
Relying on Wireless Sensor Networks to
Enhance the RC-Gaming Experience

Pablo Guerrero∗, Mariano Cilia∗∗ and Alejandro Buchmann∗∗
∗GK Enabling Technologies for Electronic Commerce and

∗∗Databases and Distributed Systems Group,
Dept. of Computer Science, TU Darmstadt, Germany

{pguerrer,cilia,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract— Maturity of wireless sensor networks will lead to
a world full of smart objects, and remote controlled toys are
no exception. Following the growing popularity of multiplayer
computer games, we envision a novel application that enriches the
gaming experience by taking the digital multiplayer interaction
into the physical world of remote controlled toys. We propose the
development of an infrastructure that relies on wireless sensor
networks as the glue that makes it possible that remote controlled
toys can be used in multiplayer games, and provide a roadmap
for the development of such an infrastructure.

I. INTRODUCTION

Wireless sensor networks (WSNs) technologies let us start
thinking about how to realize the vision of a world full of smart
objects. This vision has typically been motivated by scenarios
such as those in the military field, habitat/environment moni-
toring, agriculture or surveillance. However, a more common
and major aspect in our life is entertainment, either in the
physical or digital world.

An entertaining activity in the physical world is, for in-
stance, to play with remote controlled (RC) toys. Nowadays,
many types are offered such as cars, airplanes, helicopters,
even robots with guns. These differ in complexity, starting
from small, ready to use toys for kids, through assemble-
yourself more complex toys, to complete hobbies for de-
manding enthusiasts. Playing with RC toys is very exciting,
however, the gaming mode has not changed so far. The way
they are used today consists basically of finding an appropriate
spot (race track, open space, lake, mud, etc.) and play until
no energy (i.e., batteries, fuel, etc.) is left. This is typically
characterized by short playing sessions that vary from a couple
of minutes to a few hours.

In the digital world, in turn, multiplayer computer games
(over a computer network) have gained increasing popularity
among players since the release of Doom in 1993 [1]. Single
player modes, where the player fought against computer
enemies, evolved into multiplayer modes like Co-operative
or Deathmatch, where each player controlled his character
from another side of the network. New gaming modes were
conceived afterwards, like Capture the Flag, Domination,
Assault, Last Man Standing or Invasion, to name some. These
gaming modes have definitively leveraged the playability of
existing computer games.

Our idea is to enrich the RC players’ experience by taking
the digital multiplayer gaming interaction into the physical
world of the RC toys. Currently, there are many RC toys ready
to be used with such games, however, no middleware is avail-
able that allows this kind of interaction. With some expertise

in WSNs and multiplayer games, we can provide a gaming
framework that enables the deployment of a broad spectrum
of team-based, goal-oriented gameplay to participants. In this
paper we propose the construction of a WSN infrastructure
that glues both worlds, making possible new multiplayer game
experiences for RC toy enthusiasts.

II. ENHANCING THE MULTIPLAYER
GAME EXPERIENCE WITH ONSLAUGHT

To exemplify the functionality of the infrastructure, we
present a simple gaming mode called Onslaught [7], taken
from the popular game Unreal Tournament [2]. Participants are
divided into two opposing teams, their goal is to capture and
hold strategic points, called Power Nodes, in order to destroy
the enemy’s Power Core. Power Nodes are linked to each other
and to a Power Core, forming a predefined virtual network (see
Figure 1). Participants’ toys start from their team’s Power Core
(e.g., the Red or the Blue Power Core) and advance across the
gameyard towards the opponents’ Power Core by conquering
virtually connected Power Nodes.

Each Power Node has a strength attribute, whose value is
initially neutral, and represents the intensity with which it has
been conquered. Players can conquer them by staying for some
seconds within a certain range around them. A Power Node
can also be later neutralized and converted to the other team’s
color by taking the same action. In contrast, the Power Cores
can not be healed back. Finally, each of these nodes has a
light that indicates the team’s color it currently belongs to;
the light’s intensity reflects the strength value.

When, for instance, the Blue team has conquered a set of
Power Nodes such that they form a path starting at their Blue
Power Core and ending at the Red Power Core, the latter can
be conquered. As long as this restriction is fulfilled, the Red
Power Core’s strength can be weakened. However, if a Red
team member breaks the path connection by neutralizing one
of the intermediate Power Nodes, then the Blue team must
either reconquer it or use an alternative path.

Obviously, two or more RC toys could be trying to conquer
or defend a Power Node or Power Core at the same time, so
players should expect impacts on the toys, in order to put each
other out of the node’s range. The game finishes when a Power
Core is conquered, i.e., when its strength becomes zero.

III. AN INFRASTRUCTURE FOR
MULTIPLAYER REAL LIFE GAMES

In order to allow RC toys to support team-based, goal-
oriented gameplay like the example shown in the previous



Blue

Power

Nodes

Red

Power

Node

Neutral

Power

Nodes

Blue

Power

Core

Red

Power

Core

Virtual

Network

Links

Blue Link

Red Link

Neutral Link

Fig. 1. A simple Onslaught map snapshot

section, an infrastructure is required. This work proposes
the development of such an infrastructure, which binds three
different domains, namely middleware for wireless sensor
networks, digital multiplayer games and interactive toys. We
have called this intersection Multiplayer Real Life Games, or
MPRLG for short.

The set of rules that conform a game like Onslaught implies
sensing and computing some data, as well as the ability to react
on this sensory data. This is not only true for the RC toys, but
also for the set of game gadgets deployed in the gameyard
like the Power Cores and Power Nodes. Game components
(i.e., both the RC toys and the game gadgets) enable the new
gaming modes by signaling the different occurrences of the
game and of course need some type of wireless connectivity.
The collected data aids players in achieving the game goals.
This is the point where the WSN infrastructure comes into
play by providing:

1) a computational model to specify the game rules and
assign them to the game components;

2) the means to disseminate the information between inter-
ested parties, like game components or controllers; and

3) a placeholder at the game components that triggers these
rules and executes the associated actions.

In the next section we describe the architectural aspects we
want to explore in the design of our infrastructure together
with the open issues found, while in the subsequent section
we focus on the communication aspects of the infrastructure.

IV. WSN GAMING FRAMEWORK ORGANIZATION

The development of an infrastructure providing the features
listed in the last section presents many technical challenges.
The foundation of our design, which enables the game com-
ponents to sense, compute and communicate, consists of
attaching a wireless sensor node to each game component,
in such a way this does not alter its physical mobility. For
a prototype implementation, a sensor node must be identified
that is appropriate both in capabilities and size. In this way, the
proprietary, unidirectional communication channel used by the
remote controllers to operate the toys remains unaltered. We
proceed in this section describing other architectural aspects.

1) Gaming modes specification: As a framework for game
developers, an important high-level issue faced in the infras-
tructure design is the selection of a convenient gaming mode
specification language. We argue that the gaming mode’s logic
can be abstracted as a set of goals and restrictions. Therefore,
a MPRLG can be modeled using an event-triggered rule
language, in particular Event-Condition-Action (ECA) rules
[8]. In this way, a gaming mode is modeled as a collection of
rules that clearly specify when they should be triggered and
what to do in reaction. At runtime, a rule engine component
will trigger the corresponding rules and execute their associ-
ated actions. This approach exists in a platform-independent
fashion and can be scaled down to small embedded systems
[4]. However, no concrete implementation exists that runs on
resource scarce devices like sensor nodes, and thus the reuse
of existing rule engine systems is inhibited. The factors to
consider include rule representation, storage and evaluation
mechanisms. Furthermore, rule engines are basically stateless,
hence game state must be maintained in a game-independent
fashion. Hence, this state must be efficiently structured in order
to optimize the (reduced) memory usage.

2) Infrastructure configuration and gaming mode deploy-
ment: Gaming modes normally require some initial setup and
configuration, which occurs at two different levels. First, in
a lower level and given the unreliable communication nature
of WSNs, participants want to check the proper operation of
the network before the game starts. One of the problems in
this step is to have the nodes organize themselves into an
operational network. This is usually handled by the networking
protocols, for instance, by adjusting routing tables with local
neighbors. Second, in the upper application layer, gaming
mode dependent attributes must be set. The user interaction
is required, for instance, to help provide unique identities
(accessible by the application) to the game components, as-
signing them with different roles, or setting whatever fine-
grained game parameters might need to be specified like
overall game duration. The deployment phase can then begin,
which could be done by distributing the corresponding role
logic to each game component over the air using the wireless
communication protocol, although this is known to consume



considerable energy from the node’s power source.
3) Other game aspects: Many other aspects must be care-

fully engineered but because of space reasons will be discussed
elsewhere. Between these we can cite the runtime interaction
between the player and the game state (i.e., visualization
interface); teammates interaction (for instance, send strategic
commands to other teammates); usage of other game gadgets
(e.g., like traps that penalize the toys by blocking them
for some seconds); and finally usage of further sensors like
accelerometers, energy (e.g., battery, nitro, gas, fuel) sensors,
etc., that expand the gaming mode rules’ power.

V. GAME COMPONENTS COMMUNICATION

In order to update the game state, sensor nodes exchange
messages in a many to many relationship. Due to the spontane-
ity of the game field settlement, an ad hoc, infrastructureless
architecture is required. In our particular scenario, a gossiping-
like traffic pattern is predicted: every game component (or van-
tage point as called in [12]) will generate unique information
that needs to be communicated to the other components. This
contrasts with the traditional sensor network scenarios where
only one sink exists [3], [5].

1) Logical communication: at the top of the communica-
tion protocol, we would like to explore the suitability of a
small footprint publish/subscribe (pub/sub) data dissemination
mechanism. This would provide a useful indirection to dis-
tribute game events across the game components. Generated
data might then be filtered, aggregated, and eventually dissem-
inated towards interested consumers such as the controllers.

2) Network protocol: network functions must provide an
efficient routing scheme that reliably conveys messages to and
from other network nodes, across multiple short hops, and
some considerations have already been taken by [6]. Moreover,
game components change their location fast and constantly,
making the overall topology highly dynamic, which requires
a strong support for mobility. Some form of disconnected
operation (e.g., buffering) could be involved as well in order
to deliver messages generated while an RC toy was not in the
reach of other game components.

3) MAC layer: traditional MAC protocols for WSNs typ-
ically trade off energy consumption for latency and fairness
[10], [11]. While power efficiency is always an important con-
sideration, the trade off is reasonable when sensors are under
the control of a single (monitoring) application. However, our
RC toys’ sensor nodes virtually represent individual partici-
pants, with equal rights to produce or consume information in
order to update the game state. Therefore specialized MAC
protocols that consider node mobility should be inspected,
such as [9].

4) Physical layer: currently, sensor networks are being
architected using one of 802.15.x PHY layers, which dictate
the theoretical data rates and energy consumption values. We
expect to be able to decide for one of these by adjusting all
the knobs with a top-down approach as described before.

VI. CONCLUSIONS

In this paper we have presented the idea of integrating
the physical world of RC toys with the virtual world of
multiplayer computer games, which we have called MPRLGs.

This entertainment is made possible by relying on a WSN
gaming infrastructure. The idea is to enhance the gaming
experience by providing team-based, goal-oriented gameplay
to the toys.

The set of requirements for these games was outlined by
describing the Onslaught gaming mode as a concrete example.
This game introduced the concept of game gadgets and their
ability to detect toys in their surroundings. These requirements
raised the necessity of having a pluggable WSN ad hoc
infrastructure that allows to specify, configure and deploy rules
at the game components, as well as to disseminate the game-
related data that updates the game state.

Currently we have sketched an initial infrastructure design
that adequately faces the aforementioned challenges, while
raising others for each area of its layered design. In the
uppermost logic level, we use ECA rules to describe a MPRLG
application layer, together with a rule processor that reacts to
specified game events. The game components communicate
logically using a publish/subscribe system, which provides a
convenient interface for the ECA rules to disseminate game
related data.

Bearing some resemblance to how advances in computer
games have pushed high-end computer graphics, we believe
MPRLGs can also drive the evolution of WSN technologies.
In particular, the project provides an interesting testbed to try,
evaluate, stress and further refine ideas and actual algorithms
and other different aspects related to wireless sensor networks,
reactive systems and publish/subscribe notification services.

VII. ACKNOWLEDGMENTS

We would like to thank Patric Kabus, Kai Sachs, Jan Steffan
and Falk Fraikin for their collaboration, ideas and reviews of
several drafts of this paper.

REFERENCES

[1] Doom (c) by id Software, Inc. http://www.idsoftware.com.
[2] Unreal Tournament (c) 1999-2002 by Epic Games Inc. Cre-

ated by Epic Games Inc. in collaboration with Digital Extremes.
http://www.epicgames.com, http://www.digitalextremes.com.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
Sensor Networks: a Survey. Computer Networks, 38(4):393–422, 2002.

[4] J. Antollini. Implementing an Active Functionality Service on Different
Platforms. Master’s thesis, UNICEN, Argentina, July 2005.

[5] A. Boulis, C. Han, and M. B. Srivastava. Design and Implementation
of a Framework for Efficient and Programmable Sensor Networks. In
Procs. 1st. Intl. Conf. on Mobile Systems, Apps. and Svcs., pages 187–
200, New York, NY, USA, 2003. ACM Press.

[6] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf. A Content-Based
Networking Protocol For Sensor Networks. Technical Report CU-CS-
979-04, Dept. of Comp. Cs., University of Colorado, August 2004.

[7] Epic Games Inc. Unreal Tournament 2004 gaming modes.
http://www.unrealtournament.com/ut2004/modes.php, 2001.

[8] N. W. Paton, editor. Active Rules in Database Systems. Springer, New
York, 1999.

[9] H. Pham and S. Jha. An Adaptive Mobility-Aware MAC Protocol for
Sensor Networks. In Procs. IEEE Intl. Conf. on Mobile Ad Hoc and
Sensor Systems, pages 558–560, FL, USA, 2004. IEEE Inc.

[10] T. van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC
Protocol for WSNs. In Procs. 1st. Intl. Conf. on Embedded Networked
Sensor Systems, pages 171–180, NY, USA, 2003. ACM Press.

[11] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC Protocol
for WSNs. In Procs. 21st. Intl. Annual Joint Conf. of the IEEE Computer
and Communications Societies, INFOCOM 2002, NY, USA, 2002.

[12] M. Zoumboulakis, G. Roussos, and A. Poulovassilis. Active Rules for
Wireless Networks of Sensors & Actuators. In Procs. 2nd Intl. Conf. on
Embedded Networked Sensor Systems, pages 263–264, New York, NY,
USA, 2004. ACM Press.


