
Abstract

Next generation Air Traffic Control (ATC) systems must be adaptable to different settings and flexible to
handle new operational procedures in order to cope with the challenges of rapidly growing traffic. To
achieve a high degree of maintainability, configurability and expandability, they should be constructed fol-
lowing the paradigm of component-oriented software architecture. Integration of components in such a
distributed and heterogeneous environment has been specified by ATC authorities to be realized through
the deployment of CORBA middleware. Whereas the main model of interaction in CORBA is one-to-one
request-reply, many ATC applications show typical one-to-many interaction characteristics. In this paper
we focus on applications that feature state change notifications, particularly operational data display ser-
vices as specified in a recent OMG proposal. We present the design and implementation of our prototype
for such a publish/subscribe notification service. Our prototype leverages upon TIBIOP, a CORBA
addressing profile that implements GIOP on top of TIBCO’s multicast messaging middleware.We discuss
to which extent the multicast RMI features match the application requirements and discuss the resulting
implications on service specification and implementation. We show how one can profit from subject-based
addressing and that failure recovery can thereby be simplified.

1. Introduction

IT systems and applications in the ATC domain (in the following denoted by ATC systems) are complex
systems by nature. ATC systems encompass many distributed and heterogeneous subsystems, operated by
different organizations and deployed on a 24x7 basis. In most places technology from the 1970s and 80s is
still in use - monolithic systems with poor maintainability, hard to expand with new functionality and to
adapt to new requirements [28]. European ATC authorities identified the need to handle traffic that is
expected to increase in excess of 100% by 2015 while operating flights more efficiently [9]. Not only does
this require the introduction of more integrated and collaborative air traffic management concepts and pro-
cedures, but also requires ATC systems to be flexible to handle new operational procedures and adaptable
to different settings. Therefore, a component-oriented software architecture is proposed for next-genera-
tion ATC systems. Integration of components and subsystems in such a distributed and heterogeneous
environment is facilitated by the use of middleware [1,9] like CORBA [22] - a fact that has recently be rec-
ognized as a primary requirement by ATC authorities .
The standard interaction model in CORBA is remote method invocation (RMI), a client-server request-
reply model which implies a one-to-one communication relationship and does not provide support for mul-
ticast. However, we can identify applications in the ATC domain which exhibit typical multicast character-
istics. For example, the integration of flight data processing systems, radar tracking systems and weather
information services feature one-to-many and many-to-many data dissemination. Another class of applica-
tions that have multicast properties is characterized by its use of state change notifications. Specifically, the
controllers in the airport tower rely upon their HMI (human-machine interface) to monitor and guide on-
ground, airborne and approaching aircraft, to read weather data, condition and use of runways, taxiways,

A Notification Service for Next-Generation IT Systems in Air Traffic Control

C. Liebig, B. Boesling and A. Buchmann
Darmstadt University of Technology*

* In cooperation with Deutsche Flugsicherung (DFS), Offenbach

and to control the status of ILS (instrument landing system), beacons and similar technical facilities. In the
envisaged modularized system architecture, state change notifications originate at the diverse backend IT
systems that implement ATC business logic components and are propagated through a notification service
to the HMI frontends at the controller’s working position. In a recent OMG proposal [23] submitted by
COMPAQ and Orthogon in cooperation with DFS, the Operational Data Display Service (ODS) is speci-
fied as a set of CORBA components and their interfaces, which provide a publish-subscribe notification
service for such purposes. In this paper we will present a protoype ODS implementation and architecture
on top of a multicast enabled middleware. We show how to exploit the subject based addressing scheme
provided by the middleware and discuss simplifications to the architecture specified in ODS due to the
availability of multicast RMI mechanisms.

The paper is organized as follows. In the next section we will present a scenario of the airport tower ATC
system. We briefly describe the components of an event-driven workflow enactment system and illustrate
the use of the ODS. In Section 3. we will introduce the ODS architecure as specified in the OMG proposal.
We will then describe in Section 3.1. the TIB/Rendezvous multicast middleware and present the concepts
of subject based adressing. We will also explain how multicast RMI features are integrated with CORBA.
In Section 3.2. the architecture of our notification service prototype is introduced and compared to the
ODS specification. First performance experiments and results are presented. We will discuss simplifica-
tions that are achieved through the use of multicast RMI and subject based addressing, with emphasis on
failure handling in Section 4. Finally we discuss related work and conclude the paper with a summary of
ongoing and future work.

2. Airport tower ATC system

In order to handle the expected increase of air traffic, ATC must be highly efficient. As identified by Ger-
man ATC authorities, the airports are likely to become the bottleneck. To enable the most efficient use of
airport capacities next generation tower systems must well recognize the collaborative manner of opera-
tional procedures, support the controller in making the right decisions and exploit opportunities for auto-
mated processing while preserving correct and reliable operation. From an IT system architecture point of
view, flexibility and extensibility are important requirements. Each of the 17 airports currently run by the
DFS (Deutsche Flugsicherung) require different procedures imposed by the geographical layout of run-
ways, taxiways, departure routes and organizational differences with respect to airport operators and facil-
ities. Moreover, IT systems that are thought of being external today, e.g. airport operator facilities, airline
IT systems, en-route ATC center, national and supra-national flight plan processing systems, will be tightly
integrated with next-generation tower ATC systems [9]. The same holds for the aircraft on board computer
which is connected by wireless communication networks, known as a datalink.
Therefore, we propose to apply a configurable event-driven workflow system architecture for the purpose
of coordinating the various tasks and subtasks of ATC procedures for departure clearance and approach of
aircraft. The tower ATC system does not autonomously take decisions other than to avoid accidents and is
mainly supposed to provide the controller with current information for planning, scheduling and guiding
aircraft movements. Additionally, the ATC system shall support the collaboration between controllers with
interfering areas of competence, which correspond to specific geographical sections of the airport or air-
space. Initially we focus on gate-to-runway control of aircraft and will deal with the airborne situations,
especially radar data processing systems (RDPS), that typically have real-time constraints, in the next
phase of the project. In fact, the most complex operational procedures with respect to the controller in the
airport tower are involved with departure clearance and ground movement.
The departure clearance procedure typically involves several controllers with different roles. Initially posi-
tioned at the terminal block, the crew of an aircraft contacts the startup controller and negotiates the flight
plan data, such as call sign, category of aircraft, slot, destination and standard instrument departure route
(SID). Depending on the earliest slot time, current terminal block and taxi conditions, the startup controller
eventually acknowledges the push-back request and hands over to the responsible taxi controller. Aircraft

must then be guided to the planned runway and lined up in such a way that they meet their preassigned slot
times. In order to oversee the slot time constraint the tower system continuously estimates the so called
calculated time of departure (CTD).The planned runway is initially chosen according to the standard
instrument departure route (SID), which in turn depends on the flight destination, the runways in use,
weather conditions and the time of day. Along with the general status information about weather, runways,
taxiways, ILS, beacons etc., each controller monitors the flight plan data of the aircraft currently in his
competence zone as well as flight plan data of aircraft in adjacent areas. Final line-up and take-off clear-
ance is the responsibility of the ground controller. Additionally, collaboration is needed with approach con-
trol as take-off clearance for aircraft must be carefully coordinated with approaching aircraft. The approach
controller lines up aircraft long before they enter the tower zone of competence. The ground controller then
synchronizes take-off clearance with the approaching aircraft. Otherwise, the ground controller merely
needs to monitor approaching aircraft until touch down. In a typical setting, approach controller and en-
route controller are situated in a different organizational unit and location than the tower crew. Also, other
vehicles and activities like buses, vans, fuel tanks, de-icing machines which are operated by different orga-
nizations and companies have to be monitored by the tower ATC system. Fig. 1. below shows the architec-
ture of such a tower ATC system.

Fig. 1. ATC system architecture
.The main components are
the HMI at the controller’s
working position, the Flight
Data Processing System
(FDPS) which is a database
of all aircraft in and nearby
the tower zone of compe-
tence, and the workflow
enactment engine that con-
trols the execution of the
business logic based on
ECA rules and transactional
activities [7,8,11]. Addi-
tionally the system must be
connected and integrated
with various external sys-
tems like ATC center,
weather information sys-
tems (IDPS), radar data

processing systems (RDPS), surface guidance and control systems (SGCMS), logging facilities, and vari-
ous other services.
At the heart of the event-driven workflow system lies the publish-subscribe notification service, which
propagates work-flow events, i.e. begin/end/exception of activities, as well as application events, such as
state change notifications for display purposes and triggering of reactions and follow-up activities. The
state and business logic of ’real world entities’, like flight plan data, taxiway, beacon etc., are encapsulated
in CORBA components, which are called Conceptual Objects (CO) in the following. Each CO is repre-
sented by a CORBA object, and separated from the presentation logic following the Model View Control-
ler concept [17]. The communication between the Model and Controller part is quite simple: they interact
on a request basis. The communication between Model and View is realized by the ODS, a publish-sub-
scribe notification service which by nature exhibits one-to-many communication relations.
As a basic requirement, each HMI must provide the ability to display and access each CO managed by the
tower ATC system. Note, that not every CO necessarily resides in the ATC system itself but may be exter-

� � � � � �
� ��� � 	

��
 � � �
� 	

��� �
� � � �
� �

� � ���� ! " # $
% &

'()+*
,-.
/0123

4 5 6 7
8 6 9 4 : ; 7

6 <

= > ? < :
8 @�A 8 > ?

8 9 5 : ?
B

CED F GIH�J KILMJ LN LOD D PMF G�QR D SIJN+TOURWV UXYD L�QZQ\[�K^]`_ZQbaWLdc

N SIQ�J e S�D V Q�J [�e f LIgZ[^h
i _jP�HZkdLdg�lZm nPj[MJ oEe _ZQ�apLMcjm nJ LMqZF oOSdr\[�e m ns�tEudvdwsMxdyIy

V Q\f S�e z{F q V |`R}] U�~`��R

��� �E� � �\��� ������� ��� ���O���

V U X R

�O�p���

�Y_Ze SdgZS�Q�J e S�D

] U X R
RY���pNWR

�WF e i SIe J } iI�

N [�Q�J [�e

� ��
 ¡�¢
¢ £¡

��r\[�Q�J ~ D LIKd[
¤¥¦
§ ¨© ª«
¨¬

wI­\®b¯±°�² ³ ´bµ\¶btE· ¸ °\¯ ³ ¹

º�» » ¼ ½ ¾
¿ À Á ¾ »
¿

Â ÃÄ Ã Å
Æ ÇÈ

��KIL i J [�eÉËÊ Ì

ÍESdJ F f F gZLMJ F S�Q R [�e rjF gj[
NW}] ~ �Îm } k\Ï [IgjJ ~ _jP�n

ÍESMJ F f F gZLdJ F SIQ R [Ie rZF gZ[
N�}] ~ �Ðm } k�Ï [IgjJ ~ _�P�n

ÑÐSIe l\f D SjaÒ�EQjG^F Qj[
¹\¯\Ó Ô ² ³ Ô ®bÕ+Ödw�×ØÓ ´±¶ °\¹�Ù°bÚ °�® ³�s�¯±­�®bÛ±Ô ³ Ô ­±®`s�µb¯b³ Ô Ú Ô ³ Ü

Ý �Y�+� �+�OÞEß

nal, as well as there are external subscribers to CO’s attribute changes which are managed by the ATC sys-
tem. In the following section we will present more details of the ODS architecture as specified in the recent
OMG proposal.

3. Operational Display Services Architecture and Implementation

The ODS architecture as specified in the OMG proposal is in essence a combination of observer and medi-
ator pattern [10]. A CO publishes three types of events: object creation, attribute change and object dele-
tion. The object creation event is passed to a central COAdministrator object which distributes this
event to interested subscribers. Additionally, the COAdministrator creates one instance of a Real-
Publisher object, which acts as a mediator and is responsible to propagate attribute change and object
deletion events to interested subscribers. Subscribers must register themselves at the COAdministra-
tor for object creation/deletion events and directly at the CO for attribute change events. Furthermore, a
subscriber may either register to receive all object creation events or only those which match a certain CO
tag pattern. In the same way a subscriber may register at a CO for all attribute change events or only for
changes of a specific set of attributes. The COAdministrator acts a s a proxy to RealPublisher
factories and passes the object reference of the RealPublisher to the CO which then delegates all the
work to the RealPublisher. Fig. 2. below depicts the architecture of the ODS - for simplicity we do
not show the subscription and handling of object creation events.

Fig. 2. Architecture of the Notification Service
If a value of the CO is changed -
e.g. through the controller inter-
face of the CO in response to ATC
controller action - the CO calls the
respective method on its associ-
ated RealPublisher object
which then notifies all interested
subscribers about the occurrence
of the event. In that manner the
subscriber objects implementing
the view part for the HMI may
take appropriate display actions
when state changes occur. The
intention of differenciating
between a CO and a RealPub-
lisher is, that a RealPub-

lisher shall be positioned close to the subscriber objects in order to limit the number of notification calls
through the network. Furthermore, the RealPublisher acts as a mediator that keeps track of subscrip-
tions, implements data dissemination logic and thus decouples the publisher from the subscribers.
Besides the complex failure and recovery scenarios imposed by the above architecture (which is dealt with
in Sec. 4.) multicast semantic is implemented by sending one IIOP request message over the network to the
RealPublisher which in turn sends out IIOP request messages to each possibly remote subscriber. In
order to profit from a multicast enabled middleware, we changed and thereby simplified the notification
service architecture. In the next section we will introduce the multicast features provided by TIB/Rendez-
vous and TIB/ObjectBus middleware and then present our prototype of the notification service.

3.1. Multicast enabled middleware

The multicast enabled middleware that we are evaluating as a platform for the tower ATC system, is based
upon the notion of the Information Bus [27]. The concept of subject based addressing is similar to the idea

COsubscriber
��������� ��	�
�� ��
��������

COsubscriber
��������� ��	�
�� ��
��������

RealPublisher
��������� ��	�
�� ��
��������

COpublisher��������� ��	�
�� ��
��������

RealPublisher
��������� ������� �� �!�"�#��

COsubscriber
��������� ������� �� �!�"�#��

COsubscriber
��������� ������� �� $�

COpublisher��������� ������� �� �!�"�#��

%'&)(%*&+(

%'&)(

,,23

subscribe call
publish attribute change
notify attribute-change

of a tuple space, first introduced in LINDA [4]. Instead of addressing a sender or recipient for a message
by its identifier, which in the end comes down to a network address, messages are published under a sub-
ject name on the Information Bus, which is an abstraction provided by the TIB/Rendezvous middleware.
The subject name is supposed to characterize the contents - i.e. the type - of a message. If a participant,
who is connected to the Information Bus, is interested in some specific message types, he will subscribe for
the subjects of interest and in turn be notified of messages published under the selected subject names. The
subject name space is hierarchical and subscribers may use subject name patterns to denote a set of types to
which he wants to subscribe (for an example see Section 3.2.).
Messages are constructed from typed fields, and can be recursively nested. Furthermore, messages are self-
describing: a recipient of a message can inquire about the structure and type of message content. The
abstraction of a bus inherently carries the semantic of many-to-many communications as there can be mul-
tiple publishers and subscribers for the same subject. The implementation of TIB/Rendezvous uses a light-
weight multicast communication layer to distribute messages to all potential subscribers. On each machine,
a daemon manages local subscribers, filters out relevant messages according to subject information and
notifies individual subscribers. The programming style for listening applications is event-driven, i.e. even-
taully the program must transfer control to the TIB/Rendzvous library which runs an event-loop. Follow-
ing the Command pattern [7], the onData() method of an initially registered callback object will be
invoked by the TIB/Rendezvous library when a message arrives with a subject that the subscriber is listen-
ing to.
Message propagation can be configured to use IP multicast or UDP broadcast. In the latter case, a special
message routing daemon must be set up in each subnet in order to span LAN (broadcast) boundaries, com-
parable to the concept of tunneling in MBone [15]. Optionally, TIB/Rendezvous can make use of PGM, a
reliable multicast transport on top of IP multicast, which recently has been developped by Cisco Systems
in cooperation with TIBCO and proposed to the IETF [25].
Two quality of service levels are supported by TIB/Rendezvous: reliable and guaranteed. In both modes,
messages are deliverd in FIFO order with respect to the publisher. There is no total ordering in case of mul-
tiple publishers on the same subject. Reliable delivery uses receiver-side NACKs and a sender-side in-
memory ledger that buffers messages for some amount of time in case of retransmission requests. With
guaranteed delivery, a subscriber may register with the publisher for a certified session or the publisher
preregisters dedicated subscribers. Strict group membership semantics must be realized at the application
level if so required. However, atomic message delivery is not provided. The TIB/Rendezvous library uses
a persistent ledger in order to provide guaranteed delivery. Messages may be discarded from the persistent
ledger as soon as all subscriber have explicitly acknowledged the receipt. In both variants, the retransmis-
sion of messages is receiver-initiated by sending NACKs.

Fig. 3. ObjectBus Architecture
The implementation of our ODS prototype
leverages TIBIOP, a registered CORBA 2.2
addressing profile on top of the TIB/Rendz-
vous layer [33]. The General Inter-ORB
Protocol [15,22] defines the abstract mes-
sage exchange protocol to implement
remote method invocation. The standard
inter-ORB protocol (IIOP) uses TCP/IP as
a transport layer, in which case the Interop-
erable Object Reference (IOR) is based on
the IIOP addressing profile, i.e. contains an
IP host address and a port number (in addi-
tion to the object key). When using
TIBIOP, the GIOP request messages are

7,%�5HQGH]YRXV 7&3�,3

7,%,23 ,,23

�����������	��
 ��
���� ���
25%�LQWHUIDFHV��',,��'6,�

VNHOHWRQV VWXEV

$SSOLFDWLRQ

���
� � ��
� �
��

����
��
����

 �"! �#� ���

$&% �	�('*),+.-�)/ ����
.+ �	'�+ ���0-��
�2143 % �5�6!87(�9 % �#:�+ � % �

; ��<=! /?>�@.A
/ ����
.+ �	'B�C+ �0-��

marshalled into TIB/Rendezvous message and published on the InformationBus on behalf of a specific
subject. The CORBA (server) object may be registered with the ORB presenting an application specific
subject name. In that case the IOR is kind of the TIBIOP addressing profile and carries the subject name.
In order to preserve interoperability, server objects may be registered with both, TIBIOP and IIOP profiles
at the same time. On the other side, a CORBA client can construct a TIBIOP profile IOR from a subject
name and let the ORB create a local proxy for it. When the client invokes a method on the proxy, the GIOP
request message will be multicast through TIB/Rendezvous to all CORBA objects that registered with the
same subject, introducing multicast RMI to the CORBA world. Two-way method semantic is supported
using the mechanism of a ReplyHandler, as proposed in the CORBA Messaging specification for asyn-
chronous method invocations [25].

Fig. 4. Asynchhonous multicast RMI
As depicted in Fig. 4., the multi-
cast RMI may be executed at mul-
tiple sites, thus multiple return
values and out parameters must be
handled. The client invokes a so
called implied stub method for the
asynchronous version of the
method call which takes as an
additional parameter the Reply-
Handler object. For each incom-
ing result, a callback funtion is
invoked to allow application spe-

cific processing of results. It is also possible to have synchronous multicast RMI invocations. The default
is to process the first result, otherwise the application may provide a Collector in much the same way as the
ReplyHandler is provided in the asynchronous case. Currently, guaranteed delivery is only provided
with one-way methods, two-way requests are transferred using the reliable delivery mode of TIB/Rendez-
vous. Orthogonal to the different styles of method invocation and implementation ObjectBus provides a
flexible threading model. In addition to the stub/skeleton and ORB APIs the application may access the
TIB/Rendezvous messaging API directly.

3.2. Prototype Architecture and Implementation

Our ODS prototype encompasses three CORBA components: publisher objects, subscriber objects and the
notification service. An instance of the notification service is located on every host where there are sub-
scribers. The notification service internally comprises RealPublisher objects which relay incoming
events from the COs to the local subscribers, and a Registration object where a subscriber can register
for events. Whereas the OMG Proposal designates that there is one RealPublisher designated per CO,
we chose to have a RealPublisher for the CO on every host where there are interested subscribers. As
registration is handled at the local notification service rather than directly at the CO, a subscriber can be
started up time-independently from the publisher. On the other hand, the local notification service does not
instantiate RealPublisher right away upon the object creation event of a CO, as in the case of ODS.
Instead, the creation of RealPublisher objects is on demand, i.e. when the first subscriber on a host
registers itself for some events of the respective CO.
Object creation events are handled collectively by a dedicated RealPublisher in the notification ser-
vice component. Thus the HMI application can locally subscribe to object creation events and learn about
temporary COs which are dynamically created in the ATC system. In that way, we do not depend any more
on a central COAdministrator object: COs publish object creation events in the same way as all types
of events, COs need no more contact the COAdministrator, and subscribers register for object creation
events in the same way they register for all other types of events.

VWXE

UHTXHVW

5HSO\+DQGOHU

RQ5HSO\��

���������
	���
������������

DV\QFK��LQYRFDWLRQ
REMHFW

LPSOHPHQWDWLRQ

REMHFW

LPSOHPHQWDWLRQ

REMHFW

LPSOHPHQWDWLRQ���
��
�
! � "#
$ %
&

Fig. 5. Notification Service Prototype
The basis of this architecture is the
subject-based addressing scheme.
We map the various event types
and the object tags into the subject
name space. Thus, depending on
the event a publisher is going to
disseminate, it generates a TIBIOP
profiled IOR for a RealPub-
lisher interface, parametrized
with the corresponding subject.
The publisher then invokes the
respective method on the proxy
derived from the IOR which
results in a multicast RMI to all
RealPublisher objects that
have registered with the same sub-

ject-based addressing information. The RealPublisher on the other hand forwards the call to the
locally registered subscribers. The IDL-Interface of the RealPublisher objects is shown below. The
set_xxx methods correspond to attribute change events whereas the obj_deleted method signals the
object deletion event. With set_attributes a change of multiple attributes is indicated.

interface RealPublisher {
void set_long(in AttrName name, in long value);
void set_float(in AttrName name, in float value);
void set_string(in AttrName name, in string value);
void set_object(in AttrName name , in Object value);
void set_any(in AttrName name, in any value);
//...
void set_attributes(in AttrSeq attrs);
void obj_deleted();

}

The subject namespace is defined as follows:

Every time a subscriber registers for events, the RealPublisher object complements his subject-based
addressing information. At this point we make use of the possibility that an IOR can be composed of mul-
tiple profile components [15], i.e. the same implementation object is registered with the ORB under vari-
ous subject names.
The following example illustrates the use of subject-based addressing. The code shows how a RealPub-
lisher server object is created by the notification service, typically as a consequence of a local subscrip-
tion. The RealPublisher is registered with the ORB using a TIBIOP addressing profile. The TIBIOP
address is constructed from a subjectname pattern "ODS.FRA.modify.FDS.LH224.>", suitable to
receive all attribute value changes of a flight plan data set with object tag "FDS.LH224".

OB_ReferenceGen *refGen;
refGen = new OB_ReferenceGen("IDL:ODS/RealPublisher:1.0");

Event Subject

single attribute change ODS.<domainname>.modify.<objtag>.<attrname>

multiple attribute change ODS.<domainname>.modify.<objtag>.special

object deletion ODS.<domainname>.modify.<objtag>.delete

object creation ODS.<domainname>.create.<objtag>

COsubscriber

NotificationService

COsubscriber

COpublisher

COsubscriberCOsubscriber

��������� 	�
��
�����

��������� 	�
�������� ��������� 	�
������
���������� 	�
��
����� � ������� �����
���
�

COpublisher� ������� ���������
�

NotificationService

E1

E1
E1 E1

E2

E2

E2

subscribe using TIBIOP or IIOP
publish using IIOP
publish using TIBIOP
notify using TIBIOP or IIOP

COpublisher��� �!
"

#%$ &(')+*�,�-/.10�&32/4

#%$ &(')+*�,�-/.�0
&52/4#6$ &7')8*�,�-/.�0�&5294

:<; =>; ?A@

refGen->append("ODS.FRA.modify.FDS.LH224.>","",1,(CORBA_Octet*)"");
CORBA_String_var iorString = refGen->toString(); // stringified IOR

CORBA_ImplementationDef_ptr implDefPtr;
impleDefPtr = new CORBA_ImplementationDef(iorString, (char *)NULL,

CORBA_ImplementationDef::SHARED_SERVER,
CORBA_ImplementationDef::REMOTE_ACTIVATION);

ODS_RealPublisher_ptr rp_ptr; // out parameter for object reference
RealPublisher* rp_obj = new RealPublisher(); // servant
OB_tie(*rp_obj, rp_ptr, implDefPtr, orb, boa, env);

First of all, the notifcation service creates an OB_ReferenceGen object, that encapsulates the server
addressing profile for a RealPublisher interface and acts as a factory for stringified IORs.
In the next step, a TIBIOP addressing profile is appended with the subject-based address
"ODS.FRA.modify.FDS.LH224.>" which matches all subjects beginning with the sequence
"ODS.FRA.modify.FDS.LH224".
After that, a CORBA implementation definition object is created that encapsulates the preceding informa-
tion together with further parameters for the object adapter. The servant object for the RealPublisher
is then created by instantiating the implementation class (RealPublisher), and registered with the
ORB using the OB_tie() method of the object adapter. In general, it would be necessary to start the
ORB event loop for dispatching invocations to the server-side object implementation. In our case the event
loop has been initially started by the notification service and is already running.
As mentioned before, the RealPublisher implementation is part of the notification service component
which encompasses the registration logic for local subscribers. When notifications are dispatched to the
RealPublisher implementation, it will refer to the list of subscribers managed by the Registra-
tion object and forward the request appropriately.
On the publisher’s side, when a CO needs to disseminate an attribute value change, the CO invokes a mul-
ticast RMI on the RealPublisher interface proxy. Assume for example, that for Lufthansa flight
LH224 the calculated time of departure has changed because of delays due to de-icing. The CO creates an
OB_ReferenceGen object encapsulating subject-based addressing information in accordance with the
subject namespace layout. The stringified IOR is then used to create a local proxy which is narrowed to the
RealPublisher interface. Now the CO may call a method, e.g. set_string, on that object reference. The
appropriate code segment for the publisher CO is shown below.

OB_ReferenceGen *referenceGen;
referenceGen = new OB_ReferenceGen("IDL:ODS/RealPublisher:1.0");

referenceGen->append("ODS.FRA.modify.FDS.LH224.CTD","",1,(CORBA_Octet*)"");
CORBA_String_var iorString = referenceGen->toString(); // stringified IOR

CORBA_Object_var obj;
obj=orb->string_to_object(iorString,env); // create proxy/stub

ODS_RealPublisher_ptr pub_ptr;
pub_ptr=ODS_RealPublisher::_narrow(obj); // it is a RealPublisher

pub_ptr->set_string("CTD","13/1/1999 12:44", env); // synchr. multicast RMI

The method invocation eventually results in publishing the TIBIOP request message under the subject
"ODS.FRA.modify.FDS.LH224.CTD" through TIB/Rendezvous. If there are subscribers on remote
hosts, the invocation will be dispatched to the respective RealPublisher and forwarded accordingly.
For example, taxi controller and runway controller are interested in CTD. Additionally, external systems
like ATC center, airline operator and destination airport might be interested in CTD changes in order to
proactively adapt their schedules and planning.
The above coding example is somewhat simplified, as we make use of synchronous multicast. In that case
a default Collector object is used by the proxy to gather results under the policy first-one-wins.

However, for the purpose of integrating the notification service with the workflow enactment service, we
need more specific control on the results. Therefore, we actually must use asynchronous method invoca-
tion with specific ReplyHandler implementation in our prototype. This issue will be further discussed
in a later section.

3.3. Performance Experiment

We conducted simple experiments in order to investigate the performance of multicast based RMI versus
multiple unicast invocations. In a first experiment we measured the communication delay from the point of
time that a publisher invokes a set_string() method to the point of time at which the method is dis-
patched by the ORB to the RealPublisher of the notification service. In a second experiment we mea-
sured the end-to-end communication delay to the point of time where the notification is delivered to a
subscriber. We varied the number of hosts running a notification service from n=1..5, each with five regis-
tered subscribers. The publisher was then instrumented to run in two modes, one based on TIBIOP using
multicast RMI and the second using multiple one-to-one RMI - in an asynchronous and multithreaded
manner - to each configured notification service, again using TIBIOP.

The following table depicts the machine configurations that were used and their connection to the network

The publisher is running on host pub1, the notification service instances are running on hosts sub1-sub5.
The hosts are connected to a switched 10/100 Mbit Ethernet, whereby hops counts the number of switches
between publisher and subscriber. Hosts pub1, sub1-sub4 are in the same IP subnet, sub5 is in a different
subnet, connected through an ATM backbone involving two ATM routers.The clocks were synchronized
by NTP to the same peer, with a maximal offset below 0.8 ms. The basic network and machine load can be
considered low, as we ran the experiments at after-office hours.

The table below shows the measurement results for average communication latency with respect to the
RealPublisher. The numbers represent an average over 50 notifications, each separated by a distance
of one second. The size of resulting TIBIOP request messages is about 487 bytes, when passing the times-
tamp of invocation as a string parameter. It can be seen that multicast RMI is slightly better than n-times
asynchronous unicast. In both settings the average communication latency increases with the number of
notification service instances attached. However, the multiple-unicast approach seems to be more sensitive
with respect to addition of a lower bandwidth connected hosts, as is the case with sub5.

In accordance with research done by A. Gokhale and D. Schmidt [12], the results of our experiments sup-

Host Machine Connection Bandwidth Hops to Publisher

pub1 dual processor 300 Mhz SUN UltraSparc 100 Mbit -

sub1 dual processor 50 Mhz SUN Sparc 100 MBit 1

sub2 dual processor 50 Mhz SUN Sparc 10 MBit 2

sub3, sub4 single processor 50 Mhz SUN Sparc 10 MBit 2

sub5 single processor 50 Mhz SUN Sparc 10 MBit 5

Subscriber Hosts Multicast (ms) Async. Unicast (ms)

sub1 8.52 9.34

sub1, sub2 7.88 8.41

sub1, sub2, sub3 8.8 10.62

sub1, sub2, sub3, sub4 10.4 12.5

sub1, sub2, sub3, sub4,sub5 11.84 13.6

port the observation, that the main latencies are due to the time spend in stubs and skeletons for request
marshalling and unmarshalling and that network latency is of minor impact. This observation becomes
even more evident if we look at the end-to-end communication latencies, which additionally include the
overhead of request forwarding from RealPublisher to the local subscriber processes. The table below
shows the case for host sub2 and multicast RMI, with one subscriber and five subscribers. Again, we incre-
mentally added one to five hosts running a notification service:

The experiments that we conducted so far do not consider situations where the ground load of the network
is high, for example in case of multiple publisher running on different machines. Also, the settings are not
large scale with respect to the number of hosts and the size of requests. This issues are investigated in our
ongoing research.

4. Crash failure handling and reliability considerations

In this section, we will present the impact of ODS design on recovery from crash failures. We will then dis-
cuss the requirements with respect to reliable delivery of events.

4.1. Crash failure handling

The ODS specification discusses several failure scenarios and crash recovery procedures. The ODS speci-
fication considers the crash of the COAdministrator, crash of a CO and crash of HMI subscribers.
However, it is not stated, what must be done in the case of failure of RealPublisher objects and what
should happen if several of the participating objects fail. The situation is even more complicated, as com-
munication failures reaching from large network delays up to network partitioning must be considered. It is
beyond the scope of this paper to cover all scenarios which are relevant in a real-world setting. We will
illustrate, how the design of our prototype notification service simplifies crash failure handling compared
to the original ODS approach.
In order to provide basic availability qualities, the tower ATC system must be able to recover from crash
failures of its components in a reasonable amount of time, which also means that recovery should be auto-
matic as far as possible. Recovery from component failures is complicated in distributed object systems, as
in addition to the state of object attributes communication relations must be re-established, introducing
dependencies between components. The following table shows a “references” relationship, in terms of
holding a CORBA object reference, for participating objects of the ODS:

Complex failure recovery scenarios exist because of the dependencies between objects residing on differ-

Total # Subscribers
Hosts

1 Local Subscriber
at host sub1 (ms)

5 Local Subscribers
at host sub1 (ms)

1 22.7 61.68

2 24.98 64.08

3 24.67 63.69

4 30.98 78.45

5 31.24 76.24

COpublisher COsubscriber RealPublisher COAdministrator

COpublisher - X X

COsubscriber X - X

RealPublisher X X -

COAdministrator X - X

ent hosts. Moreover, the central COAdministrator instance marks a possible single point of failure. In
contrast, the design of our prototype notification service avoids "references" relationships between remote
objects by the use of the underlying multicast middleware. Therefore, crash recovery of the notification
service is restricted to the locally affected components and thus preserves autonomy.

The ODS specification handles failure recovery of a crashed CO process, possibly containing several CO
instances, as a deletion and reinstantiation of the crashed COs. On restart, this requires registration with the
central COAdministrator which replaces the old RealPublishers with new RealPublishers.
It is further required that the COsubscribers register with the new COs. We argue, that the crash of a
CO should not be modeled as deletion and reinstantiation but as reincarnation of the same instance, with
respect to the object tag of the CO. By leveraging the subject-based addressing scheme in our design, pub-
lishing of state change events is thus possible after restart without further actions.
When a HMI crashes and restarts it must resubscribe for the events it is interested in. With ODS, this
requires to query the - remote - COAdminstrator for the object reference of the respective COs. In our
architecture, if the HMI saves its state in terms of subject patterns, the subscribers may directly resubscribe
at the local notification service.
If the subscribers use TIBIOP, too, the recovery process can be automated. As the notification service may
save the TIBIOP profiled IORs of its subscribers together with the subject patterns for subscribed events,
the notification service can restore the object references and registration requests of the subscribers, and
therefore the RealPublisher objects with the respective subject based addressing information can be
reinstantiated. Note, that at recovery from failure a subscriber does not require a replay of former notifica-
tions, but will be reinitialized by an explicit poll of the state of the monitored CO or wait for state change
notifications to arrive.

Another difficulty with ODS is the handling of RealPublisher failures. Although not discussed in the
original specification, it can be easily seen from the above references relationship that besides the
need to reregister HMI subscribers it is also needed to update the COAdministrator as well as the CO
itself. The problem is complicated by the fact that all objects are remote with respect to each other and only
the RealPublisher knows about enlisted subscribers. Thus either COs have to rely upon recovery ini-
tiated by the RealPublisher or subscribers must detect the failure and request failure handling at the
COAdminstrator. Neither of the problems exist with our approach, as we use a distributed approach
with independent RealPublisher objects on each host. If the HMI computer crashes, recovery may be
implemented as described above. Even if processes are supposed to fail independently, it is still feasible to
detect the failure of local notification service components and act appropriately.

4.2. Reliability considerations

As a first approach to distinguish the reliability requirements involved, we consider three coarse categories
of events and notification service applications for tower ATC systems:

• Workflow Coordination Events

• Change notifications for directly collaborating parties

• Change notifications for monitoring parties

In the case of event-driven workflow enactment, activities are triggered by events and executed depending
on the current state of the workflow [11]. Furthermore, activity related procedures are executed in a trans-
actional manner on the basis of extended transaction models [8]. For example, begin and end of activities
and their outcome as well as transaction events must be exactly once delivered, as those events are critical
for the correctness of the workflow execution. Usually, there is no requirement for many-to-many commu-
nications and FIFO ordering is sufficient. In our current work this category of events is not distributed
through the CORBA based prototype notification service. Instead we use the TIB/Rendezvous guaranteed
messaging layer, with extensions for transactional publish/subscribe [5]. Additionally we need a group
membership service, which can be realized at the application level using the preregistration of certified
sessions supported by TIB/rendezvous in guaranteed delivery mode.

State change notifications for operational display purposes, as originally targeted by the ODS, require
weaker guarantees, depending on the subscriber’s role in the workflow execution. For example, if an air-
craft leaves the competence zone of one controller, the aircraft must be handed over to the controller that is
responsible next. The operational procedures are well defined in the workflow and basically, such a han-
dover is modelled in the workflow as a state change. For example, when pushback is given, the aircraft is
handed over from the startup controller to one of the taxi controllers. This may be visualized by the HMI as
moving the corresponding flight plan data set from an active listbox to an outgoing listbox at the startup
controller’s HMI and from an upcoming listbox to the active listbox at the taxi controller’s HMI.
Besides the directly involved controllers, there are further subscribers that merely monitor the proceedings
of the respective flight without controlling it. In the latter case, the reliability of multicast RMI on top of
TIB/Rendezvous reliable delivery mode are sufficient. As stated above, there is no need to persistently
buffer events for later retransmissions, as only the most recent events are significant.
In the first case, however, the collaboration between the two controllers must be visualized in an atomic
fashion. We argue, that it is still sufficient, to make use of the two-way RMI semantic and check in the
ReplyHandler callback for successful delivery or otherwise catch exceptions. In fact, if a CORBA
exception - or a timeout - is detected, then this situation must be dealt with by the workflow system and
appropriate actions must be taken, as specified in the operational procedures. As a consequence, there is no
need for stronger delivery guarantees at the multicast messaging layer. Similar arguments are presented in
[6,29,34], where the authors state that providing atomic broadcast semantics like virtual synchrony at the
message transport layer does not provide a practical solution for application level reliability requirements.
Still, the above approach has deficiencies with respect to scalability, as the two-way invocation semantic is
specified at the interface level. As a consequence, all contacted servers for the same subject will respond
with a GIOP message that is of no value for the application. This might lead to flooding of the publisher
with useless responses and congest the network unnecessarily. We suggest to provide means to selectively
set the method invocation semantic as a policy on a per server basis.

5. Related Work

Event-based computing is commonly recognized as an emerging paradigm for composing applications in
open, heterogeneous distributed environments [2,3,11,18]. In CORBA, the Event Service [24] is intro-
duced to provide a mechanism for decoupled, asynchronous event-style interaction between CORBA
objects. The Event Channel acts as a mediator [10] between suppliers and consumers of events. It is distin-
guished between push- and pull-style interaction with the Event Channel. The Event Service interfaces
may either be generic - using a CORBA Any event parameter - or interfaces may be typed using applica-
tion specific types to transmit events. It is commonly recognized, that the Event Service has severe defi-
ciencies [14] and in consequence the CORBA Notification Service [26] is proposed as a major extension,
which additionally provides support for quality of service policy specifications and introduces mechanisms
for event filtering based on a filter constraint language. One motivation for ODS, however, was to specify
a lightweight notification service that particularly fits the needs of ATC systems and to avoid the complex-
ity of a general constraint filter mechanism [23].
Orbix Talk [16] provides a publish/subscribe mechanism using so called topics in a similar way to subject
based addressing. As with TIB/Rendezvous topics span a hierarchical name space. Each topic is mapped to
a multicast group which is managed by a directory enquiry server. Subject patterns are not supported and
publish operations must be defined as oneway. Like TIB/Rendezvous there are two quality of service lev-
els, i.e. reliable delivery - using in memory message buffer - and guaranteed delivery in conjunction with
the use of a persistent ledger.
Work on one-to-many communications in CORBA is mostly concerned with fault tolerance and replication
[20,21]. The approaches are based on totally and causally ordered atomic broadcast, which is expensive to
implement and does not provide the application with the adequate semantic [6,34].
D. Schmidt conducts comprehensive research on performance and real-time properties of CORBA, includ-

ing a real-time CORBA event service [12,14].

6. Conclusions and Future Work

In this paper we propose an event-driven component-oriented architecture for tower ATC systems and
introduce a light-weight implementation for a notification service based on multicast RMI and subject
based addressing. Using TIBIOP addressing profiles we can waive name services and mediator objects
such as event channels, which may be a potential single point of failure or unnecessarily introduce com-
plex interdependencies between remote components. Complex failure scenarios as described in the origi-
nal ODS specification can be avoided. Therefore our approach presents a scalable solution with respect to
reliability. We further expect that the multicast RMI based approach will exhibit better scalability in terms
of performance, i.e. stability and steadiness [35], when the number of publishers and subscribers increases.
For low load patterns, however, our first performance experiments show only marginal improvement of
multicast over multiple one-to-one CORBA requests. In-depth performance tests are part of the ongoing
work in our project. Further, we identified the need for a more flexible handling of multicast RMI invoca-
tion semantics, that would allow to invoke a multicast request in a mixed one-way and two-way manner,
dependent on the semantic chosen by the server-side. We are also investigating, how to couple the notifica-
tion service with a transactional workflow environment and in which way the strong reliability require-
ments for notification of workflow events can be incorporated. Another area of active research is the
handling of disseminating radar tracking data for display purposes, which introduces additional real-time
constraints.

7. Acknowledgements

We want to thank DFS for their cooperation. Special thanks to T. Heinlein for his support and the fruitful
discussions on ATC systems.

8. References

[1] F. Barabas A. Poddany, J.-P. Florent and G. Klawitter. Java Shared Objects for Flexible Distributed
Applications - Prototype of a Flight Data Management System. DIFODAM project, Eurocontrol, Brus-
sels, http://www.eurocontrol.fr/projects/difodam/.

[2] D. Barret, L. Clarke, P. Tarr and A. Wise. A Framework for Event-based Software Integration, ACM
Transactions on Software Engineering and Methodology, Vol. 5, No. 4, 1996.

[3] J. Bates, J. Bacon and K. Moody and M. Spiteri. Using Events for the Scalable Federation of Heteroge-
neous Components. In Proceedings of the SIGOPS European Workshop on Support for Composing
Distributed Applications, September 1998.

[4] Carriero, Nicholas and D. Gelernter. Linda in Context. Communications of the ACM Vol 32 No 4, April
1989.

[5] A. Chan. Transactional Publish / Subscribe: The Proactive Multicast of Database Changes. ACM SIG-
MOD Conference, Seattle, Washington, 1998.

[6] D.R. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally Ordered Commu-
nication. In 14th ACM Symposium on Operating System Principles, Asheville, NC, December 1993.

[7] U. Dayal and A. Buchmann and D. McCarthy. Rules are Objects too: a knowledge model for an active,
object-oriented database system. In Proceedings of the 2nd Intl. Workshop on Object-Oriented Data-
base Systems, Lecture Notes in Computer Science 334, Springer, 1988.

[8] U. Dayal and M. Hsu and R. Ladin. Organizing Long-Running Activities with Triggers and Transac-
tions. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data
(SIGMOD’90), pp. 204-214, May 1990.

[9] Eurocontrol. EATMS Operational Concept Document, Ver. 1.1. Eurocontrol Brussels, http://www.euro-

control.be/projects/eatchip/ocd/
[10]E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Addison-Wesley, 1994.
[11]A. Geppert and D. Tombros. Event-based Distributed Workflow Execution with EVE. In Proceedings

of Middleware ’98 (IFIP Intl. Conf. on Distributed Systems Platforms and Open Distributed Process-
ing), September 1998.

[12]A. Gokhale and D.C. Schmidt. Measuring the Performance of Communication Middleware on High-
Speed Networks. SIGCOMM Conference, ACM 1996.

[13]V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related problems. In S. Mullender, Editor,
Distributed Systems, 2nd Ed., 1994

[14]T.H. Harrison, D.L. Levine and D.C. Schmidt.The design and performance of a realtime CORBA
event service. In Proc. OOPSLA ’97 Conference, October 1997.

[15]M. Henning. Binding, Migration, and Scalability in CORBA. Communications of the ACM, Vol. 41
No. 10, October 1998.

[16]IONA. OrbixTalk - The White Paper. Technical Report, IONA Technology, April 1996.
http://www.iona.com/info/products/messaging/talk/whitepaper.html

[17]G.E. Krasner and S.T. Pope. A cookbook for using the model view controller user interface paradigm
in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), August/September 1988.

[18]B. Krishnamurthy and D.S. Rosenblum. Yeast: A General Purpose Event-Action System. IEEE Trans-
actions on Software Engineering, Vol. 21, No. 10, October 1995.

[19]V. Kumar. MBone: Interactive Multimedia on the Internet. New Riders, 1996.
[20]S. Landis and S. Maffeis. Building Reliable Distributed Systems with CORBA. In Theory and Practice

of Object Systems, John Wiley, April 1997.
[21]P. Narashimhan, L.E. Moser and P.M. Melliar-Smith. Replica consistency of CORBA objects in parti-

tionable distributed systems. Distributed Systems Engineering, Vol. 4, No. 3., September 1997.
[22]Object Management Group. The Common Object Request Broker: Architecture and Specification,

Revision 2.2. OMG, Famingham, MA, 1998.
[23]Object Management Group. Display Manager for Air Traffic Control, OMG Document: transprt/99-

01-02, January 1999.
[24]Object Management Group (OMG). Event Service Specification. Technical Report formal/97-12-11,

ftp://www.omg.org/pub/docs/formal/97-12-11.pdf.
[25]Object Management Group (OMG). CORBA Messaging. Technical Report orbos/98-05-05,

ftp://www.omg.org/pub/docs/orbos/98-05-05.pdf.
[26]Object Management Group (OMG). Notification Service Specification. Technical Report telecom/98-

06-15, ftp://www.omg.org/pub/docs/telecom/98-06-15.pdf.
[27]B. Oki, M. Pfluegl, A. Siegel and D. Skeen. The Information Bus - An Architecture for Extensible Dis-

tributed Systems. In 14th ACM Symposium on Operating System Principles, Asheville, NC, December
1993.

[28]T.S. Perry, In Search of the Future of Air Traffic Control, IEEE Spectrum, August 1997.
[29]J.H. Saltzer, D.P. Reed and D.D. Clark. End-To-End Arguments in System Design. ACM Transactions

on Computer Systems, 2 (4), November 1984
[30]D.C. Schmidt and S. Vinoski. Overcoming Drawbacks in the OMG Events Service. SIGS C++ Report

Magazine, June 1997.
[31]T. Speakman, D. Farinacci, S. Lin and A. Tweedly. PGM Reliable Transport Protocol Specification.

Internet Draft <draft-speakman-pgm-spec-02.txt>, Cisco Systems, August 1998.
[32]Sun Microsystems. JavaBeans. http://java.sun.com/beans/
[33]TIBCO Inc. ObjectBus Whitepaper, TIBCO Inc., Palo Alto.

http://www.ob.tibco.com/OB-white-paper.html
[34]W. Vogels, R. van Renesse and K. Birman. Six Misconceptions about Reliable Distributed Computing.

ACM SIGOPS Europ. Workshop on Support for Composing Distributed Applications, Spetember
1998, Sintra, Portugal.

[35]P. Verissimo. Real-Time Communication. In S. Mullender, Editor, Distributed Systems, 2nd Ed., 1994

