
Data Transformation for Warehousing Web Data

Yan Zhu Christof Bornhövd
�

Alejandro P. Buchmann

Department of Computer Science, Darmstadt University of Technology
64283 Darmstadt, Germany�

zhu, buchmann � @dvs1.informatik.tu-darmstadt.de
christof bornhoevd@hp.com

Abstract

In order to analyze market trends and make reasonable
business plans, a company’s local data is not sufficient. De-
cision making must also be based on information from sup-
pliers, partners and competitors. This external data can
be obtained from the Web in many cases, but must be inte-
grated with the company’s own data, for example, in a data
warehouse. To this end, Web data has to be mapped to the
star schema of the warehouse. In this paper we propose
a semi-automatic approach to support this transformation
process. Our approach is based on the use a rooted la-
beled tree representation of Web data and the existing ware-
house schema. Based on this common view we can compare
source and target schemata to identify correspondences. We
show how the correspondences guide the transformation to
be accomplished automatically. We also explain the mean-
ing of recursion and restructuring in mapping rules, which
are the core of the transformation algorithm.

1 Introduction

Information from the Web has already become of major im-
portance in helping individuals and companies to follow the
current development in many areas, analyzing market devel-
opments and making business decisions. In an online book-
shop, a data warehouse, for example, can be used to manage
business transaction data, such as customer orders and pro-
motions. The implementation of OLAP on the data ware-
house will help to gain an insight into customer behavior,
perform buy and replenish analysis, and design focused pro-
motions. However, in order to analyze market trends and
make new business plans, a company’s own data is not suf-
ficient, the bookshop manager also needs information from
his suppliers, partners, and about his competitors. For ex-
ample, discount book information or information about new
publications from his competitors is important to help him�

Current affiliation: Hewlett-Packard, e-Solutions Division, Palo Alto

to better plan own production lines or offer new promotions.
Such information can be acquired from the Web. Integrat-
ing Web data and a companys data, materializing them in a
data warehouse for implementing OLAP on them, making
business plans based on them, and mining historic data to
deduct business rules will greatly benefit e-commerce.

In our previous work [17, 18] we discussed a framework
and an approach for warehousing Web data. This approach
is already used to combine Web information and company
data, and materializing them in a data warehouse. In [17]
a language has been designed for describing mapping rules
and procedures. The advantage of this language is its sim-
ple syntax. But because a mapping procedure is defined
together with the correspondences between Web data and
warehouse tables, this makes the mapping procedure de-
pendent on the concrete Web data and the concrete ware-
house tables. Therefore, when a new application domain
is integrated the transformation program must be modified
manually to adapt to the new application.

In order to automate the mapping process in this pa-
per we propose a semi-automatic transformation approach
based on the comparison of source- and target-schema and
tree restructuring. First, Web data is integrated based on
a common structural and semantic basis by using a self-
describing object model, called MIX [6, 7]. We refer to
this step as the Web data representation and integration
phase, and the MIX model serves as a Web data repre-
sentation model. Next is the transformation phase. In
this step our source data has already become MIX ob-
jects representing the Web data, while the target schema
is the relational data warehouse schema. The transfor-
mation task is to map MIX objects to relational ware-
house tables. MIX objects representing complex data ob-
jects of a certain semantic concept can be understood as
an arbitrarily deep rooted labeled tree. The Rooted La-
beled Tree (RLT) or the Labeled Graph (LG) representation
are already used in many integration, transformation and

query systems for semistructured/unstructured data, such as
[1, 4, 5, 9, 10, 11, 13, 14, 15]. RLTs serve as a view of
MIX objects in our approach. Besides, a relational database
table can be easily represented as a tree with all leaves hav-
ing the same depth (fixed-depth tree). The online bookshop
data warehouse in our example is designed based on the re-
lational data model, so that it can also be represented using
RLTs.

Once the source schema and the target schema are
viewed as RLTs, we can compare source and target
schemata to find correspondences between them. We have
observed that the tree representation of a relational table can
be achieved through extracting subtrees from a MIX ob-
ject tree and constructing a new tree from these subtrees.
Therefore the transformation from semi-structured or un-
structured Web data to well-structured relational data ware-
house data can be implemented through tree restructuring.

We define the correspondences between MIX objects
and warehouse tables in a mapping rule definition file. This
file is parsed to produce a node list representing route in-
formation and a list of subtrees representing needed MIX
subobjects. The mapping processor traverses the MIX ob-
ject tree to an arbitrary depth through matching the nodes on
the route, extracts needed subtrees used to generate a new
fixed-depth tree, which represents a warehouse table. The
mapping process designed following the tree traverse and
construction is common for all transformation tasks, there-
fore it can be done automatically. For a new application we
only need to specify the correspondences between seman-
tic concepts of new MIX objects and column names in new
warehouse tables in the mapping rule definitions, while the
actual transformation process will not be changed, i.e., is
application independent.

Our transformation rule definition file can be written
using a language for querying semi-structured or unstruc-
tured data. In our prototype, we use UnQL [3, 4] as the
rule definition language. The reasons are: first, that lan-
guage is designed for querying semi-structured and unstruc-
tured data organized as Rooted Labeled Trees (RLTs) or La-
beled Graphs (LGs) based on structural recursion. Second,
UnQL’s internal algebra, UnCAL, is close in spirit to the
relational algebra and thus can express all relational alge-
bra queries. Therefore, a query on warehouse data can be
translated into an UnQL query on MIX objects. And third,
UnQL supports restructuring queries, which can define the
construction from an arbitrarily deep tree to a new tree. This
is what we need, because the transformation from MIX ob-
jects to the relational data in a warehouse can be achieved
by generating fixed-depth trees representing relational ta-
bles through restructuring an arbitrarily deep MIX object
tree.

There are also other languages that have been proposed
for querying semi-structured or unstructured data organized

as RTLs and LGs, for example, Lorel and XML-QL. How-
ever Lorel [1] does not provide restructuring operations
which are needed in our transformation tasks. XML-QL
[10] is designed for querying XML, and has been developed
based on UnQL and Strudel [11]. Although a first work-
ing draft of the XML Query Algebra was just published by
W3C’s XML Query Working Group [16], there is still no
formal algebra for XML that can be used to formally de-
scribe the semantics the queries and to support query op-
timization. In contrast, UnQL provides both restructuring
operations and a clear algebra for describing the meaning of
mapping definitions. In fact, our approach is not limited to
the use of UnQL, any language for querying semi-structured
or unstructured data can also be used in our transformation
framework if it provides the two features mentioned above.

The main contributions of this paper are:

� it introduces a semi-automatic transformation ap-
proach based on source- and target schemata compar-
ison and tree restructuring for materializing Web data
into a data warehouse;

� it describes the exact meaning of transformation rules,
i.e., the recursion and restructuring specified by them.

The rest of the paper is organized as follows: Section 2
provides an overview of our system for warehousing Web
data. A motivating example is also shortly introduced in
this section. Section 3 discusses tree-based representation
of MIX objects and warehouse tables. The mapping rule
definitions and the transformation algorithm are presented
in Section 4. In Section 5 basic mapping rules are ana-
lyzed. Section 6 discusses the semantics of transformation
rules. Section 7 describes the implementation of the auto-
matic transformation process. Finally, we consider related
work in Section 8.

2 An Overview of the System for Warehous-
ing Web Data

2.1 An Application Scenario

Online book shopping is a very active e-commerce area.
A large amount of customer orders is produced every day,
and can be recorded in a bookshop data warehouse for
OLAP and decision making. Figure 1 shows such a cus-
tomer order. In addition, the book shop manager may
also integrate discount book information from his competi-
tors’ in this data warehouse, in order to compare pricing
schemes, analyze market trends and make new business
plans. This information can be obtained from related Web
pages. Figure 2 shows discount book information from an
online provider given as a HTML page.

The bookshop data warehouse in our example is based
on the relational data model. The star schema of a simplified
bookshop data warehouse is defined in Figure 3. This data
warehouse manages e-commerce data of an online book-
shop and discount book information from competitors Web
pages. E-business data populates the book shop fact table,
while Web data populates the discount fact table. The two
fact tables can share several well-conformed dimensions,
e.g., Book Dimension and Time Dimension table, or they
may also have their own dimension table, e.g., Customer
Dimension and BookStore Dimension.

Figure 1: A customer order

Figure 2: Discount book information from source A

2.2 System Architecture and the MIX Model

Our system framework that provides a platform for inte-
grating Web data and materializing it into a relational data
warehouse has been introduced in [17]. The implementa-
tion of our framework is outlined in Figure 4. Compo-
nents such as Transformation Processor, Federation Man-
ager, Wrappers and Ontology Server are located at the orga-
nization possessing the data warehouse. Web data sources
are available via the Internet.

We represent Web data using a special data model called
MIX (Metadata based Integration model for data X-change)
[2, 6, 8]. MIX is a self-describing data model in the sense

Book Dimension

Discount Fact Table

Book Shop Fact Table

Time-key
Customer-Key
Book-key

List-price
Sold-price
Units-sold
Dollars-sold
Dollars-cost
Shipping-fact-join-key
Discount-fact-join-key

Key
StoreName
URL
Availability

Key
Day
Month
Year

Discount-fact-join-key
Time-key
Book-key
BookStore-key

SoldPrice
Discount

Shipping Fact
Table

BookStore Dimension

Customer Dimension

Key
ISBN
Title
Author
Publisher
PublicationYear
Pages
Bibliopegy
Accessory

Time Dimension

Figure 3: Star schema of the online bookshop data warehouse

that information about the structure and semantics of the
data is given as part of the available data itself, not in the
form of a separate schema. This model represents data to-
gether with a description of their underlying interpretation
context and uses domain-specific ontologies in order to en-
able a semantically correct interpretation of the available
data and metadata. Thus, it supports the integration of Web-
based data.

 Internet

XML File HTML File
Data
File

Database

... ...Wrapper1 Wrapper2 Wrapperi

Metadata
RepositoryOntology

Transformation Processor

Data
Warehouse

Federation Manager

Ontology
Server

Wrappern

Figure 4: System architecture for warehousing Web data

The model is based on the concept of a semantic object.
A simple semantic object representing an atomic data value
� is a triple of the form:

�������	��
������������ � ��� .

Where
� �

Ontology denotes the ontology con-
cept to which the semantic object adheres, and

�� �

��� ����� ���
	��� ��� �����
is the physical representation of value

� according to the physical representation type of
�

.
�

specifies the semantic context associated with SemObj that
provides additional information about the assumed meaning
of � .

In contrast, a complex semantic object is defined as:
� � ��� ��� � �	��
����� � ��� �

.

Where
� �

Ontology denotes the ontology concept un-
derlying CompSemObj, and

�
corresponds to the set of se-

mantic objects associated with it that provide a representa-
tion of its subobjects.

The data given in Figure 2 can be represented as MIX
objects of concept BookOffer. Using conversion functions,
MIX objects from different sources can be further integrated
by converting them to a common semantic context in the
Federation Manager. In our example, we assume dates rep-
resented in the form Mon DD, YYYY, author names given by
Last Name, First Name Second Name, and prices specified
in Euro as the common semantic context. Figure 5 shows a
sample of the integrated data corresponding to the books of
Figure 2.

SemObj
1 = <BookOffer, {

 <StoreName, “Source A”>,
 <URL, “http://www.bookpool.com/”>,
 <OfferDate, “Feb 03, 2000”, {<DateFormat, “Mon DD, YYYY”>} >,
 <SoldPrice, 28.50, {<Currency, “EUR”>} >,
 <Book, {
 <ISBN, 0764531999>,
 <Title, “XML: Extensible Markup Language”>,
 <Author, “Harold, Elliotte Rusty”,{<NameFormat, “Last, First Second”>}>,
 <Publisher, “IDG Books”>,
 <PublicationYear, “1998”>,
 <Pages, 426>,
 <Bibliopegy, “Paperback”>,
 <Accessory, “CD Rom”> }>,
 <ListPrice, 39.99>, {<Currency, “EUR”>} >,
 <Discount, “29%”>,
 <Availability, “In-Stock”> }>

SemObj
2= <BookOffer, {

 <StoreName, “Source A”>,
 <URL, “http://www.bookpool.com/”>,
 <OfferDate, “Feb 03, 2000”, {<DateFormat, “Mon DD, YYYY”>} >,
 <SoldPrice, 34.95, {<Currency, “EUR”>} >,
 <Book, {
 <ISBN, 0070411034>,
 <Title, “Web Warehousing and Knowledge Management”>,
 <Author, “Mattison, Rob”, {<NameFormat, “Last, First”>} >,
 <Publisher, “McGraw-Hill”>,
 <PublicationYear, “1999”>,
 <Pages, 576>,
 <Biblopegy, “Paperback”>, }>,
 <ListPrice, 49.00>, {<Currency, “EUR”>} >,
 <Discount, “29%”>,
 <Availability, “Out-Of-Stock”> }>

Figure 5: Converted Web data in MIX representation

3 Rooted Labeled Trees as a Common View

As introduced in Section 2, MIX is used in our system
as a Web data representation model. A complex semantic
object in MIX can be understood as a heterogeneous set of

semantic objects that are grouped under a corresponding on-
tology concept. These semantic objects can be either com-
plex semantic objects or simple semantic objects. A simple
semantic object is a triple containing an ontology concept,
a physical value of this object and a semantic context of this
object. Such a containing relationship can be represented
using a DAG (Directed Acyclic Graph). When all non-root
nodes have only one input edge, we can depict such a DAG
as a tree. The structure of MIX objects can therefore be
represented as a Rooted Labeled Tree (RLT). Figure 6 gives
such a RLT representation of the complex MIX objects from
Figure 5.

��� � �	��

is the root which links all objects of

concept BookOffer, i.e.,
��� � �	�
��

and
�������	��
��

. Ontol-
ogy concepts of complex and simple semantic objects are
used as the node labels, leaves will be physical values and
semantic contexts of MIX objects, respectively. Semantic
contexts are not shown in Figure 6, but they are a part of the
data.

A relational database can also be represented as a set
of fixed-depth trees. The data warehouse in our system is
based on the relational data model and can be represented
as a set of rooted, labeled trees. The table name is the root
of a tree, internal nodes of the tree are columns of the table,
leaves represent physical values. Figure 7 gives an exam-
ple of the RLT representation of two data warehouse tables
shown in Figure 3. In Figure 7 and the figures in the next
sections, the label tuple is a special label, which is used to
indicate the encoding of a tuple, rather than a column of the
table. We use it only for illustration.

Author

BookOffer

StoreName OfferDate SoldPrice
Book

Availability
...

URL

“Source A” “http://www....” “Feb 03, 2000” 28.50

ISBN Title ... Accessory

0764531999 “XML: Extensible ... ”

“Harold, Elliotte Rusty”

“CD Rom”

“In-Stock”

SemObj

BookOffer...

...

Figure 6: RLT representation of a BookOffer MIX object

4 Constructing Warehouse Tables through
Restructuring MIX Object Trees

4.1 Mapping Rule Definition

Based on the tree representations in Figure 6 and Fig-
ure 7, we can observe that the schemata of source and tar-
get have correspondences. Constructing a warehouse table
can be achieved by generating fixed-depth database trees
through restructuring an arbitrarily deep MIX object tree

following these correspondences. We specify correspon-
dences explicitly in a mapping rule definition file, where we
specify not only the schema correspondences between MIX
objects of a certain concept and columns of warehouse ta-
bles, but also define the mapping rules from data values of
objects to values of columns.

Publication
Year

Book Dimension

Key AuthorISBN Accessory

...

Title Publisher

tuple tuple...

SoldPriceBook-
key

Discount-
fact-join-
key

Time-key DiscountBookStore-
key

Discount Fact Table

tuple tuple...

...

...

Figure 7: RLT representation of data warehouse tables

Our mapping rule definitions are written in UnQL [3, 4].
UnQL consists of tree constructors, function definitions and
query definitions:

� tree constructors
���

,
�
l : t

�
, �������
	 ,

��� ���������������� ��� �� ���
� functions defined by structural recursion:

let sfun ��� (� country:C
�
) =

let sfun ��	 (� name:N
�
) =

�
result:N

�
in ��	 (C)

in ��� (db)

� queries defined with select-where and pattern
matching, which can be translated into structural
recursion:

select e where (
�
PE:T

�
in e’, rest) �

let sfun h(
�
PE:T

�
) = (select e where rest)

in h(e’)
select e where () � e

When defining correspondences between MIX objects
and warehouse tables in queries, the pattern in the where
clause can be viewed as subtrees of an input MIX object
tree. They denote needed subobjects and paths to them.
The pattern in the select clause denotes a constructed output
result, which is the tree representation of a relational table.
Node labels and leaf variables used in the two clauses speci-
fy the correspondences between MIX objects and columns

of a warehouse table. For example, Query 1 defines the cor-
respondence between objects of BookOffer shown in Figure
6 and columns of the Book Dimension table shown in Fig-
ure 7. Query 2 defines the relationship between objects of
BookOffer and columns of the BookStore Dimension table.
Query 3 specifies the correspondence between objects of
BookOffer and columns of the Discount Fact table.

Query1 :=
select

�
BookDim :

�
ISBN : isb, Title : tit, Author : aut,

Publisher : pub, PublicationYear : puy, Pages : pag,
Bibliopegy : bib, Accessory : acc

���
where

�
BookOffer :

�
Book :

�
ISBN : isb , Title : tit,

Author : aut, Publisher : pub, PublicationYear : puy,
Pages : pag, Bibliopegy : bib, Accessory : acc

�����
in SemObj

Query2 :=
select

�
BookStoreDim :

�
StoreName : sna , URL : url,

Availability : ava
���

where
�
BookOffer :

�
StoreName : sna , URL : url,

Availability : ava
���

in SemObj

Query3 :=
select

�
DiscountFact :

�
SoldPrice : spr, Discount : disc

���
where

�
BookOffer :

�
SoldPrice : spr, Discount : disc

���
in SemObj

select-where with pattern matching can be translated into
structural recursion. Structural recursion can be understood
as queries that can be recursively applied on an object tree
and its children, since the structure of a tree supports re-
cursive traverse and ensures that the recursion always ter-
minates. Therefore, the above mapping definitions can be
written in the following form using structural recursion fol-
lowing UnQL’s syntax [4]. We will use mapping definitions
in the structural recursion form in later sections, because
this form can help to understand the semantics of transfor-
mation rules, which will be discussed in Section 6.

Q1:
let sfun � � (

�
BookOffer : bo

�
) =

let sfun ��	 (
�
Book : bk

�
) =

�
BookDim :

let sfun � � (
�
ISBN : isb

� � �
Title : tit

�
� �

Author : aut
� � ... � �

Accessory : acc
�
) =�

ISBN : isb
� � �

Title : tit
� � �

Author : aut
� � ...

� �
Accessory : acc

�
in � � (bk)

�
in ��	 (bo)

in ��� (SemObj)

Q2:
let sfun � � (

�
BookOffer : bo

�
) =

�
BookStoreDim :

let sfun ��	 (
�
StoreName : sna

� � �
URL : url

�
� �

Availability : ava
�
) =�

StoreName : sna
� � �

URL : url
� � �

Availability : ava
�

in ��	 (bo)
�

in ��� (SemObj)

Q3:
let sfun � � (

�
BookOffer : bo

�
) =

�
DiscountFact :

let sfun ��	 (
�
SoldPrice : spr

� � �
Discount : disc

�
) =�

SoldPrice : spr
� � �

Discount : disc
�

in ��	 (bo)
�

in � � (SemObj)

These queries produce the following three subtrees from
the BookOffer tree:

Author

BookDim

ISBN Title ... Accessory

0764531999 “XML: Extensible ... ” “Harold, Elliotte Rusty” “CD Rom”

URL AvailabilityStoreName

BookStoreDim

“Source A” “http://www...” “In-Stock”

SoldPrice Discount

DiscountFact

28.50 “29%”

tuple tuple...

tuple tuple... ...tuple tuple

...

... ...

Figure 8: Output trees through restructuring an input tree

4.2 Transformation Algorithm

After mapping rules are specified, a parser will parse the
mapping rules and produce the traversing route list and a
list of subtrees needed in constructing the tree representing
the relational table. This data provides the input parameters
of the mapping algorithm. The input tree in the algorithm
can be any MIX object tree of the corresponding concepts.
The output trees will be warehouse tables.

The key part of the transformation algorithm is a
procedure for recursively traversing an object tree from
the root to the leaves until needed subtrees are reached.
At first, the transformation processor does a breadth-first
traverse on a MIX object tree. If a node label matches the
route information from the mapping rules, the search will
be applied on its subtrees (subobjects). If two or more node
labels match with the same route node label, the subobjects
of that first MIX object matched will be searched first.
This procedure works recursively until all needed subtrees
(MIX subobjects) are found. Once a needed subtree is
found it will be extracted, transformed and merged into the
corresponding output tree. The transformation algorithm is
outlined below:

Transformation Algorithm:

� Given a MIX object which can be illustrated as a tree
T, t: the root node of tree T;

� P: a list of MIX objects, their ontology concepts as
node labels indicate routes from the root node to the
needed subtrees;

� C: a list of column names of a warehouse table;
� Output: a relational table which can be represented as

a fixed-depth tree RT.

Procedure transform (t, P, C)
Var Mark : sign of visited
 m, n : nodes

 p : an ontology concept in P
 c : a column name in C
Begin
 if t is not visited then Mark[t] : = visited;
 for each m adjacent to t do
 Begin
 Mark[m] : = visited;
 if m matches one p in P then
 Begin
 if p does not match any c in C then
 transform (m, P, C);
 else // p matches c
 Begin
 for each n adjacent to m do
 Begin
 if n is not visited then
 Begin
 Mark[n] : = visited;
 do whatever processing is necessary on n;
 merge (n, RT);
 End
 End
 End
 End
 End
End

5 Basic Mapping Rules

1. Composition relationships of concepts:
The relationships between a MIX object and its subob-
jects can be understood as part-of relationships. When
mapping a complex MIX object to warehouse tables,
we must distinguish between two cases: First, if the
complex semantic object populates only a dimension
table, the hierarchy of the tree will be flattened, see
mapping definition Q1. Second, when the complex
MIX object populates a fact table as well as dimension
tables, the object must be decomposed and subobjects
are separately mapped to facts in the fact table and at-
tributes in dimension tables, such as in the case of Q2
and Q3.

2. Identifying attributes or surrogate keys:
In the MIX model each complex object is identified

through a single or multiple identifying attributes, sim-
ilar to key attributes in the relational model. For in-
stance, in Figure 5 a complex semantic object BookOf-
fer is identified by its attributes: StoreName, URL,
OfferDate, Price and Book which are underlined. A
complex MIX object of concept Book is identified by
only the attribute ISBN. Two complex objects of the
same ontology concept are identified by the same set
of attributes. We can use surrogate keys in data ware-
houses, as already shown in Figure 3. An additional
column for a surrogate key is created when a ware-
house table is designed. The system can generate an
unique key for these tables when transforming the cor-
responding data.

3. One MIX object to one/many columns:
When mapping objects of an ontology concept to table
columns we must distinguish between three cases. In
the easiest case we have a direct 1:1 mapping, i.e.,
a concept is directly mapped to a column, and the
values of the corresponding MIX objects are directly
assigned to the corresponding table columns. In the
second case, we must calculate the values of a column
by applying a specified function on the respective
MIX object. For instance, Euro is converted to US
dollar, for this a conversion function euroToUsd() will
be used in the corresponding mapping rule:

Q4-1:
let sfun � � (

�
BookOffer : bo

�
) =

�
DiscountFact :

let sfun ��	 (
�
SoldPrice : spr

�
) =�

SoldPrice : euroToUsd(spr)
�

in ��	 (bo)
�

in � � (SemObj)

Finally, when values of a MIX object must be decom-
posed to multiple table columns (1:n mapping), de-
composition functions have to be applied to calculate
suitable values. For example, OfferDate in Figure 5 is
in the form of “Mon DD, YYYY”. In the Time Dimen-
sion of the data warehouse in Figure 3 we have Day,
Month, and Year columns. Therefore, we must use de-
composition functions, like:

getYearfromDate(“Feb 03, 2000”) � “2000” ,

to generate values for these columns:

Q4-2:
let sfun ��� (

�
BookOffer : bo

�
) =

�
TimeDim :

let sfun � 	 (
�
OfferDate : odate

�
) =�

Day : getDayfromDate(odate)
�

� �
Month : getMonthfromDate(odate)

�
� �

Year : getYearfromDate(odate)
�

in ��	 (bo)
�

in ��� (SemObj)

4. MIX objects of different concepts to one column:
When multiple MIX objects of different concepts are
mapped to one column, i.e., values from multiple at-
tributes are used to derive a column value (n:1 map-
ping), an aggregation function has to be applied to cal-
culate the value. For example, calculating the Total-
Cost paid by a customer in one book purchase, MIX
objects of concept Subtotal and ShippingCost are in-
volved. The required calculation function is given by:
�������	��
��������������� ��� ��� � � � ������������ "!#��$���%'& ����� ������� �)(
� ������������ "!#��$�� � * ����� � !#��$��
The corresponding mapping rule is:

Q5:
let sfun ��� (� CustomerOrder : co

�
) =�

let sfun ��	 (� Subtotal : st
�
) in ��	 (co)

� ��
let sfun � � (� ShippingItem : si

�
) =

let sfun �,+ (� ShippingCost : sc
�
) =

�
totalcost : st + sc

�
in �,+ (si)

in � � (co)
�

in ��� (SemObj)

5. Default values:
When we map MIX objects to the tables of the data
warehouse, we sometimes do not have values for all
attributes. Thus, it may be necessary to use some
default value in these places, such as “Paperback” as
the default value of Bibliopegy (the art of bookbind-
ing). For example, we can use the following definition:

Q6:
let sfun ��� (� BookOffer : bo

�
) =

let sfun ��	 (� Book : bk
�
) =

�
BookDim :

let sfun � � (� ISBN : isb, ...,Author : aut, ...,
Bibliopegy : bib, Accessory : acc

�
) =

if (bib = null)
then

�
ISBN : isb, Author : aut, ...,

Bibliopegy : defaultValue, Accessory : acc
�

else
�
ISBN : isb, Author : aut, ..., Bibliopegy : bib,

Accessory : acc
�

in � � (bk)
�

in � 	 (bo)
in ��� (SemObj)

In fact, we don’t specify any check of values in map-
ping rules. All values from MIX objects will be auto-
matically checked for being null in the transformation
process.

6. Multi-valued attributes problem:
When different subobjects of the same concept oc-
cur in a MIX object, a multi-valued attribute problem
arises. For example, a book may have more than one
author. Many relational database systems do not sup-
port multi-valued attributes.

If the maximal cardinality of such multi-valued at-
tributes is known in advance, multiple columns can be
used to store them. Otherwise, separate rows have to
be used to store them. However, in general it is impos-
sible to exactly know the maximal cardinality of such
an attribute, for instance the amount of the authors of
a book, before we design a data warehouse schema.
Therefore, one method is to arrange several columns
in advance, say 5 for author attributes. The problem is
sparsity or lost information. On the other hand, when
we create one tuple for each value of the multi-valued
attribute, the problem is information redundancy.

If we use the first approach to handle the multi-valued
attributes problem, we must see a MIX object tree
as a partly ordered tree: first author appears first,
second author appears thereafter and so on. In this
case, the author subtree is interpreted as a list depicted
as
������� ��� ��� 	

, and concatenation @ replaces union
 ,� � 	 �� 	���
replaces

� � 	 �
 	�� � . Then we define, for
example, 5 columns in advance for storing each value
of the author. Given a book which has two authors,
the mapping rules of such a case are shown in query
Q7-1. Figure 9 shows the result of Q7-1.

Q7-1:
let sfun � � (� BookOffer : bo

�
) =

let sfun ��	 (� Book : bk
�
) =

�
BookDim :

let sfun � � (� ISBN : isb, ..., Author : � � � � ,
Author : � � �
	 , Publisher : pub, ..., Accessory : acc

�
)

=
�
ISBN : isb

� � ... � ����� � � �
����� � : � � � � ��� � @����� � � �
������	 : � � �
	 ��� � @
����� � � �
� �� � :“ ”

��� �
@ ... @����� � � �
������ :“ ”

��� � � ... � �
Accessory : acc

�
in � � (bk)

�
in ��	 (bo)

in ��� (SemObj)

If we use two separate rows to store each value of
author attributes, the mapping rule is as specified by
query Q7-2.

Q7-2:
let sfun ��� (� BookOffer : bo

�
) =

let sfun � 	 (� Book : bk
�
) =

�
BookDim :

let sfun � � (� ISBN : isb, ..., Author : � � ��� ,
Author : � � � 	 , ..., Accessory : acc

�
) =�����

ISBN : isb, ..., Author : � � ��� , ...,
Accessory : acc

��� �
@�����

ISBN : isb, ..., Author : � � � 	 , ...,
Accessory : acc

��� �
in � � (bk)

�
in ��	 (bo)

in ��� (SemObj)

6 Semantics of Transformation Rules

In Section 4.2 we have discussed our transformation al-
gorithm. The core of this algorithm is determined by a set

...

Accessory

BookDim

ISBN

...

0111111111
“CD Rom”

...

aut1

 Author5

Author2

aut2

“ ”

Author1

tuple ... tuple

Key

...

Figure 9: One of the resulting trees of the set values transforma-
tion

of mapping rules that define recursive traversal on an object
tree and the restructuring of its subtrees. In order to make
explicit the exact meaning, i.e., the specified processing of
the mapping rules, we use a calculus called UnCAL [3, 4],
which is UnQL’s internal algebra in the sense of lambda cal-
culus (a formalism with variables and functions) rather than
in the sense of relational calculus (a logic with variables
and quantifiers). For structural recursion on trees its syntax
is rec(� (l, t).e) or simply � ��� � � � ������� , here: � means lambda,
l and t are understood as label and tree variables, and � ��� � ���
denotes the structural recursion on edges. By using Un-
CAL to explicitly describe the semantics of transformation
rules, we want to reveal how the pattern matching, recursive
search and subtrees restructuring take effect in the mapping
rules, and thus to make mapping rules better understand-
able. In our approach, we evaluate the structural recursion
based on labeled nodes. This is because each non-root node
in the RLT view of MIX objects has only one input edge,
thus labeling a node is equivalent to labeling an edge. Fur-
thermore, we extended UnCAL by adding the transforma-
tion function definition: � � � � � � �"! ����� !#� � . This function
definition can explain the semantics of external function ap-
plication. Following are some notations needed in this sec-
tion.

The syntax of extended UnCAL is:

E ::=
���$���

L : E
�%�

E � E
�
&x := E

�
&y
�
()
�
E & E

�
E @ E

�
cycle(E)

�
Var
�
if B then E else E

�
f(E; ... ; E)

�
rec(' (LabelVar, Var).E)(E)

L ::= LabelVar
�
a, a (Label

B ::= isempty(E)
�
L = L

f ::= function

a) Q1 in Section 4 (tree flattening) has the following se-
mantics:

rec(' (� � , bo).

if
� � = “BookOffer”

then
�
rec(' (� 	 , bk).

if
� 	 = “Book”

then
�
BookDim.rec(' (� � , isb).

if
� � = “ISBN” then

�
ISBN : isb

�
else

���
)(bk)

� BookDim.rec(' (� + , tit).
if
� + = “Tilte” then

�
Title : tit

�
else

���
)(bk)

...
� BookDim.rec(' (� � , acc).

if
� � = “Accessory” then

�
Accessory : acc

�
else

���
)(bk)

�
else

���
)(bo)

�
else

���
)(SemObj)

b) Q2 in Section 4 (complex MIX object decomposition)
has semantics:

rec(' (� � , bo).
if
� � = “BookOffer”

then
�
BookStoreDim.rec(' (� 	 , sna).

if
� 	 = “StoreName” then

�
StoreName : sna

�
else

���
)(bo)

� BookDim.rec(' (� � , url).
if
� � = “URL” then

�
URL : url

�
else

���
)(bo)

� BookDim.rec(' (� + , ava).
if
� + = “Availability” then

�
Availability : ava

�
else

���
)(bo)

�
else

���
)(SemObj)

c) the meaning of Q4-1 in regard to calculation mapping
is:

rec(' (� � , bo).
if
� � = “BookOffer”

then
�
DiscountFact.rec(' (� 	 , spr).

if
� 	 = “SoldPrice” then

�
SoldPrice : euroToUsd(spr)

�
else

���
)(bo)

�
else

���
)(SemObj)

d) the semantics of Q4-2 in regard to 1:n mapping is:

rec(' (� � , bo).
if
� � = “BookOffer”

then
�
TimeDim.rec(' (� 	 , odate).

if
� 	 = “OfferDate”

then
�
Day : getDayfromDate(odate)

�
� �

Month : getMonthfromDate(odate)
�

� �
Year : getYearfromDate(odate)

�
else

���
)(bo)

�
else

���
)(SemObj)

e) Q5 about n:1 mapping has the meaning:

rec(' (� � , co).
if
� � = “CustomerOrder”

then
�
rec(' (� 	 , st).

if
� 	 = “Subtotal” then

�
subtotal : st

�
else

���
)(co)

�
� �

rec(' (� � , si).
if
� � = “ShippingItem”

then
�
rec(' (� + , sc).

if
� + = “ShippingCost”

then
�
totalcost : subtotal + sc

�
else

���
)(si)

�
else

���
)(co)

�
else

���
)(SemObj)

f) the meaning of Q6 (using a default value) is:

rec(' (� � , bo).
if
� � = “BookOffer”

then
�
rec(' (� 	 , bk).

if
� 	 = “Book”

then
�
BookDim.rec(' (� � , isb).

if
� � = “ISBN” then

�
ISBN : isb

�
else

���
)(bk)

�
� ...
� �

BookDim.rec(' (� + , aut).
if
� + = “Author” then

�
Author : aut

�
else

���
)(bk)

�
� ...
� �

BookDim.rec(' (� � , bib).
if
� � = “Bibliopegy”

then if bib = “ ” then
�
Bibliopegy : “paperback”

�
else

�
Bibliopegy : bib

�
else

���
)(bk)

�
else

���
)(bo)

�
else

���
)(SemObj)

g) the semantics of Q7-1 (one possible solution of the
multi-valued attribute problem) is:

rec(' (� � , bo).
if
� � = “BookOffer”

then
�
rec(' (� 	 , bk).

if
� 	 = “Book”

then
�
BookDim.rec(' (� � , isb).

if
� � = “ISBN” then

�
ISBN : isb

�
else

���
)(bk)

�
� ...
� �

BookDim.rec(' (� � , setOfValues).
if
� � = “Author”

then
�����#� � �
� ���� :

� ���
value in setOfValues

����� �
@ ...

@
�����#� � �
� �� � : �

���
value in setOfValues

��� �
else

���
)(bk)

�
...
� �

BookDim.rec(' (��� , acc).
if
� �

= “Accessory” then
�
Accessory:acc

�
else

���
)(bk)

�
else

���
)(bo)

�
else

���
)(SemObj)

h) the semantics of Q7-2 (another solution of the multi-
valued attribute problem) is:

rec(' (� � , bo).
�����
	����� � : �

���
value in the setOfValues, if the setOfValues ���� ;����	����� � : “ ”, if setOfValues ���

if
� � = “BookOffer”

then
�
rec(' (� 	 , bk).

if
� 	 = “Book”

then
�����

BookDim.rec(' (� � , isb).
if
� � = “ISBN” then

�
ISBN : isb

�
else

���
)(bk)

� ...
� BookDim.rec(' (� � , � � ���).

if
� � = “Author” then

�
Author : � � ��� �

else
���

)(bk)
...

� BookDim.rec(' (��� , acc).
if
� �

= “Accessory” then
�
Accessory : acc

�
else

���
)(bk)
��� �

@
�����

BookDim.rec(' (� � , isb).
if
� � = “ISBN” then

�
ISBN : isb

�
else

���
)(bk)

� ...
� BookDim.rec(' (� � , � � �
).

if
� � = “Author” then

�
Author : � � � 	 � else

���
)(bk)

...
� BookDim.rec(' (��� , acc).

if
� �

= “Accessory” then
�
Accessory : acc

�
else

���
)(bk)
��� �

else
���

)(bo)
�

else
���

)(SemObj)

7 Implementation

The architecture of the Transformation Processor is com-
posed of 6 components:

� A Mapping Definition File consisting of a set of user-
specified transformation rules which describe the re-
quired mappings, such as default mapping, 1:n map-
ping or the solution of set values. These different trans-
formation cases and the semantics of mapping rules
have been discussed in Sections 5 and 6.

� A Parser analyzing mapping rules to produce cor-
respondences between MIX objects and columns of
a data warehouse table. In addition to the corre-
spondences, path information and information about
needed subtrees are deduced to support the mapping.

� A Transformation Function Library consisting of a set
of mapping functions. These functions are Java meth-
ods accomplishing aggregated, decomposed and cal-
culated mapping. These functions can be called by the
Mapper component at run time in the corresponding
cases.

� A Tree Traverser working under the guide of the map-
ping correspondences. It traverses complex MIX ob-
jects through matching path nodes recursively till it
gets to the needed subtrees. Simple MIX objects rep-
resented by needed subtrees are extracted and sent to
the Mapper.

� A Mapper receiving simple MIX objects from the Tree
Traverser, separating semantic contexts from the MIX
objects, and mapping these MIX objects to columns
of a table in the data warehouse following the given
mapping rules. Then this component constructs values
for each column according to different transformation
definitions. At the end the Mapper connects dimen-
sion tables with the fact table and sends the data to the
Loader.

� A Loader receiving data from the Mapper, connecting
to the data warehouse, and loading the data into the
data warehouse tables via JDBC. Figure 10 shows the
relationships between these components.

Mapper

Parser Tree
Traverser

Mapping
Definition

File
Transformation

Function
Library

Loader

mapping
definitions

JDBC
statements

simple MIX
objects

columns
& values call

values

a complex MIX
object tree

parameters

Transformation
Processor

to Data Warehouse

from Federation Manager

Figure 10: Architecture of the Transformation Processor

In the Transformation Processor, the Parser analyzes the
given mapping definition file and produces a set of param-
eters, which include path information, a list of needed sub-
trees and transformation functions for value mappings. The
Tree Traverser reads a complex MIX object tree from the
Federation Manager, and gets parameters from the Parser,
then it walks along the specified path to search needed sim-
ple MIX objects (subtrees). Once all simple MIX objects
are found, they are sent to the Mapper.

The Mapper separates the semantic contexts from the ob-
jects and extracts the data values from them. The values
are transformed according to corresponding rules, e.g., by
calling transformation functions from the Transformation
Function Library at run time. Some data formats may be
changed when transforming data. For example, the Offer-
Date in a MIX object may be decomposed as day, month,
year into three values for the time dimension table of the
data warehouse, this will also be accomplished by the Map-
per.

Besides, the Mapper assigns a unique key value for a
tuple in each dimension table and links the fact table with
dimension tables using these keys at the end. The process

of reading a complex MIX object, mapping attributes of ob-
jects to columns of target tables, transforming values fol-
lowing the mapping rules will be repeated until no new MIX
object comes from the Federation Manager.

After data has been prepared, the Mapper sends them
to the Loader. The Loader constructs SQL statements, con-
nects to the data warehouse, and executes the prepared state-
ments to load transformed data values into the correspond-
ing warehouse tables. Then the Loader closes the connec-
tion to the data warehouse, and the loading process is com-
pleted.

The Transformation Processor is written in Java and all
mapping rules discussed in our paper have been imple-
mented in a prototype.

8 Related Work and Conclusions

In this paper, we propose a semi-automatic transforma-
tion approach for materializing Web data into a data ware-
house. In this approach we first compare the structure of
MIX objects and the star schema of data warehouse tables
based on a common view (rooted, labeled tree) to identify
semantic correspondences between them. These correspon-
dences are explicitly described as mapping rules, based on
which the transformation can be accomplished automati-
cally via tree restructuring.

Our approach is related to the work of Milo, Beeri and
Zohar [5, 13]. They define common schema and data mod-
els for the source and target data. Using a rule-based
method, they match components in the source schema with
components in the target schema. The matching identified
is then used for translating instances of the source schema
to instances of the target schema. In our framework, Web
data is first represented based on the MIX model, then the
Rooted Labeled Tree is used as a common view to repre-
sent the structure of MIX objects and the schema of ware-
house tables. Similar to their approach, the MIX objects
and the warehouse tables are compared based on the RLT
representation, the correspondences between them can be
formalized, and the transformation can be performed auto-
matically.

However, there are several differences between our work
and theirs. At first, they use two models for their data trans-
lation task. One is the schema model (graph) used in the
schema matching process, the other is a data model (la-
beled forest) used in the data translation step. Different
from that, we use only one model (Rooted Labeled Trees)
as a common comparison basis for defining the correspon-
dences of source objects and target warehouse tables, and
for required value transformations. Because schema infor-
mation is already provided as a part of MIX objects, we can
use RLTs not only for the schema comparing process but
the data mapping task as well.

Second, the TranScm system introduced in [13] uses
rules to match schemata. Each rule uses match and descen-
dents functions to handle schema matching, and uses trans-
lation functions to handle data translation. In contrast to
their descendents functions for handling children of a ver-
tex, we use path pattern, which can be translated into struc-
tural recursion. Therefore, our transformation rules are eas-
ier to understand and evaluated automatically.

Third, TranScm uses rules and tries to find for each com-
ponent (vertex) of the source schema a unique best match-
ing component (vertex) in the target schema, or determine
that the component should not be represented in the target.
There are cases where the matching process may fail. In our
prototype, the target schema of the data warehouse deter-
mines what data should be extracted from Web sources. Ac-
cording to queries from the data warehouse the Federation
Manager integrates data from heterogeneous Web sources.
When some attributes of the data warehouse acquire no data
from the Web, we can use default values for these attributes.

Another related system is the YAT system [9]. In their
work, data from heterogeneous sources is integrated us-
ing an ODMG object view and materialized into an object-
oriented database. A rule-based language called YATL
serves as the conversion language, which has pattern match-
ing, restructuring facilities and skolem functions. Similar to
our approach, they use rules to filter the input data and con-
struct a set of output patterns.

However, some major differences exist between our
work and theirs. In our system data from the Web are in-
tegrated as MIX objects and are then materialized into a re-
lational data warehouse. The mapping rules and algorithm
in our approach are designed to map Web objects into exist-
ing warehouse tables efficiently and automatically. While
in the YAT system data from heterogeneous sources are in-
tegrated using an ODMG object view and then stored in an
object-oriented database without additional transformation.
The rules in the YAT system describe the conversion from
relational and SGML data to ODMG objects and the trans-
lation from ODMG data to HTML files.

Several projects on storing data from heterogeneous
sources, especially XML documents, in a relational
database can also be compared with our work.

Schmidt et al. presents a data model and an execution
model that allow for efficient storage and retrieval of XML
documents in a relational database [14]. In their approach,
XML documents are represented as syntax trees which are
then decomposed into binary associations. Associations
that provide semantically related information are stored to-
gether in the binary relationships of the database repository.
The greatest difference between our approach and theirs is
that we extract needed leaves (subobjects) from a MIX ob-
ject tree and store the physical value of these subobjects in
the warehouse tables. The paths from the root to the leaves

are used to guide how to traverse the MIX object tree. While
in [14] they store a lot of vertical path fragments in tables of
a relational database. These path fragments represent routes
from the root to internal nodes, from the root to CDATA and
to character data.

Shanmugasundaram et al. in [15] use a standard rela-
tional database system to evaluate powerful queries over
XML documents. They process a DTD to generate a re-
lational schema, then parse XML documents conforming
to the DTD and load them into tuples of the created rela-
tional tables. Following this, they translate semi-structured
queries over XML documents into SQL queries over cor-
responding relational data and convert the results back to
XML. One important difference between our approach and
theirs is that the target schema is assumed to already ex-
ist in our system before Web data is integrated. We fo-
cus on representing MIX objects and warehouse schema
based on a common view (RTL) and identify similarities
between schemata to specify and accomplish our transfor-
mation. While in [15] their main focus is on the transforma-
tion from a DTD to a relational schema and the translation
from semi-structured queries over XML documents to SQL
queries over the corresponding relational data.

Florescu and Kossmann studied ad-hoc schemata for
storing XML using RDBMS [12]. They represent XML
data as ordered labeled directed graphs. Each XML element
is represented by a node, element-subelement relationships
are represented by edges, and values (e.g., strings) of an
XML document are stored as leaves. They proposed three
approaches to store edges of the graph in one/more tables
and proposed two approaches to store values of XML doc-
uments in relational tables. Compared with their approach,
the most significant difference is that our relational database
schema is designed to store data values coming from the
Web, while they primarily study several relational schemata
to store the topological information of a XML document.

The approach proposed in this paper focuses on how to
simplify and automate the transformation task for storing
Web data into an existing data warehouse. The star schema
of the data warehouse is based on the relational model. As
future work we will consider how to map Web data into
multi-dimensional cubes for OLAP.

References
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. L.

Wiener: The Lorel Query Language for Semistructure Data,
International Journal on Digital Libraries 1(1): 68-88, 1997

[2] C. Bornhövd, A. P. Buchmann: A Prototype for Metadata-
based Integration of Internet Sources, CAiSE’99, Heidel-
berg, Germany, 1999

[3] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu: A Query
Language and Optimization Techniques for Unstructured
Data, SIGMOD’96, Montreal, Canada, 1996

[4] P. Buneman, M. Fernandez, D. Suciu: UnQL: a Query
Languag and Algebra for Semistructured Data Based on
Structural Recursion, VLDB Journal 9(1): 76-110, 2000

[5] C. Beeri and T. Milo: Schemas for Integration and Trans-
lation of Structured and Semi-structured Data, ICDT’99,
Jerusalem, Israel, 1999

[6] C. Bornhövd: MIX – A Representation Model for the Inte-
gration of Web-based Data, Technical Report, DVS99-1,
Department of Computer Science, Darmstadt University of
Technology, 1999

[7] C. Bornhövd: Semantic Metadata for the Integration of
Web-based Data for Electronic Commerce, WECWIS’99,
Santa Clara, USA, 1999

[8] C. Bornhövd: Semantic Metadata for the Integration of
Data Source from the Internet, Ph.D. thesis, Darmstadt
University of Technology, Germany, Jan. 2001

[9] S. Cluet, C. Delobel, J. Siméon and K. Smaga: Your
Mediators Need Data Conversion!, SIGMOD’98, Seattle,
WA, USA, 1998

[10] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, D.
Suciu: A Query Language for XML, WWW8 / Computer
Networks 31(11-16): 1155-1169, 1999

[11] M. Fernandez, D. Florescu, J. Kang, A. Levy, D. Suciu:
STRUDEL : A Web Site Management System, SIGMOD’97,
Tucson, USA, 1997

[12] D. Florescu, D. Kossmann: Storing and Querying XML
Data Using a RDBMS, Bulletin on Data Engineering 22(3):
27-34, 2000

[13] T. Milo and S. Zohar, Using Schema Matching to Simplify
Heterogeneous Data Translation, VLDB’98, New York
City, USA, 1998

[14] A. Schmidt, M. Kersten, M. Windhouwer, F. Waas: Efficient
Relational Storage and Retrieval of XML Documents,
WebDB’00, Dallas, USA, 2000

[15] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
Witt, J. Naughton: Relational Databases for Querying XML
Documents: Limitations and Opportunities, VLDB’99,
Edinburgh, Scotland, 1999

[16] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J.
Siméon and P. Wadler (Eds): The XML Query Algebra,
www.w3.org/TR/query-algebra/, W3C Working Draft, 2000

[17] Y. Zhu, C. Bornhövd, D. Sautner, A. P. Buchmann: Materi-
alizing Web Data for OLAP and DSS, WAIM’00, Shanghai,
China, 2000

[18] Y. Zhu: A Framework for Warehousing the Web Contents,
ICSC’99, Hong Kong, 1999

