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Abstract

Today, the Internet can be seen as a global market-
place populated by a huge number of providers and
consumers that exchange data from a wide range of
domains. A combination of data from different sources
for further automatic processing is often hindered by
differences in the underlying modeling assumptions
and representation. In addition, the available sources
are in most cases semistructured, i.e., provide no
fixed and explicitly specified schema. Therefore, an
integrated use of Web-based data requires explicit
information about its organization and meaning. In
this paper we present a representation model well-
suited for explicit description of implicitly described
semistructured data, and show how this model can be
used for the integration of heterogeneous data sources
from the Web.

1 Introduction

Since the World Wide Web popularized its existence,
the Internet has grown exponentially, leaving its roots
as a researchers’ forum and entering the collective con-
sciousness. In addition to being a way for individ-
uals and organizations to provide information, busi-
nesses have embraced the Internet as a way to offer
their services. Today, the Internet is both a vehicle
for advertising and a global marketplace of goods and
services, ranging from electronic publications to tradi-
tional books, from financial services to travel planning,
and the online monitoring of traditional logistics and
physical distribution of goods.

In all these forms of electronic commerce we
can identify common patterns or metaphors: In the
business-to-consumer metaphor the business advertises
and provides a service and an individual typically ac-
cesses and extracts the relevant information directly.
For this kind of interaction the popular approach of

presenting the information in the form of HTML pages
is sufficient. The casual user browses, interprets the in-
formation and interacts with the provider in a point-
and-click paradigm.

In the business-to-business interaction the business
partners tend to rely on previously established proto-
cols that have been in use for longer time, such as
protocols for interbank fund transfers or for reserva-
tion of air travel through one of the major reservation
systems, for example SABRE or Amadeus.

A third form of interaction is emerging, that may
be characterized as business-to-business-to-consumer.
A typical example of this paradigm is the search
for lowest possible fares by a travel agent on be-
half of a client. The travel agent is a business that
acts as a knowledgeable intermediary. For this kind
of service provider the typical point-and-click inter-
action is too time consuming while the interaction
with individual reservation systems is too restrictive
since many interesting opportunities are provided by
ticket consolidators, last minute providers or are pro-
vided only through typical end-user oriented HTML
pages. Therefore, in the business-to-intermediary-to-
consumer metaphor it is necessary to extract informa-
tion, consolidate it and use it for further electronic
processing.

Unfortunately, the wealth of information is not
provided uniformly, either because of different polit-
ical and cultural contexts, or because of different in-
tentions concerning the use of the data. The majority
of data sources available online provide the informa-
tion in a semistructured form, such as HTML pages.
Semistructured data [1] has no obligatory and rigid
schema associated with it in the sense of conventional
databases. However, it provides some internal struc-
ture that is given through special tags or by the head-
ings of sections and subsections.

An integrated use of Web-based data requires the
extraction of structure and meaning of the data, the
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explicit characterization of the corresponding meta-
data, and the consolidation of the extracted informa-
tion in a common model for further electronic process-
ing.

Our present research was motivated by concrete
problems faced by the travel industry in the business-
to-intermediary-to-consumer metaphor. It is our be-
lief that this is a major growth area of electronic com-
merce, and that a mechanism for extracting both struc-
ture and semantics of Web-based data and making this
information explicit through metadata is an essential
enabler for this business model.

Most previous approaches for automatic process-
ing of Web-based data concentrate on their structural
characteristics. They are mainly based on the spec-
ification of grammars [2, 3, 10] for making the un-
derlying structure explicit, or use browsing-oriented
schemas [4, 13, 17] that represent HTML pages as ob-
jects with attributes like URL, title, and author. These
approaches do not take the information content, i.e.,
the meaning of the data, into account in a satisfactory
way.

The need for more semantic information in Web-
based data has been widely recognized. Efforts, such
as XML [22] try to provide a framework for additional
semantic information through tags that provide hints
concerning the intended meaning of the data. The use
of semantic metadata for the integration of relational
databases is advocated, among others, in [19, 11].

In our approach we advocate the use of existing
common vocabularies or ontologies as a basis for the in-
terpretation of Web-based data. In the travel industry
these are the common three letter codes or the UNI-
CORN protocol. Ideally, providers should adhere to
those. However, in an imperfect real world, it becomes
necessary to extend the existing vocabularies on the
consumer side. This is quite realistic in a business-to-
intermediary-to-consumer setting, since the intermedi-
ary will deal with a finite number of content providers
on a regular and extensive basis. Therefore, some ini-
tial effort on the part of the consumer of the informa-
tion is justified if it enables further automatic process-
ing of the information.

In this paper we discuss the role of metadata in de-
scribing the structure and semantics of available data.
We motivate our approach through a typical but sim-
plified scenario from the travel industry. We introduce
a representation model that enables the explicit de-
scription of the structure and semantics of semistruc-
tured data, and show how this model can be used for
the integration of semistructured, heterogeneous Web-
based data sources for further automatic processing.

2 DMetadata for making structure and
semantics explicit

A meaningful exchange and a correct use of Web-based
data requires both information about its organization
and meaning. This information, which we call context
information [19, 12], provides the basis for determin-
ing the relationships between the data and the real
world aspects it describes. For the explicit representa-
tion and exchange of this context information we use
metadata.

We distinguish between structural and semantic
metadata. Structural metadata represents information
that describes the organization and structure of the
recorded data, e.g., information about the format, the
data types used, and the syntactic relationships be-
tween them. In contrast, semantic metadata provides
information about the meaning of the available data
and their semantic relationships, e.g., data that de-
scribes the semantic content of a data value (like units
of measure or scaling), or data that provides additional
information about its creation (calculation algorithm
or derivation formula used), data lineage (e.g., source),
and quality (e.g., actuality and precision) [12].

A metadata model to describe context informa-
tion in an unambiguous way is needed. We intro-
duce domain-specific conceptualizations, or ontologies
[9] that provide a commonly agreed upon vocabulary
to which data providers and consumers refer. Thus, an
ontology serves as a common basis for the representa-
tion of data and metadata.

Because the data we deal with is semistructured,
there is no data schema available to which meta-
data may refer. Structure and semantics of individ-
ual data items may vary, even if they describe objects
of the same class of real world phenomena. There-
fore, context information concerning the organization
and meaning of data has to be given on an extensional
level, i.e., on the level of data values. For this reason,
we need description models that allow a flexible asso-
ciation of metadata with the available data items. The
representation model we present in Section 4 provides
such a description model.

3 Scenario

In the business-to-intermediary-to-consumer scenario
we are dealing with, a travel agency tries to find the
lowest possible airfare by accessing information from
multiple reservation systems and offerings of consolida-
tors who represent their information differently. Fig-
ures 1 and 2 show flight information from two different
online reservation systems as they are available on the
Web. The available data is provided as semistructured
data in the form of HTML pages.
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Saturday, June 06 1928

Availahility for FRANKFURT, GERMANY (FRA) to KENNEDY-NEW YORK, NY (JFK)

Aufne | Flight it e SR e - Meal
Date : City | Time Date | City ;| Time
Lo ©o400 Tud6 | FRA 10:35 T FK ¢ 1300 M
Price Per Adult (Economy Class): DEM 2600
i : ; iy
Anfine  Flight S e S Mesl
Date City Time Date City Time
AR 1319 Fun0s FRA 10:25 Tun0s [eints) 1135
AF [ Tun0ia S 12.00 Jun0a EX 1500 IS

Price Per Adult {Economy Class): DEM 2640

Figure 1: Reservation System A

Direct flight on Satorday June 6, 1998

Class: ¥ — Economy Coach
Mileage: 3830 Miles
Cn-time performance is not availahle

You have asked to: Leave From: FRA Arrfve At New York, Satowrday June 6,1998

Departing: FRA Frankfurt, Frankfurt Germany
Arriving at: IFE John F. Kennedy Int'l Airport, New York New York
Lufthansa, flight number 400, departing 10:35 AM, arriving 1:00 PM

You can reserve thisfthese flight(s) at a fare of $ 1430 for one adult, incl. taxes.

Figure 2: Reservation System B

Because there is no obligatory data schema associ-
ated with this data, the structure underlying it is irreg-
ular, e.g., some offers are composed of multiple flight
segments, and information concerning certain aspects
is not given for all flights or is represented differently,
as is the case with information concerning meal ser-
vices in reservation system A.

Although the available data obviously has some in-
ternal structure, this structural information is not ac-
cessible as a separately specified schema, but is given
in the form of HTML tags, and thus is part of the
data itself. Therefore, the underlying structural infor-
mation has to be extracted first to become useful for
automated processing.

The data sources describe equivalent information
differently. They provide different aspects of the
flights, and represent the same real world aspects using
different structural constructs or semantic concepts.
For example, information about the flight distance is
recorded in source B only, and both reservation sys-
tems identify airlines with different coding conven-
tions. The detection and resolution of these semantic
heterogeneities obviously requires knowledge about the
exact semantics underlying the represented data. We
were approached by a major travel agency that needed
help in extracting data from the Web and in preparing
it for further processing.

4 MIX — A model for explicit de-
scription of context information for
semistructured data

The representation model we introduce here, called
Metadata based Integration model for data X-change,
or MIX for short, can be understood as a self-
describing data model [15]. This is because informa-
tion about the structure and semantics of the data is
not provided as a separately specified data schema, but
is given as part of the available data itself. Thus, MIX
allows a flexible association of context information in
the form of metadata, and is especially well suited for
the representation of semistructured data.

Our model is based on the concept of a semantic
object. A semantic object represents a data item to-
gether with its underlying semantic context which con-
sists of a flexible set of meta-attributes that explicitly
describe the implicit assumptions about the meaning
of the data item. However, because we cannot explic-
itly describe all modeling assumptions the semantic
context always has to be understood as a partial rep-
resentation. In addition, each semantic object has a
concept label associated with it that specifies the rela-
tionship between the object and the real world aspects
it describes. These labels have to be taken from a com-
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monly known vocabulary, or ontology. In this way, the
concept label, as well as the semantic context of a se-
mantic object help to describe the supposed meaning
of the data.

The following sections introduce the fundamental
concepts of the MIX model. In Section 4.1 we dis-
cuss the role of domain-specific ontologies as a com-
mon interpretation basis for data and metadata. We
distinguish between simple and complex semantic ob-
jects. The concept of simple semantic objects, which
are used for the representation of atomic data values,
is introduced in Section 4.2. Section 4.3 deals with
the idea of semantic conversion and shows how simple
semantic objects can be converted among different con-
texts. Based on these concepts, Section 4.4 shows how
conversion functions can be used for the comparison of
semantic objects represented with regard to different
contexts.

In Section 4.5 we introduce complex semantic ob-
jects for the representation of complex data objects.
The concepts of semantic conversion and semantic
equivalence are generalized for complex semantic ob-
jects in Sections 4.6 and 4.7. Finally, Section 4.8 de-
fines the concept of semantic identity which provides
the prerequisite for the integration of semantic objects
that represent the same real world phenomenon.

4.1 Ontologies as a common interpreta-
tion basis

To ensure a correct interpretation of the available
metadata we use domain-specific ontologies. An on-
tology provides an agreement about a shared concep-
tualization of a given application domain [9]. The con-
cepts specified in the ontology provide a common vo-
cabulary for which no further negotiation is necessary.
In addition, the ontology provides information about
the representation of the data described on the basis
of the model.

In an ideal situation, all instances that make use of
data and metadata from a given domain should adhere
to the corresponding ontology. In an imperfect real
world we must allow ontologies on consumer side that
are tailored to specific needs and make the model ex-
tensible. Ontologies should use existing standards (like
the UNICORN standard [20] for travel information, or
the well known two letter airline code). Aspects for
which no such standards exist require new ontology
concepts. If a source does not adhere to existing stan-
dards or multiple standards exist, the consumer must
either extend the ontology or combine existing ontolo-
gies. Depending on the application domain this can
be done following a top-down approach as proposed in
[7], or a bottom-up approach as introduced in [21].

In the MIX model, we simplify by understanding
an ontology as a finite set of concepts and their rela-
tionships. Each ontology concept has a representation
type associated with it, which is either atomic (e.g.,
string, integer, real, etc.), or “complex”, in which case
the exact representation is not determined by the con-
cept. The domain of the representation type specifies
the possible values for the representation of data cor-
responding to the respective ontology concept.

There is a significant difference between the terms
concept and type, as they are used here. An ontology
concept may be understood as an abstraction of a
(homogeneous) set of real world phenomena, and thus
describes the correspondence between data of a given
concept and the respective domain. In contrast, the
representation type determines the representation of
a data value of a certain concept.

4.2 Simple semantic objects

A semantic object may be understood as a data item
with additional context information attached to sup-
port its correct interpretation. For the explicit repre-
sentation of context information (mainly in databases)
different approaches have been discussed in the litera-
ture [18, 19, 14, 8, 16, 11]. We prefer to represent this
additional information on an extensional level, because
semistructured sources provide no explicitly specified
data schema to which meta-information may refer.
Simple semantic objects represent atomic val-
ues, like simple number values or character strings.
Based on a given ontology a simple semantic object
representing value v is a 3-tuple of the form:

SemObj = <C, v, $> ,

where C denotes the ontology concept to which
SemObj adheres, and $ specifies the sematic con-
text that records additional information which helps
interpret the represented value. The semantic context
is represented as a finite set of semantic objects that
represent different semantic aspects which explicitly
describe fundamental assumptions about the meaning
and possible use of a given data object.

The following example illustrates the representa-
tion of a data value by a simple semantic object. Given
an ontology that describes the meaning and represen-
tation of the concepts Distance (represented as a real
value), Unit as the underlying unit of measure (rep-
resented as string), and Scale as the scale factor of
a numerical value (also represented as a real value).
Based on these concepts, the flight distance between
Frankfurt/Main and New York as given in Figure 2
may be represented as:

< Distance, 3850, {< Unit, “mile” >, < Scale,1 >}> .
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4.3 Semantic conversion

The association of context information with a given
data value serves as an explicit specification of the im-
plicit meaning of the data. This allows the determina-
tion of semantically equivalent semantic objects, even
if they are represented differently, i.e., relative to dif-
ferent contexts. For example,

< Distance, 3850, {<Unit, “mile” >, < Scale,1>}> and
< Distance, 3.85, {<Unit, “mile” >, < Scale,1000>} >

are semantically equivalent, because they represent the
same information and we can specify a conversion func-
tion “v [scale x/ = v % [scale y]” by which one rep-
resentation can be transformed into the other. Such
conversion functions are a prerequisite for the integra-
tion of semantic objects coming from different sources,
by converting these objects, as far as possible, to a
common context.

A conversion function for simple semantic
objects ) ~

(S, <Cyv, $>) = <C, v, $>

is a function that maps a simple semantic object, rep-
resented in context 3, to its corresponding representa-
tion in context $. Semantic aspects of context $§ that
are not specified in $ are ignored for the conversion.
The resulting context § includes the common seman-
tic aspects plus all semantic aspects of $ that are not
specified in $.

For example, if ¢4+ defines a conversion function
for the semantic aspect denoted by Unit, we get:

¢Unit( {< Unit, “km” >}7
< Distance, 3850, {<Unit, “mile” >, <Scale,1>}>) =
< Distance, 6194.65, {<Unit, “km” >, < Scale,1>}>,

with “1 mile = 1.609 km” being the underlying
mapping rule. Conversion functions can be specified
in the underlying ontology, or may be stored in an
application-specific conversion library.

4.4 Semantic equivalence

The example given in Section 4.3 shows two seman-
tic objects that intuitively appear to be semantically
equivalent. However, consider the two semantic ob-
jects below:

< Price, 1430, {< Currency, “USD” >} > and
< Price, 2600, {< Currency, “DEM” >} >,

and the conversion function @currency that converts
money according to a given exchange rate. As usual
for money exchange, we have to take into consideration
the asymmetry of conversion that may exist between
buying and selling rates. Supposing ¢currency cCOD-
verts US dollar to German marks on the basis of the

exchange rates “1 USD = 1.778 DEM” and “1 DEM
= 0.55 USD”, we get the following results:

¢Currency ( {< Currency, “DEM?” >}7
< Price, 1430, {< Currency, “USD” >} >) =

< Price, 2542.54,{< Currency, “DEM” >} >,

¢Currency ( {< Currency, “UsD” >}>
< Price, 2600, {< Currency, “DEM” >} >) =

< Price, 1430, {< Currency, “USD” >} > .

Because of the asymmetry of the conversion function
and the difference that results when converting from
“DEM” to “USD” or vice versa it may be reasonable
to classify these objects semantically equivalent with
regard to “USD”, but not semantically equivalent if
currency “DEM?” is used. This means, the result of the
semantic comparison of two simple semantic objects is
determined through the conversion of both objects to
a common semantic context, and the comparison of
the elementary data values underlying the converted
objects.

Generally, the result of a semantic comparison de-
pends on the respective semantic context used for the
conversion, as well as on the conversion function to be
used. We refer to the semantic context $ used for the
comparison as the target context, and call the con-
version function ¢ reference conversion function,
or reference function for short, of the semantic com-
parison.

The set of semantic aspects in the target context
may be different from those in the contexts of the
semantic objects to be compared. Semantic aspects
specified in the original contexts but not specified in
the target context are ignored for the comparison.

4.5 Complex semantic objects

Complex semantic objects can be understood as
heterogeneous collections of semantic objects, each of
which describes exactly one attribute of the repre-
sented real world phenomenon. These subobjects are
grouped under a corresponding ontology concept. A
complex semantic object that represents the complex
data object o is represented as the tuple:

CompSemOb; = <C, A> |

where C'is the ontology concept underlying the seman-
tic object, and A is the set of semantic objects associ-
ated with it that provide a representation of the sub-
objects of 0. Again, these attributes are represented
as either simple or complex semantic objects.

The attributes of a complex semantic object are
divided into two distinct subsets A and Agr. A is the
set of key attributes that are used to identify a com-
plex semantic object of concept C. These attributes
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A

CompSemObja,
< FlightOffer, {
< ClassOfService, “Economy”,
< Price, 2600,
< FlightSegment, {

FlightNumber, 400 >,

{<ClassOfServiceCode, “FullServiceClassName” >} >,
{<Currency, “DEM" >, <Scale, 1>} >,

ANNNANNNANNNAN

< FlightOffer, {
< ClassOfService, “Y",
< Price, 1430,
< FlightSegment, {

FlightNumber, 400 >,
Airlineldentfier, “Lufthansa”,
DepartureDate, “Jun 06, 1998,
DepartureTime, “10:35 AM",
DepartureAirport, “"FRA",
ArrivalAirport, “"JFK",
ArrivalTime, “01:00 PM”,
Distance, 3850,

< Airlineldentifier, “LH", {<AirlineldentifierCode, “TwoletterAirlineCode” >} >,

< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY" >} >,

< DepartureTime, “10:35", {<TimeFormat, “HH:MM" >} >,

< DepartureAirport, “FRA", {<AirportldentifierCode, “ThreelLetterCode” >} >,

< ArrivalAirport, “JFK", {<AirportldentifierCode, “ThreeLetterCode” >} >,

< ArrivalTime, “13:00”, {<TimeFormat, “HH:MM" > } >,

< Service, “M”, {<ServiceCode, “OneLetterServiceCode” >} > } > } >
Figure 3: MIX Representation of Source A

CompSemObjg =

{<ClassOfServiceCode, “OnelLetterServiceClassCode” >} >,
{<Currency, “USD" >, <Scale, 1>} >,

{<AirlineldentifierCode, “FullAirlineName” >} >,
{<DateFormat, “Mon DD, YYYY" >} >,
{<TimeFormat, “HH:MM AM/PM" >} >,
{<AirportldentifierCode, “ThreeLetterCode” >} >,
{<AirportldentifierCode, “ThreeLetterCode” >} >,
{<TimeFormat, “HH:MM AM/PM" >} >,
{<Unit, “mile">, <Scale, 1>} > } > }>

Figure 4: MIX Representation of Source B

are determined by C and specified in the underlying
ontology. They provide the prerequisite for the defini-
tion of semantic identity as it is given in Section 4.8.
Subset Ar provides the set of additional attributes. In
contrast to A, the set of attributes Ar may vary be-
tween different semantic objects of the same ontology
concept, as shown by the two objects above.

On the basis of an ontology the first offer given by
system A in Figure 1 may be represented as shown in
Figure 3 (key attributes are underlined). An offer is
identified by its service class, price, and the constitut-
ing flight segments. In turn, flight segments are distin-
guished by their flight number, airline, and departure
date. Additional properties, such as departure time,
arrival airport, and meal services are not required for
the unique identification of a flight segment and might
not be given for all flight segments. In this way, com-
plex semantic objects provide a flexible way to repre-
sent data with irregular structure.

4.6 Conversion of complex semantic
objects

The semantic context of a complex semantic object is
given through the context information specified for its
subobjects. This has been defined to keep the model
simple. Accordingly, the concept of a conversion func-
tion can be directly extended for the application on

complex semantic objects. A (complex) conversion
Sfunction ® is a mapping function that converts a com-
plex semantic object between different contexts by be-
ing recursively applied to all of its subobjects. If a
given subobject is a simple semantic object we use the
corresponding conversion for simple semantic objects.

4.7 Equivalence of complex semantic
objects

In Section 4.4 we introduced the concept of semantic
equivalence of two simple semantic objects. Seman-
tic objects that are semantically equivalent represent
the same information, i.e., they describe the same real
world aspects.

The equivalence notion for simple semantic objects
can be generalized for complex semantic objects in a
straightforward manner: Two complex semantic ob-
jects with the same underlying ontology concept are
said to be semantically equivalent with regard to a
given target context and reference function, if their
corresponding subobjects are semantically equivalent
with regard to the target context and conversion func-
tion.

4.8 Semantic identity

Complex semantic objects with the same underlying
ontology concept may be different because they either
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“12:mm AM”

“hh:mm AM”
“hh:mm” [“HH:MM”] <

“12:mm PM”

“(hh — 12) :mm PM”

“hh:mm XX” [“HH:MM AM/PM”| <

[“HH:MM AM/PM”], if hh =0
[“HH:MM AM/PM”], if 0 < hh < 12
[“HH:MM AM/PM”], if hh =12

[“HH:MM AM/PM”], if hh > 12

“00:mm” [“HH:MM”], if XX = “AM” A hh =12

“hh:mm” [“HH:MM”], if XX = “AM” A hh # 12

“12:mm” [“HH:MM”], if XX = “PM” A hh =12
“(hh +12):mm” [“HH:MM”], if XX = “PM” A hh # 12,

XX  [“TwoLetterAirlineCode”] < FullNameOf(XX)
name [“FullAirlineName”] & TwoLetterCodeOf (name) [“TwoLetterAirlineCode”] .

[“FullAirlineName”]

Figure 5: Mapping Rules

$ = { < AirlineldentifierCode, “TwoletterAirlineCode” >,
< AirportldentifierCode, “ThreeLetterCode” >,
< DateFormat, “Mon DD YYYY" >,
< TimeFormat, “HH:MM AM/PM” >,
< ClassOfServiceCode, “OneletterClassCode” >,
< ServiceCode, “OneletterServiceCode” >,
< Currency, “USD” >,
< Unit, “mile” >,
< Scale, 1 >

}

Figure 6: Common Representation Context

refer to different semantic contexts or because they
describe different aspects of the entity they represent.

Two complex semantic objects of the same on-
tology concept are semantically identical with re-
gard to a given context and a corresponding conversion
function if, recursively, their identifying subobjects are
semantically identical with regard to this context and
conversion function.

At the lowest level of this recursion, simple se-
mantic objects must be compared. Two simple seman-
tic objects are semantically identical with respect to a
given context and conversion function if they are se-
mantically equivalent with regard to this context and
conversion function, since identity and equivalence are
the same for atomic values.

Thus, semantic identity defines whether two se-
mantic objects describe the same real world object.
In contrast, semantic equivalence describes whether
two semantic objects represent the same information.
By definition, semantically equivalent semantic objects
are semantically identical since they concur in both
the identifying and all other attributes. The reverse is
not always true since two semantically identical objects
may have the same identifying attributes, e.g., airline,
flight number and date, but different non-identifying
attributes, such as meal service. See Section 5 for an
example.

5 Data integration on the basis of MIX

The data provided by the reservation systems intro-
duced in Section 3 may be parsed and represented as
semantic objects of concept FlightOffer as shown in
Figures 3 and 4. By circumventing the need to agree on
all attributes, the two sources will be able to agree on
the same meaning for FlightOffer. Both data sources
make different semantic assumptions (i.e. use different
contexts) for the represented data.

The process of integrating data represented on the
basis of MIX takes place in two steps. First, the seman-
tic objects have to be converted to a common context,
which can be specified by the application interested in
the data, by using appropriate conversion functions.
For example, for the aspects of TimeFormat and Air-
lineldentifierCode we may specify the mapping rules
depicted in Figure 5 that can be realized as functions
or mapping tables.

In the second step, semantic objects which are se-
mantically identical are identified and integrated into a
common representation. Using context $ in Figure 6,
as a common representation context and the conver-
sion functions introduced so far, CompSemObja, and
CompSemObjp may be classified as semantically iden-
tical because they represent the same flight offer.
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CompSemObjag =
< FlightOffer, {

< ClassOfService, “Y",

< Price, 1430,

< FlightSegment, {
< FlightNumber, 400 >,
< Airlineldentfier, “LH",
< DepartureDate, “Jun 06 1998",
< DepartureTime, “10:35 AM”,
< DepartureAirport, “FRA",
< ArrivalAirport, “JFK",
< ArrivalTime, “01:00 PM",
< Service, “M",
< Distance, 3850,

{<ClassOfServiceCode, “OnelLetterServiceClassCode” >} >,
{<Currency, “USD" >, <Scale, 1>} >,

{<AirlineldentifierCode, “TwolLetterAirlineCode” >} >,
{<DateFormat, “Mon DD YYYY" >} >,
{<TimeFormat, “HH:MM AM/PM" >} >,
{<AirportldentifierCode, “ThreeLetterCode” >} >,
{<AirportldentifierCode, “ThreeLetterCode” >} >,
{<TimeFormat, “HH:MM AM/PM" >} >,
{<ServiceCode, “OneLetterServiceCode” >} >,
{<Unit, “mile”" >, <Scale, 1>} > } > } >

Figure 7: Unified Data Representation

Semantically identical MIX objects are interpreted
as being representatives of the same real world phe-
nomenon. Therefore, they are merged into one se-
mantic object by unification of their attribute sets.
Properties described in both objects that are equiv-
alent are represented only once as shown in Figure 7,
where CompSemObja, and CompSemObjs have been
merged into CompSemObjas.

6 Related research

Space limitations allow us to discuss only three closely
related approaches.

[19] propose a data model for the explicit repre-
sentation of context information of a given data value
by adding metadata that describes the organization
and meaning of the data value. In addition, the model
supports the conversion of this data between different
contexts. The model is strictly value-based and lim-
ited to the exchange of atomic values. Thus, it lacks
the possibility of defining composite objects that can
be handled as one unit. Our concept of a semantic ob-
ject extends the concepts discussed in [19] with regard
to complex, maybe irregularly structured data objects.
They assume a common vocabulary. MIX makes the
common vocabulary ezplicit and provides both for the
exchange of vocabularies, and their extensibility.

XML [22] provides a flexible, self-describing data
model for the representation and exchange of struc-
tured and semistructured data similar to the MIX
model. The XML standard supports a textual rep-
resentation of data by using application-specific tags.
These tags may be used to explicitly refer to the mean-
ing of the represented data, and may be specified in a
document type definition (DTD). However, XML does
not enforce a semantically meaningful data exchange
per se, since different providers can define different tags
to represent the same or semantically similar informa-
tion. Furthermore, because XML is supposed to be a
very flexible though simple model for data exchange,

it does not support the integration of heterogeneous
data. In contrast, MIX supports an explicit represen-
tation of semantic differences underlying the data, and
specifies how data based on this representation may be
converted to a common representation.

In addition, MIX has some similarities with the
Object Exchange Model (OEM) [15] which is a data
model well-suited for the representation of data with
heterogeneous structure. Besides the actual data
value, each data object has a unique identifier, a type
which determines its representation, and a label which
provides additional information concerning the mean-
ing associated with it. The OEM, as well as the MIX
model, are self-describing data models since structure
and meaning of the data objects are given as part of
the available data objects. Both data models provide a
highly flexible description model, especially well suited
for the representation of semistructured data.

However, there are some important differences.
First, in the OEM objects are identified via system-
wide object identifiers. In contrast to this, data objects
in MIX have certain attributes associated with them
which support their identification based on their in-
formation content. Second, different from the OEM
model, where data objects have source-specific la-
bels, concept labels associated with MIX objects come
from domain-specific vocabularies for which a com-
mon agreement about their meaning has been reached.
These vocabularies exist and are known to users work-
ing in specific application domains. Finally, OEM is
tailored mainly to the representation of data with ir-
regular structure. In addition to this, the MIX model
also supports an explicit representation of the seman-
tics underlying the data, and provides conversion func-
tions to convert data between different semantic con-
texts.

Summing up, OEM and XML provide support for
the representation and exchange of data in terms of at-
tribute/value pairs, with user defined labels. However,
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this alone will not provide for semantically meaning-
ful exchange of data, and interoperability among data
providers and consumers because different providers
may define their own ways of using attribute/value
pairs to represent the same information. In contrast,
MIX offers data providers and consumers the possibil-
ity to refer to a commonly agreed upon vocabulary,
and provides hooks for the introduction of conversion
functions to convert the available data to a common
representation.

Unlike OEM, XML, or semantic values as intro-
duced in [19] which can only represent object state,
MIX objects include conversion functions that can be
specified in the common ontology, and associated with
these objects. An application may access these data
objects without any further parsing.

7 Conclusion

The effective use of Web-based information by busi-
nesses requires processing beyond browsing and the
common interactive point-and-click paradigm. Busi-
ness users must be able to extract data for further
processing. Furthermore, data from multiple hetero-
geneous sources must be integrated in a meaningful
way by making the underlying modeling assumptions
explicit.

In this paper we presented a flexible data model
that supports the representation of data together with
metadata that describes its organization and seman-
tics. We showed how semistructured data can be repre-
sented and integrated by using this model. Space lim-
itations forced us to describe a short version of MIX.
A more formal presentation of the MIX model can be
found in [6].

We use the MIX model in a project for integrating
structured and semistructured data sources from the
Internet. The prototype of a Java-based implemen-
tation exists for MIX and the MIX integration envi-
ronment. Objects can be represented and integrated,
displayed through a browser or used in further process-
ing. Current research is concerned with the extension
of the representation of conversion functions, and with
the extraction of MIX representations for a wider range
of semistructured data.
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