applies when
either the XML DTD or the relational schema, but not both,
exists. In this case, the utility generates the missing schema
(relational or DTD), the object view, and the mapping
according to predefined rules.

5.1. The XML-DBMS Mapping Language
Our mapping language is a simple, XML-based language
that describes both how to construct an object view for an
XML document and how to map this view to a relational

4



schema. This requires both the XML DTD and the rela-
tional schema to exist. We introduce the main parts of the
language in a series of examples, which use the sample
XML documents shown in Section 3 and the following
tables; the full DTD for the language is given in [2].

����� ���

Number
CustNumber
Date
�
	��
�����������

Number
Name
Street
City
Country
PostalCode
����� ���

SONumber
Number
Product
Quantity
� �
����	������

Name
Description
Price

� � � �!�
�"����#$�����

ContractNumber
Lessee
LesseeOrder
Address
AddressOrder
Lessor
LessorOrder
LeaseTerm
LeaseTermOrder
Price
PriceOrder
� � � �!�
�"���&%���'��

Number
Text
Order

Mapping Classes (Element Types) to Tables. Element
types with element content are usually viewed as classes
and mapped to a table. For example, the following declares
the SalesOrder element type to be a class and maps it to the
Sales table:

<ClassMap>
<ElementType Name=“SalesOrder”/>
<ToClassTable>
<Table Name=“Sales”/>

</ToClassTable>
. . . property maps . . .
. . . related class maps . . .
. . . pass-through maps . . .

</ClassMap>

The ClassMap element contains all the information
needed to map a single class (element type), including the
table to which the class is mapped, the maps for each prop-
erty in the class, a list of related classes, and a list of passed-
through child classes.

The ElementType element identifies the element type
(class) being mapped and the ToClassTable element gives
the name of the table to which the class is mapped. The
element type name may include a namespace prefix [5],
which is declared in a Namespace element; prefixes
declared in Namespace elements are separate from those
declared with xmlns attributes.

Mapping Properties (Attributes and Element Types)
to Columns. Single-valued attributes and element
types with PCDATA-only content are usually viewed
as properties and mapped to columns. For example,
the following declares the SONumber attribute and the
OrderDate element type (when SalesOrder is its parent)
to be properties and maps them to the Number and Date
columns, respectively. These maps are nested inside the
class map for SalesOrder.

<PropertyMap>
<Attribute Name=“SONumber”/>
<ToColumn>
<Column Name=“Number”/>

</ToColumn>
</PropertyMap>

<PropertyMap>
<ElementType Name=“OrderDate”/>
<ToColumn>
<Column Name=“Date”/>

</ToColumn>
</PropertyMap>

The Attribute and ElementType elements identify the
properties being mapped and the ToColumn elements state
that they are being mapped to columns in the table to which
the class (SalesOrder) is mapped.

Mapping Inter-Class Relationships. When a child
element type is viewed as a class, its relationship with its
parent element type must be stated in the map of the parent
class. For example, the following declares that Line is
related to the SalesOrder class. This map is nested inside
the class map for SalesOrder; the actual mapping of the
Line class is separate.

<RelatedClass KeyInParentTable=“Candidate”>
<ElementType Name=“Line”/>
<CandidateKey Generate=“No”>
<Column Name=“Number”/>

<CandidateKey/>
<ForeignKey>
<Column Name=“SONumber”/>

</ForeignKey>
<OrderColumn Name=“Number” Generate=“No”/>

</RelatedClass>

The ElementType element gives the name of the re-
lated class and the KeyInParentTable attribute states that
the candidate key used to join the tables is in the par-
ent (Sales) table. CandidateKey and ForeignKey give the
columns in these keys, which must match in number and
type. The Generate attribute of CandidateKey tells the sys-
tem whether to generate the key. This allows us to preserve
keys that have business meaning and generate object identi-
fiers when no such keys exist. In this case, we do not gen-
erate the key because we have mapped the SONumber at-
tribute of the SalesOrder element type to the candidate key
column (Sales.Number).

The (optional) OrderColumn element gives the name
of the column that contains information about the order
in which Line elements appear in the SalesOrder element.
Because this column must appear in the table on the
“many” side of the relationship, Number refers to the
Lines.Number column, not the Sales.Number column. The
Generate attribute of the OrderColumn element tells the
system whether to generate the order value. In this case, we
do not generate the order value because we will separately
map the LineNumber attribute of the Line element type to
the order column (Lines.Number).

Eliminating Unwanted Hierarchy. When element types
represent hierarchy that exists in the XML document

5



but not in the database, they can be eliminated in one of
two ways. First, root element types can be ignored. For
example, the following states that the Orders element type
is to be ignored.

<IgnoreRoot>
<ElementType Name=“Orders”/>
<PseudoRoot>
<ElementType Name=“SalesOrder”/>
<CandidateKey Generate=“No”>
<Column Name=“Number”/>

</CandidateKey>
</PseudoRoot>

</IgnoreRoot>

The first ElementType element gives the element type to
be ignored. The PseudoRoot element introduces an element
type (SalesOrder) to serve as a root in its place; there can
be multiple pseudo-roots. The (optional) CandidateKey el-
ement gives the key to be used when retrieving data from
the database.

The second way to eliminate unwanted hierarchy is to
“pass through” non-root element types, e.g., treat their
properties as if they were properties of their parent. For
example, the following declares that the Address element
type is to be passed through. Like element types-as-
properties, passed-through element types are mapped on a
per-parent basis, so this map is nested inside the class map
for Customer.

<PassThrough>
<ElementType Name=“Address”/>
<PropertyMap>
<ElementType Name=“Street”/>
<ToColumn>
<Column Name=“Street”/>

</ToColumn>
</PropertyMap>
. . . other property maps . . .
. . . related class maps . . .
. . . pass-through maps . . .

</PassThrough>

The first ElementType element gives the name of the
passed through element type. Because passed-through el-
ement types are viewed as classes, the PassThrough ele-
ment must map the properties, related classes, and passed-
through child classes of the passed-through class, just like a
class map does. Shown above is a property map that maps
the Street element type to the Street column of the parent
table (Customers).

So that passed-through elements can be recreated when
retrieving data from the database, only one pass-through
element of a given type can occur directly beneath a given
parent.

Mapping Mixed Content. Mixed content consists of
both PCDATA and elements. The order in which the
PCDATA and elements appear is usually important, so
we need to keep order information for the PCDATA as
well as each element. For example, the following maps
the Lessee element type to the Lessee column and stores
system-generated order information in the LesseeOrder
column; this map is nested inside the class map for the
LeaseContract element type.

<PropertyMap>
<ElementType Name=“Lessee”/>
<ToColumn>
<Column Name=“Lessee”/>

</ToColumn>
<OrderColumn Name=“LesseeOrder” Generate=“Yes”/>

</ElementTypeMap>

Because PCDATA can occur multiple times in mixed
content, it is usually mapped to a separate table. For
example, the following maps the PCDATA to the Contract-
Text table; this map is nested inside the class map for the
LeaseContract element type as well.

<PropertyMap>
<PCDATA/>
<ToPropertyTable KeyInParentTable=“Candidate”>
<Table Name=“ContractText”>
<CandidateKey Generate=“Yes”>
<Column Name=“ContractNumber”/>

</CandidateKey>
<ForeignKey>
<Column Name=“Number”/>

</ForeignKey>
<Column Name=“Text”/>
<OrderColumn Name=“Order” Generate=“Yes”/>

</ToPropertyTable>
</PropertyMap>

The ToPropertyTable element states that the table
contains only property values, not a class. In addition to
giving the candidate and foreign keys needed to retrieve
PCDATA values from the table, we give the names of the
columns (Text and Order) in which the values and the order
information are stored. Notice that we ask the system to
generate both the candidate key (ContractNumber) and
the order information; this is because the lease does not
contain this information, which is a common situation in
document-centric documents.

6. Dynamic Generation of XML DTDs and Re-
lational Schemas

The mapping process described in Section 5 requires that
the structure of both the XML document and the relational
schema be known. If either is not the case, as might occur
when storing an XML document on the fly or generating
an XML document from the output of an ad-hoc query, the
XML-DBMS tool first generates the corresponding DTD or
relational schema and then applies the mapping process de-
scribed above.

The mapping process between XML DTDs and re-
lational schemas is not lossless. That is, generating
a relational schema from an XML DTD followed by
generating an XML DTD from that relational schema
yields a valid DTD but not necessarily the initial DTD.
In addition to naming problems, we lose data types when
creating DTDs from relational schema and we add key and
order columns when creating relational schema from DTDs.

6.1. Generating an XML DTD from a Relational
Schema

To generate a DTD from a relational schema, we start from
a root table and recursively follow primary key/foreign key

6



relationships to discover all related tables, noting circular
references and building the schema for the corresponding
XML structures as we go. To generate a DTD from a result
set, we treat the result set as the root table; obviously, there
are no primary key/foreign key relationships to follow in
this case.

For each table in the hierarchy, we create an element
type with element content. It contains a sequence of
PCDATA-only elements (one for each column3), followed
by a sequence of elements with element content (one for
each related table). Whether the PCDATA-only elements
are optional (‘?’ operator) depends on the nullability of the
column. Related table elements are optional (‘?’ operator)
if they represent a table with an imported foreign key. They
can occur zero or more times (‘*’ operator) if they represent
a table to which a foreign key is exported. Note that this
mapping saves key values as data but does not impose any
order.

6.2. Generating a Relational Schema from an XML
DTD

To generate a relational schema from a DTD, we read
the DTD, noting circular references and build the database
schema as we go. We consider an element type with mixed
or element content to be a class and create a class table for it.
We consider all attributes and element types with PCDATA-
only content to be properties. For single-valued properties,
we create columns in the class table. For multi-valued prop-
erties, we create separate property tables.

We determine nullability of columns in class tables by
checking if an attribute or singly-occurring PCDATA-only
element type is optional; in the latter case, this is determined
on a per-parent basis. Besides the obvious use of the ‘?’
and ‘*’ operators, PCDATA-only element types that appear
directly or indirectly in a choice are also optional. Columns
in property tables are never nullable, as the absence of a
value simply results in the absence of a row.

For each element type-as-class, we create a primary key
column and use this to create a primary key/foreign key
relationship with each of its child element types that is
mapped as a class. The relationship between parent and
child is always one-to-many and the mapping specifies that
the key values are always generated.

The user can choose whether to store order information.
If so, we create one order column for each property and
parent/child relationship; the mapping specifies that order
values are always generated.

Default data types are assigned for all columns depend-
ing on a field’s content but may be overwritten by the user.

3This applies to all columns except those with a data type of BINARY,
VARBINARY, or LONGVARBINARY, which are not currently mapped.

7. XML-DBMS: A Data Transfer Utility
XML-DBMS is a utility for transferring data between XML
documents and relational databases, implemented as a set
of Java packages: a data transfer package, a map factory
package, and a coordinator package. Figure 3 shows the
architecture of XML-DBMS.

DBMS

DOM Tree
Map Object,

DOM

XML
Documents

DBMS
to

DBMS

Map

to

Map Object,
Data Retrieval Info

DOM
Factory

Document
Info

Mapping Document,
DTD, or

Relational Schema

DOM

Factories

Coordinator

DOM Tree

Map Object

Figure 3. XML-DBMS architecture.
When the coordinator receives a request to transfer data,

it first creates a map object that describes the mapping be-
tween the XML DTD and the relational schema. It then
uses the DOMToDBMS and DBMSToDOM components to
transfer data to or from the database. When transferring
data to the database, the coordinator must construct a DOM
tree from the XML document and pass this, along with the
map object, to the DOMToDBMS component; in return, it
receives a document information object, which contains in-
formation about how to retrieve the data at a later point in
time. When transferring data from the database, the coordi-
nator passes the map object, along with document retrieval
information (a document information object, a list of tables
and key values, or a result set), to the DBMSToDOM com-
ponent; in return, it receives a DOM tree.

The coordinator can store mapping documents and
DTDs (in the form of DDML documents) for each class
of documents. This is possible because mapping docu-
ments and DDML documents are XML documents, and
can therefore be stored using the DOMToDBMS and
DBMSToDOM components. The coordinator can also
store information to retrieve the document at a later time,
keyed by a user-defined name such as a file name, as well
as the original form of the document in a BLOB column.
The latter is useful for documents defined according to a
document-centric language, in which the original physical
structure (entity references, CDATA sections, and so on) is
often important.

7.1. Map Objects and Map Factories
A map object controls how data is transferred. Map objects
contain both XML-centric and database-centric views of the

7



mapping between a particular DTD and a particular rela-
tional schema as well as general metadata such as column
data types. The map object can also create the INSERT, SE-
LECT, and CREATE TABLE statements needed to process
data according to a particular mapping.

Map objects are created by a map factory. The map
factory package has factories to create maps from mapping
documents and DTDs, with factories planned for relational
schemas and result sets. The first of these is a SAX
application that reads a mapping document. The second
is a SAX application that recognizes DDML events. It
can be used either with DDML documents or DTDs (in
the latter case using a special parser that translates DTDs
into DDML) and can easily be adapted for use with other
XML schema languages. The third and fourth rely on the
metadata facilities of JDBC, some of which (information
about keys) are not supported by all JDBC drivers. All of
the factories produce a one directional view of the mapping
– either from XML to the database or vice versa – and then
use the general facilities of the map factory package to
invert the view.

7.2. Transferring XML Data to a Relational
Database

The DOMToDBMS component recursively walks the
DOM tree in modified depth-first, width-second order.
The modified order is needed to meet referential integrity
constraints in the database. For example, consider the
DOM tree for the first XML document in Section 3, part of
which is shown in Figure 4.

Orders

SalesOrder

CustName Address

Customer LineLineOrderDate

Quantity QuantityProduct Product

Figure 4. DOM tree of sales order example.
Because the primary key in the SalesOrder/Line relation-

ship is in the sales order table, the row in the sales order
table must be added before the rows in the lines table can
be added.

Thus, DOMToDBMS walks the tree as follows. When it
encounters a node mapped to a table, such as the SalesOr-
der node, it creates a buffer for a row in that table. It then
processes the children of that node. If a child is mapped to
a column, such as the OrderDate node, the node’s value is
stored in the buffer. If a child is mapped to a table that stores
a foreign key in the current table, such as the Customer
node, the node is immediately processed and the foreign
key stored in the current row buffer. If a child is mapped to
a table that uses the primary key of the current table, such as
the Line nodes, the node is saved for later processing. Note
that children of nodes mapped as pass-through, such as the

Address node, are processed immediately, as if they were
siblings of the other children.

After processing all the children of a table node, DOM-
ToDBMS inserts the current row – whether to commit the
insert immediately or after the entire document is inserted
is left as an option for the user – and then processes the
saved children, passing them the primary key from the cur-
rent row.

Although this method may require multiple row buffers
to be open at any one time, it minimizes the number of times
the DOM tree is traversed. It also minimizes the number of
statements open on the database, since a statement is needed
only when a row is inserted. We are currently investigating
the possibility of rewriting this component as a SAX appli-
cation, which would greatly increase its speed, as well as
eliminating most memory problems encountered when pro-
cessing large XML documents.

If the mapping specifies that DOMToDBMS generates
the key (object ID) for a class, DOMToDBMS calls a
method in a user-overridable class.

7.3. Transferring Relational Data to an XML
Document

The DBMSToDOM component traverses the relations and
builds a DOM tree. For each table, it opens a result set over
the table and reads a row. If the table is a class table, it
creates an element node for the row. It then creates nodes
(subelements, attributes, and PCDATA) for each property
value stored in the row. Following the key/foreign key rela-
tionships it processes each referenced table.

While constructing the tree, DBMSToDOM orders
nodes according to their related order information, if any.
It also checks whether any passed-through or ignored ele-
ments need to be recreated, and creates child nodes for any
markup in the values of element types-as-properties.

By building a DOM tree, DBMSToDOM does not have
to process child elements in any particular order. Instead, it
can simply insert each child in its correct position as it is
processed. Thus, it can process child tables one at a time
and the number of result sets open at any point in time is
equal to the depth of the hierarchy.

7.4. Data Transfer Issues
Because of mismatches in the capabilities of XML and rela-
tional DBMSs a number of data transfer issues arise which,
due to space limitations, are only outlined here. For details
see [2].

Except for unparsed entities, all data in an XML docu-
ment is text, i.e., XML does not support data types. We use
the conversion facilities of Java to convert relational data to
and from text.

XML supports the concept of null data through optional
element types and attributes. We give users the choice of
whether empty strings in elements and attributes should be
treated as empty strings or null data.

8



There are two common ways to store binary data in
XML: as an unparsed entity or through Base64 encoding
[10]. We use the former. When transferring data to the
database, we open a byte stream over the unparsed entity
and copy the data to a BLOB column. We cannot currently
transfer BLOB data to an XML document, as DOM does
not support creation of new entities.

One unsolved problem is handling non-ASCII characters
when transferring XML data to the database. XML docu-
ments accept all of Unicode except the control characters.
Most databases do not support Unicode and require special
configuration to handle non-ASCII encodings of character
data.

8. Related Work
Object-relational mappings are well described in the litera-
ture, e.g., [27, 17]. Our mapping supports a subset of this
work, not preserving such things as super-/subtype relation-
ships, which are not supported by XML, or many-to-many
relationships, which are not widely used in XML. Unlike
traditional object-relational mappings, we introduce the no-
tion of order shared by multiple properties of the same class.

Although developed separately, our work is a superset
and practical implementation of the Basic, Shared, and Hy-
brid Inlining techniques described in [24] for mapping a
DTD to relational schema. Our pass-through technique is
equivalent to their inlining technique and our designation of
root tables is equivalent to their isRoot fields. Furthermore,
we allow root element types to be ignored and children to
be passed through regardless of whether they have descen-
dants mapped to separate relations. Our mapping language
allows us to create maps exactly representing the techniques
in [24].

The literature also contains many papers describing how
to generate object schemas from relational schemas and
vice versa, e.g., [27, 8, 29, 12, 1]. These cover a variety
of techniques. Some of these, such as recognizing relations
that represent set attributes [17], recognizing multiple ob-
jects in a single relation [15], or recognizing non-normal
relations [27], are related to our work.

Several middleware products are available for transfer-
ring data between relational databases and XML docu-
ments. These fall into two broad categories: template-
driven and model-driven.

In template-driven products, such as ODBC2XML [13],
XSQL Servlet [20], XML Servlet [7], and XOSL [28], com-
mands are embedded in a template that is processed by the
middleware. For example, a SELECT statement might be
replaced by its results, formatted as XML. Template-driven
middleware is extremely flexible and often includes pro-
gramming structures such as loops and if statements. Its
two major disadvantages are the amount of code a user must
write (in the form of templates) to generate complex docu-

ments and the fact that none of the available products can
transfer data from XML documents to the database.

Model-driven products, such as XML-DBMS,
ASP2XML [25], DB2XML [26], and XML SQL Utility
[21], define a data model for the XML document and
then explicitly or implicitly map this to the database.
ASP2XML and DB2XML use a table model, meaning that
nesting can only be three (ASP2XML) or four (DB2XML)
layers deep, where the elements at each layer match the
database (DB2XML only), tables, rows, and columns.
Any document that does not match this model cannot be
processed.

Like XML-DBMS, Oracle’s XML SQL Utility models
the document as a tree of objects. However, XML SQL is
far less versatile for a number of reasons. First, the map-
ping is hard-coded in the utility. This leads to problems
such as the inability to process data stored in attributes and
the requirement that element type names must match col-
umn names. Second, it does not store information about the
order in which child elements and PCDATA occur, making
it impossible to reconstruct many XML documents. Third,
it relies on SQL 3 object views to process documents that
model anything more complex than a single table, so it is
not portable to databases that do not support these.

In addition to middleware, a number of databases have
integrated support for XML. The Internet File System in
Oracle 8i [19] appears to be similar to our work, using “doc-
ument descriptors” to map relational schema to XML doc-
uments and vice versa. One interesting aspect of document
descriptors is that they can map document fragments to a
single column rather than mapping each element individu-
ally. It does not appear that the Internet File System can
generate document descriptors at run time, as our system
does. The Internet File System is currently in beta release.

Excelon [18] and Tamino [23] store XML data in a local
database: Excelon uses ObjectStore and Tamino uses the
“X-Machine”, a hierarchical database. Both have the capa-
bility to integrate data from relational databases and both
have a mapping mechanism to do this. Although the use
of a local database means that they can perform heteroge-
neous joins, it also means they are heavyweight solutions
to the problem of simply transferring data between XML
documents and relational databases.

Extensions for processing XML in Sybase Enterprise
Application Server, Informix Dynamic Server, Microsoft
SQL Server, and IBM DB2 have been announced, but insuf-
ficient technical details are available to compare them with
our work.

Finally, a number of object-oriented and object-
relational databases can be used to store XML documents.
These include the Content Management Suite from POET
Software, Frontier 5 from UserLand, and Texcel Informa-
tion Manager from Texcel. Because they are concerned

9



with storing documents and document structure, as opposed
to the data in those documents, they are not directly related
to our work.

9. Conclusion
The main contribution of this paper is to describe a
lightweight yet very flexible, reusable utility for transferring
data between XML documents and relational databases. By
viewing an XML document as a tree of objects, we are able
to exploit and expand upon previous work in the fields of
object-relational mappings and schema generation to build
a utility that not only transfers data between documents and
databases of known schemas, but also generates both XML
DTDs and relational schemas at runtime for on-the-fly load-
ing and extraction of data.

As part of this utility, we have developed a flexible,
XML-based language for specifying the mapping between
XML documents and relational schemas. This language ex-
pands on the basic principles of object-relational mappings
to handle situations unique to XML.

Our utility is written in Java and is based on widely
accepted standards such as JDBC, SAX, DOM, and
DDML. It is therefore independent of platform, DBMS,
and XML parser and DOM implementation and is suitable
for deployment in a wide number of environments. We
have implemented version 1.0 of the utility, including the
data transfer components, the map objects, and the map
factories for the mapping language and DTDs. This utility
is currently being used or evaluated for use in a number
of German corporations and government agencies, as well
as WE-trade, a B2B e-commerce project of the European
Union, and is also a part of the ExOffice Java/XML
Enterprise Platform.

References
[1] S. Amer-Yahia, S. Cluet, C. Delobel: Bulk Loading

Techniques for Object Databases and an Application to
Relational Data, VLDB, New York City, USA, 1998

[2] R. Bourret, C. Bornhövd, A. Buchmann: A Generic
Load/Extract Utility for Data Transfer between XML
Documents and Relational Databases, TR-DVS99-1, DVS,
Dep. CS, Darmstadt U. of Technology, Germany, Dec. 1999

[3] R. Bourret, J. Cowan, I. Macherius, S. St. Laurent: Docu-
ment Definition Markup Language (DDML) Specification,
Version 1.0, www.w3.org/TR/NOTE-ddml, 1999

[4] P. Biron, A. Malhotra: XML Schema Part Two: Datatypes,
www.w3.org/TR/xmlschema-2/, 1999

[5] T. Bray, D. Hollander, A. Layman: Namespaces in XML,
www.w3.org/TR/REC-xml-names, 1999

[6] T. Bray, J. Paoli, C. Sperberg-McQueen: Extensible Markup
Language (XML) 1.0, www.w3.org/TR/REC-xml, Feb. 10,
1998

[7] Cerium Component Software: XML Servlet, ceriumworks-
.com/tech.html, 1998

[8] M. Castellanos, F. Saltor: Semantic Enrichment of Database
Schemas: An Object Oriented Approach, RIDE-IMS,
Kyoto, Japan, 1991

[9] L. Wood, et al.: Document Object Model (DOM) Level
1 Specification, Version 1.0, www.w3.org/TR/REC-DOM-
Level-1/, 1998

[10] N. Freed, N. Borenstein: RFC 2045: Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Mes-
sage Bodies, www.cis.ohio-state.edu/htbin/rfc/rfc2045.html,
1996

[11] M. Fuchs, M. Maloney, A. Milowski: Schema for Object-
oriented XML, www.w3.org/TR/NOTE-SOX, 1998

[12] C. Fahrner, G. Vossen: Transforming Relational Database
Schemas into Object-Oriented Schemas According to
ODMG-93, DOOD, Singapore, 1995

[13] Intelligent Systems Research: ODBC2XML: ODBC XML
Generator, members.xoom.com/gvaughan/odbc2xml.htm,
1999

[14] ISO 8879. Information Processing – Text and Office Systems
– Standard Generalized Markup Language (SGML), 1986

[15] P. Johannesson: A Method for Transforming Relational
Schemas into Conceptual Schemas, ICDE, Houston, Texas,
1994

[16] D. Megginson: Simple API for XML (SAX),
www.megginson/-.com/SAX/, 1998

[17] W. Meng, A. Kamada, Y-H. Chang: Transformation of Re-
lational Schemas to Object-Oriented Schemas, COMPSAC,
Dallas, Texas, 1995

[18] Object Design, Inc.: An XML Data Server For
Building Enterprise Web Applications, www.odi.com/-
excelon/XMLResource/build ent web apps.pdf, 1999

[19] Oracle Corporation: XML Support in Oracle8i and Beyond,
www.oracle.com/xml/documents/xml twp/, 1998

[20] Oracle Corporation: Oracle XSQL Servlet, technet/-
.oracle.com/tech/xml/xsql servlet/main.htm, 1999

[21] Oracle Corporation: Oracle XML SQL Utility for Java,
technet.oracle.com/tech/xml/oracle xsu/main.htm, 1999

[22] D. Ragget; A. Le Hors; I. Jacobs: HTML 4.0 Specification,
www.w3.org/hypertext/WWW/MarkUp/MarkUp.html, 1997

[23] Software AG: Tamino: The Information Server for Elec-
tronic Business, www.softwareag.com/tamino/, 1999

[24] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, J. Naughton: Relational Databases for Querying
XML Documents: Limitations and Opportunities, VLDB,
Edinburg, Scotland, 1999

[25] Stonebroom Software: ASP2XML: XML Interface Active
Server Component, www.stonebroom.com/asp2xml.htm,
1999

[26] V. Turau: DB2XML: A Tool for Transforming Relational
Databases into XML Documents, www.informatik.fh-
wiesbaden.de/t̃urau/DB2XML/index.html, 1999

[27] T. Teorey, D. Yang, J. Fry: A Logical Design Methodology
for Relational Databases Using the Extended Entity-
Relationship Model, ACM Comp. Surv., 18(2), 1986

[28] R. Westphal: XOSL – The XML-Based Stylesheet Lan-
guage for Converting RDBMS Legacy Data to XML,
www.riposte.com/xosl/index.html, 1998

[29] L-L. Yan, T-W. Ling: Translating Relational Schema With
Constraints Into OODB Schema, Interoperable Database
Systems, Elsevier Science Publishers B.V., 1993

10


