
Workflow Support for Wireless Sensor and Actor Networks

A Position Paper

Pablo Ezequiel Guerrero
∗

Daniel Jacobi
†

Alejandro Buchmann

Dept. of Computer Science
Technische Universität Darmstadt

D-64283 Darmstadt, Germany
{guerrero, jacobi, buchmann}@dvs1.informatik.tu-darmstadt.de

ABSTRACT
As initial challenges of wireless sensor and actor networks
(WSANs) are overcome, their application possibilities evolve.
For these applications to move mainstream, efficient pro-
gramming methods are required which can be used by do-
main experts. So far, the question of how can WSANs be
efficiently programmed remains unanswered. In this paper
we examine proposed middleware approaches, and show that
they have focused on data extraction rather than in-network
actuation. We thus propose the usage of workflows as a
means to define the logic that orchestrates the network ac-
tivity, and introduce a language to express WSAN interac-
tions. At this time, a concrete system is not given, but the
paper discusses the relevant aspects towards one, and poses
many questions for future research.

1. INTRODUCTION
Ever since the idea of merging fundamental sensing, pro-

cessing and wireless communication capabilities into tiny de-
vices emerged [26, 27], an enormous progress has been made
to get large numbers of low-cost, battery-powered nodes to
carry out collective tasks [2]. The tight collaboration be-
tween experts from different areas leveraged a technology
spread over many domains. Indeed, the last 5 years have
seen a number of large experimental deployments of wire-
less sensor network (WSN) applications.

One of the earliest deployments was on Great Duck Is-
land [18]. The study, in cooperation with researchers in
the Life Sciences, aimed at unobtrusively learning about
seabirds and their environment, by installing sensor nodes in
and around their burrows during nesting periods. Another
deployment, in this case together with glaciologists, aimed
at investigating the behavior of glaciers by inserting sen-
sor nodes in them [19]. A third deployment, now involving
multi-hop communication, was carried out in dutch potato
fields [13]. There, crops must be protected against fungal
diseases, which are strongly associated to the climatolog-
ical conditions within the field. The deployments in this

∗Supported by the DFG Graduiertenkolleg 492, Enabling
Technologies for Electronic Commerce.
†Supported by the DFG Graduiertenkolleg 1362, Coopera-
tive, Adaptive and Responsive Monitoring in Mixed Mode
Environments.

4th International Workshop on Data Management for Sensor Networks.
DMSN’07, September 23-28, 2007, Vienna, Austria.
Copyright is held by the authors.

first group faced many issues in common such as network
longevity, remote administration and unobtrusive monitor-
ing. Their application logic, however, is quite simple: the
(mostly) raw observed data must be pushed out of the net-
work. Note that the parameters of this logic, i.e., the sam-
pling rates, are normally specified by the domain experts.

In a second group of applications, a continuous observa-
tion of the environment is not required. In contrast, the
slightly more complex goal is to detect an event of interest
and observe the phenomena afterwards. One such deploy-
ment was that carried out with volcanologists at Ecuador’s
Volcán Reventador [37]. Each node waits until its seismome-
ter readings exceed a certain threshold, and then notifies a
base station, which triggers a data collection phase. Another
example in this group are structural health monitoring sys-
tems like Wisden [40] or the one deployed on the Golden
Gate Bridge [12]. The event detection is followed by local
data storage and posterior progressive coding (compression)
for efficient data transmission. The parameters of the ap-
plication logic, i.e., the sampling rates and the thresholds,
are also given by the experts in the domain, who may vary
them to adjust or refine the experiment.

A third type of applications is considerably more com-
plicated. The habitat monitoring system deployed at the
Coastal Redwood Forests of California [17] allows complex
queries to be injected into the network, whose results are ag-
gregated as they are streamed back to a base station. In the
industrial scenario of the CoBIs project [33], nodes attached
to chemical drums cooperate without using any external in-
frastructure to check for hazardous situations and violations
of safety regulations. Again, the logic behind these appli-
cations is precisely stated by domain experts, now in the
shape of SQL-like queries or inference rules, respectively.

From this categorization, it is clear that the research focus
has been on data extraction and event detection. While we
observe that many operations have been effectively moved
into the network, the decision on how, when and where to
perform certain actuation is only taken off the network, ei-
ther by a human, or with the help of a decision support
system. This is logical, since only after data had been con-
solidated in a central server was it possible to reason about
it and decide what to do next. However, a WSN can be
easily extended with other nodes further capable of actuat-
ing, forming a wireless sensor and actor network (WSAN)
[1]. As an example, WSANs are needed for the control of
autonomous vehicles (AVs) and the coordination of swarms
thereof. Individual actuators are as diverse as sensors; in

essence they can either open or close a switch, or set a value
in some way [11]. With these, the loop of event-sensing,
decision and acting can be closed, and even lead to a re-
duced need for unnecessary, slow and error-prone human
intervention in the process. It is thus natural to foresee that
a next step is to support in-network actuation. In this way,
the whole WSAN loop can be shifted to the network. Intu-
itively, this approach presents a number of benefits, namely:

• faster reaction to the event, as the decision is taken
closer to the point of interest,

• enhanced reliability, due to the smaller chance of losing
messages in the loop sequence, and

• energy savings (i.e. extended network lifetime) for the
reduced amount of messages exchanged between event
sources, sinks and actuation nodes.

These benefits, however, don’t come for free. To achieve
them, there exist several challenges that a WSAN platform
must overcome. One of such challenges, which constitutes
the central theme of our work, is how to define the logic
that orchestrates the WSAN activity. As can be noted in
the previous application categories, it is the domain experts
who have the knowledge of the behavior of the target en-
vironment and what is needed to do with it as a response.
They can provide engineers with very detailed information of
what is expected to happen, either from what they have ob-
served, learned or suspect and want to corroborate. In this
position paper we argue that this behavior, which we have
called application logic, can be naturally expressed through
a workflow with relative ease.

The rest of this paper is organized as follows. In the next
section we examine the existing middleware approaches’ suit-
ability for programming WSAN interactions. Section 3 pro-
ceeds with a description of workflows and how they can be
applied to express WSAN application logic. In Section 4,
we identify further platform possibilities and propose future
directions to realize a WSAN workflow middleware. Finally,
in Section 5 we draw the conclusions.

2. MIDDLEWARE APPROACHES
The aforementioned applications dictate requirements of

increasing complexity, e.g., long life span, fast response,
fault-tolerance, secure communication, flexibility or recon-
figurability, etc. Due to the technical constraints of the
sensing platforms, developing such applications using a lan-
guage like nesC and TinyOS [10, 6], or even reutilizing them
in slightly different environments, poses a highly complex
task. Fortunately, research in the recent past has produced
the necessary low level building blocks like MAC protocols,
routing, localization or time synchronization. Composing a
system with these, i.e., putting the correct pieces together
for a particular end application, nevertheless, is still a dif-
ficult engineering endeavor. In order to alleviate this prob-
lem, middleware has been proposed as a means to ease the
development of applications [30, 41, 34, 9, 8].

A major task of the middleware is to raise the level of ab-
straction for programming distributed applications. From a
programmers’ point of view, there are two types of middle-
ware designs: node-centric and network-centric.

Using the first design, programmers have to deal with
how to do things in a node, e.g., get the temperature or

process a packet and handle a response. One of the earli-
est systems categorized as node-centric middleware is Maté
[14]. It employs a virtual machine (VM) architecture to en-
able portability across several sensor platforms. Maté’s in-
struction set is concise (instructions have only 1 byte), while
programs are broken into 24 instructions’ capsules. This ap-
proach presents a number of drawbacks for WSAN’s applica-
tion logic. First, Maté’s programs are epidemically flooded
through the network, impeding a selective decision on which
nodes should do what. This issue is faced by the Agilla [5]
mobile agent middleware, which is built on top of Maté and
extends it with explicit migrate and move operations. Mo-
bile agents are focused on working in a local manner as well.
Second, although Maté hides certain complexity from the
developer such as routing details or asynchrony, the level
of abstraction is still quite low: bytecodes. In this regard,
SwissQM [22] expands work on VMs to provide compilers for
higher level languages such as XQuery, SQL or Java. Finally,
it is noted that VM’s overhead for bytecode interpretation
(which is translated to energy consumption) is not necessar-
ily traded off for platform interoperability, highly desired in
heterogeneous environments.

By viewing the network as its most important part, many
approaches for WSNs follow the second, network-centric, de-
sign. A first known subgroup, which exposes a high level of
abstraction, are sensor database systems. In these systems,
an SQL-like query language is used to extract data from
the network nodes. Cougar [4] is one of the first models of
this kind. In Cougar, every sensor type is modeled as an
abstract data type (ADT), whose public interface consists
of the supported signal processing functions. Every ADT
object in the database represents one physical sensor in the
real-world. Cougar extends the traditional central approach
with the ability to gather only data needed for a user query,
instead of extracting all the data from the physical environ-
ment. By following this central approach, however, Cougar
inherits also its drawbacks: it stores the data in a fixed node
and answers user queries from it. This leads to reduced en-
ergy resources at nodes in the area around this fixed node. In
addition, Cougar utilizes streams and long running queries,
without considering the energy constrains of the sensors.

In contrast to Cougar, TAG [16] and TinyDB [17] are the
first attempts to consider these energy constrains and in-
corporate a distributed execution of a query. TAG pursues
reducing the power consumption on nodes that have to de-
liver data to a central server. For this, it partially moves
computing from the server to the network: it uses aggrega-
tion queries to aggregate queried values in the network and
keep the amount of transferred data over all nodes small and
similarly distributed. A drawback of TAG is that it uses only
aggregation queries, which are flooded through the network
regardless if a node has data for the query or not. TinyDB
solves both problems of TAG. It creates an index over all
constant attributes and uses this to send a query only to
nodes that can participate in its execution. TinyDB is the
first system where the user does not need to write low level
code to query data, because it provides an interface to send
SQL-queries. Even though TinyDB provides basic support
for actuation queries, its main aim is to get data out of the
network. In general, these systems have almost no possibil-
ities to send data back into the network, as is required for
WSAN’s to control actuators.

Another subgroup of network-centric middleware targets

clustering or grouping nodes. Hood [38] and Abstract Re-
gions (based on Hood) [36] focus on building local clusters
of neighboring nodes to exchange data. Hood restricts the
clusters to one-hop neighbors, while Abstract Regions can
recruit nodes in a n-hop distance or, with some location in-
formation, in a specific radius. To communicate with each
other, trees or meshes are used. As every node builds its
own neighborhood, a single node can be a member of several
neighborhoods and in each neighborhood data is exchanged,
aggregated and processed.

The approach used in Generic Role Assignment (GRA)
[29] is to define different roles for the network nodes. Ev-
ery node receives the same specification of roles and pro-
gram images. At runtime, each node picks a role out of the
specification depending on several conditions. For instance,
a ‘cluster head’ role in a routing algorithm could depend
on the number of neighboring nodes. Scopes [32] combines
many advantages of the previous systems. It can group dif-
ferent nodes by properties over the whole network, different
groups can execute different applications and it is also capa-
ble of creating nested groups. The applications can be sent
to the groups while the network is already deployed in the
field and so can easily change the tasks to execute. Never-
theless, Scopes presents two drawbacks. The first is that the
approach can be inefficient when executing short tasks. The
second, which depends on the used routing scheme, is that
it may be impossible to perform in-network aggregation due
to the complexity in incorporating it into its algorithms.

A latest subgroup of network-centric middleware design is
based on the idea of macroprogramming. Regiment [24] is
one such macroprogramming language. It relies on Region
Streams [25] to get routing tasks done. With Regiment,
the network as a whole is modeled in one macro-program.
The tasks a single node has to process are extracted from
this code. To get data from one part of the network, some
properties are specified to identify a region of nodes and the
data sent back from this region is represented by a Region
Stream. They further offer additional executable operators,
for example, to aggregate raw data. In the state-centric
programming approach of Pieces [15], the concept of node
clusters is also present. Programmers, however, focus on di-
viding the global state of physical phenomena into a hierar-
chical set of independently updatable pieces. These pieces
are encapsulated by principals, who update their state by
interacting with other principals through port agents. Al-
though we agree with many ideas behind Pieces, the lack
of a more detailed description of the programming prim-
itives (and possibly an implementation) makes it difficult
to conclude whether it is suitable for in-network actuation.
Another approach along the same lines, but for which a
concrete implementation exists, is Kairos [7]. Here, pro-
grammers are offered three new language constructs, namely
node, one-hop neighbors and remote data access. These are
used to program the global behavior of a distributed ap-
plication implicitly. This single centralized program is later
compiled into a node-level version for each node. Its authors
showed that the easiness in writing Kairos’ programs comes
at the cost of a lower performance, although within 2 times
that of the original ones (i.e., distributed explicitly).

We finalize this examination with two macroprogramming
approaches that illustrate the effectiveness of programming
large numbers of nodes using data flows. In the Abstract
Task Graph approach [28], programs consists of two parts.

The first, declarative part specifies the program’s tasks and
constraints on their placement and communication. The sec-
ond, imperative part contains the node-level implementation
of the task in a traditional computer language. Similarly, in
Cosmos [3], programs are composed of functional compo-
nents which provide computing primitives, and interaction
assignments, which specify the dataflow through the former.
While we consider that analyzing an application’s data flow
is necessary, we also think that attention must be paid to
the control flow.

The previous (by no means exhaustive) analysis provides
us with enough evidence that, even though many are head-
ing in the right direction, the existing approaches fall short
for WSAN interactions. In the next section, therefore, we
propose what we believe can be an effective programming
paradigm that produces efficient WSAN programs.

3. THE CASE FOR WORKFLOWS
The use of workflows to express WSAN application logic

embraces two major benefits. First, by keeping the work-
flow programming abstractions simple [31], we can bring
WSAN programming closer to domain experts. The appli-
cation logic can be defined using workflow modeling tools,
whereas the WSAN runs an infrastructure which senses and
generates the data that causes the state transitions in such
workflow and executes their associated actions. A second ad-
vantage is that general purpose specification formalisms can
be used for formal correctness reasoning and doing model
checking, for instance through Petri nets [23] or state and
activity charts [39].

The term workflow has been overused in the literature to
the point of requiring a further description when used. For
this purpose, we introduce the elements that make up our
workflow programs following a bottom-up approach. The
first element defines the application’s event filters, which
are expressions that match with a given event or not.

Definition 3.1. Let F be the set of all possible event fil-
ters, and F be a proper subset of it.

The second element needed defines the application’s ac-
tions, which can be seen as executable code.

Definition 3.2. Similarly, let C be the set of possible ac-
tion codes, and C be a proper subset of it.

We now introduce the network’s nodes.

Definition 3.3. Let N be the set of network nodes.

Note that N is purposely defined as an infinite set so that
new nodes can always join the system.

Definition 3.4. Let R = {R1, R2, . . . , Rn} be the finite
set of node roles, where R 6= ∅, such that ∀Ri ∈ R : Ri ⊆ N .

Roles are functions that select subsets of nodes, e.g., with
node ids, proximity, with hop counts or sensor properties.

We now characterize a workflow program as a set S of
logical states an application can be in, and a specification of
control flow transitions T between them (cf. Definition 3.5).
There is an initial state designated s0, and a non-empty sub-
set of S with the final states called SF . The state transitions,
T, have two annotations. The first annotation, E, is com-
posed of a filter, which describes occurrences of the event

Definition 3.5. A workflow program is a tuple WP = (S, s0, SF , R, T),
where S = {s0, s1, s2, . . . , sm} is the finite set of application states, S 6= ∅, s0 ∈ S is the initial application state,

SF ⊆ S is the set of final application states, SF 6= ∅,
E = (F ×R) is a shorthand for event annotations, A = (C ×R) is a shorthand for action annotations,
T ⊆ ((S × S)× E ×A), is an annotated transition between two states,

such that ∀si ∈ (S \ SF) ∃ (t, sj , e, a) ∈ (T × S × E ×A) : t = ((si, sj) , e, a), and
∀sj ∈ (S \ {s0}) ∃ (t, si, e, a) ∈ (T × (S \ SF)× E ×A) : t = ((si, sj) , e, a).

that can match with it for the transition to be followed, and
a role, which at runtime delimits the set of nodes that will
participate in the detection of the event. In turn, the second
annotation, A, is composed of an action code, that must be
executed as a response when the transition is chosen, and
another role, also defining which nodes will participate in
the execution. Finally, the first constraint simply enforces
that every state, except those that are final, must have an
outgoing transition, whereas the second constraint makes
every state, except the initial, have an incoming transition.

A generic transition between two application states s1 and
s2 is illustrated in Figure 1 a). Such transition is triggered
when an event matching the filter fe is detected by the nodes
in role re. The associated action is taken by executing ca

at nodes in role ra. Note that the event annotation of a
transition can be omitted, in which case the transition is
triggered unconditionally. The action can also be omitted,
indeed executing no action code.

The definition of a workflow is flexible enough to accom-
modate innumerable WSAN programs. We now describe the
semantic of common compositions from a control flow per-
spective. In Figure 1 b), a typical iteration is shown. The
case when a state has multiple outgoing transitions, allow-
ing choices to be followed, is depicted in Figure 1 c). Each
of these choices need not be disjoint, i.e. the filters fe1, fe2,
etc., can overlap. In such case, the control thread is indeed
forked with those transitions whose filter match the detected
event. Note, furthermore, that the resulting threads could
execute sequentially (in no particular order) or in parallel.
Finally, the syntax allows multiple transitions to converge
into a single state, as depicted in Figure 1 d).

Figure 1: Workflow compositions

Given our formal language syntax, we proceed with a
simple algorithm used to execute workflow programs for
WSANs, depicted in Algorithm 1. For this purpose, an en-
tity called workflow manager is introduced, whose duty is to
loop tasking the nodes to sense and actuate through the cor-
responding workflow states. Given that control can be split
into parallel threads, the workflow program’s state is really
described with a set, namely CurrentState. A thread dies
whenever it reaches a final state. Additionally, when two
or more threads converge simultaneously into a single state,
they merge. At any point, |CurrentState| equals the num-
ber of parallel threads. When every thread has finished, the
workflow execution concludes.

Algorithm 1 Workflow Manager Execution Algorithm

1: CurrentState← {s0}
2: while CurrentState 6= ∅ do
3: for all t = ((s, d), e, a) ∈ T such that

s ∈ CurrentState do
4: Given e = (fe, re),

task nodes in role re to detect event fe

5: end for
6: for all t = ((s, d), e, a) ∈ T such that

event e = (f, r) was detected do
7: Given a = (ca, ra),

task nodes in role ra to actuate with ca

8: CurrentState← CurrentState \ {s}
9: if d /∈ SF then

10: CurrentState← CurrentState ∪ {d}
11: end if
12: end for
13: end while

4. DISCUSSION AND DIRECTIONS
The preliminary state of this work led us to intentionally

avoid providing a particular syntax for the formal specifi-
cation of a workflow program given in the previous section,
e.g., for the definition of roles, and event and action anno-
tations. In this section we discuss how can this syntax be
concretized. There exists a tradeoff between a language’s
expressiveness and the spectrum of possible applications for
which it can be used. Approaches from Section 2 could fit.

The event annotations, for instance, could range from
TinyDB’s queries [17], through Agilla’s mobile agents [5], to
Regiment’s streams [25]. Previous work on publish/subscribe
abstractions has shown event-based communication to be
suitable for low-power, unreliable devices. Defining events
that can be evaluated inside the network leads to near op-
timal energy consumption, provides deployment flexibility
and leads to fault-tolerance in the event detection even when
some nodes fail. These properties would allow the workflow
execution to proceed even under adverse conditions.

State transitions can be further triggered due to temporal
events, i.e., at an absolute date or relative to another event
(when the state was entered, a threshold was exceeded, etc).
Logical combinations of temporal and spatial constraints
should also be valid. An action’s code could not only cause
a particular set of nodes to actuate but also set or update
state variables which would be kept in a shared space. This
could be later read by an event or another action.

The workflow language can be extended to optionally in-
clude conditions in the transitions. In this way, transi-
tions can be seen as full Event-Condition-Action rules. A
condition is a boolean expression that evaluates to true or
false, whereas the algebra typically supports the operators
sequence, and, or and not. The usage of conditions can
be practical for developers, leading to a more clear design,
as events become simpler (not overloaded with the extra
guards), at the cost of adding complexity to the language.
The major difference between events and conditions is that
events are pushed towards the workflow manager, while con-
dition’s results are usually pulled by it. Finally, conditions
could make use of the state variables in the shared space.

For the definition of an event or an action’s role, which
selects network nodes for a particular event detection or
action execution, approaches like GRA [29] or Scopes [32]
are suitable. Here, it will be important to distinguish be-
tween a static role (i.e., one evaluated only once, either at
deployment-time or at run-time) and a dynamic role (i.e.,
re-evaluated with a certain policy).

The workflow compositions shown in Figure 1 can be fur-
ther extended with numerous patterns as observed in the
work from von der Aalst et al. [35]. These patterns allow to
explicitly describe whether a single or multiple choices can
be followed when a state has multiple outgoing transitions;
whether a thread must wait until other finish when a state
has multiple incoming transitions; etc. This will clearly ex-
tend the workflow language syntax.

The problem of how to coordinate sensors and actor in-
teractions has been introduced in [20]. The described in-
teraction, however, is rather simplistic. It consists of an
aggregate and actuate loop. In contrast, we are looking at
providing means to describe an arbitrary application logic.
Our algorithm is näıve in that it assumes a centralized work-
flow manager, who decides which transitions to follow in an
atomic fashion given input events that arrive sequentially.
This would be adequate, e.g., for workflows involving control
of a single AV. In a distributed system, however, designating
a single node for this task results in a system with a single
point of failure, and leads to uneven energy consumption
at that node and around it. On the other extreme, letting
every node assume this manager role requires synchroniza-
tion, a problem that is related to distributed shared memory
models [21] and requires future work.

A number of questions issues is raised by such middleware:

1. Workflow updates and composition: due to the dis-
tributed nature of a running workflow program, how
can it be partially updated to accommodate program
changes? How can a state be replaced or dynamically
composed with an inner workflow?

2. Multiprogramming : how can the platform, once run-
ning a particular workflow program, accept a second
one? How can similarities between these two be ex-
ploited so that several workflows can be executed si-

multaneously in an energy-efficient manner?

3. In-network storage: how can state be distributed across
nodes for efficiency and reliability reasons? how can it
be kept updated?

4. Security : given a concrete middleware architecture,
how can security be built in so that it is ensured that
the network is resilient to attacks?

5. Logging : in case a human operator monitors the net-
work, how can the decisions taken by the workflow
middleware be distributedly logged at a particular sink?
How can the system inform about the confirmed state
transitions to support a debugging process (and pos-
sibly find out where the system got blocked)?

Ultimately, for an end-to-end software solution, various
CASE tools must be available to domain experts. Many
workflow development GUIs exist, but they would need to be
adjusted to reflect the particular semantics of our language.

5. CONCLUSIONS
In this paper we have shown that a next step in order to

move forward with WSANs’ application logic is to provide
effective means to orchestrate the network’s sensing and ac-
tuation. We have examined existing middleware approaches,
pointing out that they fall short due to their focus on data
extraction and not on in-network actuation. We are address-
ing WSANs in the context of autonomous vehicles. We have
proposed the use of workflows to describe this application
logic, and described a sensing and actuation language that
offers the basic workflow operators. The paper raises many
questions requiring further research. Initial tradeoffs for a
middleware platform supporting workflow interactions were
identified and discussed. We expect to continue our work in
the area by instantiating the language with concrete exam-
ples, use simulations to sort out the most relevant platform
issues and then move on with a concrete implementation.

6. REFERENCES
[1] I. Akyildiz and I. Kasimoglu. Wireless Sensor and

Actor Networks: Research Challenges. Ad Hoc
Networks, 2(4):351–367, October 2004.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless Sensor Networks: a Survey.
Computer Networks, 38:393–422, 2002.

[3] A. Awan, S. Jagannathan, and A. Grama.
Macroprogramming Heterogeneous Sensor Networks
using Cosmos. In EuroSys’07, March 2007.

[4] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the
Physical World. IEEE Personal Communications,
7:10–15, October 2000.

[5] C. Fok, G. Roman, and C. Lu. Agilla: A Mobile Agent
Middleware for Sensor Networks. Technical Report
WUCSE-2006-16, Wa. Univ. in St. Louis, March 2006.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer, and D. Culler. The nesC Language: A
Holistic Approach to Networked Embedded Systems.
In PLDI’03, pages 1–11, New York, NY, USA, June
2003. ACM Press.

[7] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming Wireless Sensor Networks using
Kairos. In 1st DCOSS, pages 126–140, June 2005.

[8] S. Hadim and N. Mohamed. Middleware Challenges
and Approaches for Wireless Sensor Networks. IEEE
Distributed Systems Online, 7(3), March 2006.

[9] K. Henricksen and R. Robinson. A Survey of
Middleware for Sensor Networks: State-of-the-Art and
Future Directions. In MidSens’06, pages 60–65, New
York, USA, 2006. ACM Press.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for
Networked Sensors. In ASPLOS-IX, pages 93–104,
December 2000.

[11] H. Karl and A. Willig. Protocols and Architectures for
Wireless Sensor Networks. Wiley & Sons, June 2005.

[12] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health Monitoring of Civil
Infrastructures Using Wireless Sensor Networks. In
6th IPSN, pages 254–263, New York, NY, USA, 2007.

[13] K. Langendoen, A. Baggio, and O. Visser. Murphy
Loves Potatoes: Experiences from a Pilot Sensor
Network Deployment in Precision Agriculture. In 14th
WPDRTS, April 2006.

[14] P. Levis and D. Culler. Maté: A Tiny Virtual Machine
for Sensor Networks. In ASPLOS-X, pages 85–95, New
York, NY, USA, October 2002. ACM Press.

[15] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao.
State-Centric Programming for Sensor-Actuator
Network Systems. IEEE Pervasive Computing,
02(4):50–62, October 2003.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-hoc Sensor
Networks. 5th USENIX OSDI, 36(SI):131–146, 2002.

[17] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TinyDB: an Acquisitional Query Processing System
for Sensor Networks. ACM Transactions on Database
Systems, 30(1):122–173, March 2005.

[18] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless Sensor Networks for
Habitat Monitoring. In 1st ACM Intl. Workshop on
Wireless Sensor Networks and Applications, pages
88–97, New York, NY, USA, September 2002.

[19] K. Martinez, P. Padhy, A. Elsaify, G. Zou,
A. Riddoch, J. K. Hart, and H. L. R. Ong. Deploying
a Sensor Network in an Extreme Environment. In
IEEE SUTC, volume 1, pages 186–193, June 2006.

[20] T. Melodia, D. Pompili, V. C. Gungor, and
I. Akyildiz. A Distributed Coordination Framework for
Wireless Sensor and Actor Networks. In 6th MobiHoc,
pages 99–110, New York, NY, USA, 2005. ACM Press.

[21] D. Mosberger. Memory Consistency Models. Operating
Systems Review, 27(1):18–26, January 1993.

[22] R. Müller, D. Kossmann, and G. Alonso. A Virtual
Machine for Sensor Networks. In EuroSys’07, Mar. 07.

[23] T. Murata. Petri nets: Properties, Analysis and
Applications. Procs. IEEE, 77(4):541–580, April 1989.

[24] R. Newton, Arvind, and M. Welsh. Building up to
Macroprogramming: an Intermediate Language for
Sensor Networks. In 4th IPSN, pages 6–13, 2005.

[25] R. Newton and M. Welsh. Region Streams: Functional
Macroprogramming for Sensor Networks. In 1st
DMSN, pages 78–87, Toronto, Canada, August 2004.
ACM Press.

[26] K. Pister, J. Kahn, and B. Boser. Smart Dust:
Autonomous Sensing and Communication in a Cubic
Millimeter. http://robotics.eecs.berkeley.edu/

~pister/SmartDust/, 1999.

[27] G. Pottie and W. Kaiser. Wireless Integrated Network
Sensors. Comm. of the ACM, 43(5):51–58, 2000.

[28] V. Prasanna, J. Reich, A. Bakshi, and D. Larner. The
Abstract Task Graph: a Methodology for
Architecture-Independent Programming of Networked
Sensor Systems. EESR’05 Workshop, pages 19–24,
June 2005.

[29] K. Römer, C. Frank, P. Marrón, and C. Becker.
Generic Role Assignment for Wireless Sensor
Networks. In 11th ACM SIGOPS European Workshop,
pages 7–12, Leuven, Belgium, September 2004.

[30] K. Römer, O. Kasten, and F. Mattern. Middleware
Challenges for Wireless Sensor Networks.
SIGMOBILE Mob. Comput. Commun. Rev.,
6(4):59–61, October 2002.

[31] A. Sharp and P. McDermott. Workflow Modeling:
Tools for Process Improvement and Application
Development. Artech House Computing Library,
Norwood, MA, April 2001.

[32] J. Steffan, L. Fiege, M. Cilia, and A. Buchmann.
Scoping in Wireless Sensor Networks: A Position
Paper. In 2nd Workshop on Middleware for Pervasive
and Ad-hoc Computing, pages 167–171, October 2004.

[33] M. Strohbach, G. Kortuem, and H. Gellersen.
Cooperative Artefacts - A Framework for Embedding
Knowledge in Real World Objects. In Smart Object
Systems Workshop at UbiComp 2005, September 2005.

[34] K. Terfloth and J. Schiller. Driving Forces Behind
Middleware Concepts for Wireless Sensor Networks. In
Workshop on Real-World WSNs, June 2005.

[35] W. van der Aalst, A. Hofstede, B. Kiepuszewski, and
A. Barros. Workflow Patterns. Distributed and
Parallel Databases, 14(1):5–51, July 2003.

[36] M. Welsh and G. Mainland. Programming Sensor
Networks Using Abstract Regions. In 1st
USENIX/ACM NSDI, pages 29–42, March 2004.

[37] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a
Wireless Sensor Network on an Active Volcano. IEEE
Internet Computing, 10(2):18–25, 2006.

[38] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: A Neighborhood Abstraction for Sensor
Networks. In 2nd MobySys, pages 99–110, June 2004.

[39] D. Wodtke and G. Weikum. A Formal Foundation for
Distributed Workflow Execution Based on State
Charts. In 6th Intl. Conference on Database Theory,
volume 1186 of LNCS, pages 230–246, January 1997.

[40] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A Wireless
Sensor Network for Structural Monitoring. In 2nd
SenSys, pages 13–24, November 2004.

[41] Y. Yu, B. Krishnamachari, and V. Prasanna. Issues in
Designing Middleware for Wireless Sensor Networks.
IEEE Network, 18(1):15–21, January 2004.

