
Trade-offs in a Secure Jini Service Architecture

Peer Hasselmeyer, Roger Kehr, and Marco Voß

Department of Computer Science,
Darmstadt University of Technology

fpeer,mavossg@ito.tu-darmstadt.de
kehr@informatik.tu-darmstadt.de

Abstract. Jini is an infrastructure built on top of the mobile code facilities of
the Java programming language enabling clients and services to spontaneously
engage in arbitrary usage scenarios. For a small home or office environment the
currently available infrastructure might be adequate, but for mission-critical ap-
plications it lacks essential security properties. In the sequel we identify weak
points in the Jini architecture and its protocols and propose an extension to the
architecture that provides a solution to the identified security problems. We de-
scribe the design choices underlying our implementation which aims at maximum
compatibility with the existing Jini specifications.

1 Introduction

The Jini connection technology [Wal99,Sun99b] is an innovative and usable technology
for building reliable, fault-tolerant distributed applications. It provides an infrastructure
that allows clients to find services independent of both party’s location. The dynamic
nature of locating and using services is one of Jini’s major strengths. It is the base for
the creation of plug and play devices and services. This works well in one’s own home,
but already in a small workgroup some problems can arise. While it is usually alright
for everybody to access your printer, most people do not want everybody that can access
their wireless LAN to take a peek at their latest project data.

This problem becomes even more serious if one wants to use services via an open
network like the Internet. Suffice it to say that you want to be sure to give your credit
card number only to your favorite online store and not somebody else. Unfortunately,
this area is currently untouched by Jini. There are no provisions for data encryption or
authentication beyond the abilities of Java 2 and RMI.

The research described in this paper identifies the weak points in the Jini archi-
tecture and proposes an extension to the architecture which enables secure lookup of
services and trust establishment. The main security concern within the Jini architec-
ture is the use of dynamically downloaded proxies. These provide great flexibility but
present a security risk as the client does not know what the code of the proxy is doing.
The client can safeguard itself against security breaches with regard to local resources
like hard drives or even network connections by supplying a strict security policy. But
it has no way of determining what a proxy is doing with supplied data like a credit card
number.



The paper describes how this problem can be addressed by requiring all parties in-
volved in a Jini federation (services and clients) to mutually authenticate themselves.
Furthermore, we introduce the notion of secure groups to restrict the visibility of ser-
vices registered at lookup services and to ease administration of access rights.

Section 2 briefly introduces the Jini connection technology and describes how clients
find services and how they interact. Section 3 describes the security properties that we
believe to be required in typical scenarios of a future Jini services world. In Sect. 4
we introduce our extension to the Jini architecture. Our realization of this extension is
described in Sect. 5. Other relevant work is evaluated in Sect. 6 and we finally give an
outlook in Sect. 7 on what else has to be done to enable fully secure Jini federations.

2 Component Interaction in Jini

Jini is a Java Application Programming Interface (API) that implements protocols and
mechanisms for service registrations and service lookups centered around the so-called
Jini lookup service [Sun99d]. Jini services are comprised of two components: the Jini
service provider running on the network node or device offering a particular service, and
the service proxy, a Java object fetched by clients from a lookup service and executed
in the Java virtual machine (JVM) of a client. Both jointly implement the actual service
provided. In the sequel we describe the core interactions between components in a Jini
service scenario.

Service Registration. Figure 1a shows the relevant protocols for Jini service registra-
tions. Service providers willing to offer their service to potential clients must first find
the nearby lookup services by means of multicast request messages [Sun99c] sent to
the network. Lookup services are required to answer to these requests by opening a
TCP-stream to the port and IP-address contained in the original request.

Via this callback the lookup service sends a serialized Java object that implements
the well-defined Java interface ServiceRegistrar. This serialized object contains the state
of the lookup service proxy and the so-called codebase which is essentially a URL
pointing to a Web-server from where the implementation of the proxy in the form of
Java bytecode can be downloaded. This bytecode is loaded into the JVM of the service
provider and the serialized proxy object is instantiated. Eventually, the service provider
uses the register-method of the lookup service proxy API to upload its own service
proxy augmented with additional service description information to the lookup service.

Service Lookup. Clients obtain service proxies from the lookup service as depicted in
Fig. 1b. A client first performs the same steps as a service provider to obtain a lookup
service proxy from a lookup service. Then a client invokes the proxy’s lookup-method
to query the lookup service for services it is interested in.

In response to this invocation the service proxy available in the lookup service is
transferred to the client. Before the service proxy is de-serialized, its implementation is
downloaded to the JVM of the client by means of the codebase attached to the serialized
proxy. After the client has instantiated the service proxy in its JVM it uses the proxy’s
API to invoke methods.

3



a)

�����������	
�

�
���
�

������

�����	
�������

�
	�

����	�����
��

���
�

�

�

��

��������	���

��
����
���
�

b)

�������

�����������	


������������

����������

������

��	
��	���	��
� �

�

Fig. 1. Jini-Protocols: a) Discovery/Join and b) Lookup

It is entirely left open to the implementation of the proxy how it processes these
invocations. Some invocations can be completely performed locally in the client’s JVM.
Others may result in a network communication to the service provider followed by
remote computations. Part of the Jini philosophy is the fact that no particular form
of communication between service proxy and its provider is required. Developers are
free to choose among any suitable communication channels such as TCP-sockets, Java
remote method invocations (RMI), CORBA object invocations, etc.

With the Jini approach, the implementation of a service can be partitioned arbitrarily
between the service proxy and the service provider. This feature distinguishes Jini from
other comparable service infrastructures. The mobility of Java bytecode is the enabling
technology for this approach at the cost of requiring a JVM on both, the server and the
client.

3 Requirements for Secure Component Interaction

In this section we identify several requirements for a secure component interaction in a
Jini environment which have shaped the architecture of your implementation.

Mobile Code Security Issues. If we compare the Jini architecture to “traditional” client-
server systems like CORBA or the world-wide Web, we can spot one major difference:
in all these systems the client permanently contains the code for communicating with a
server. The protocol code is part of the client and therefore part of the client’s trusted
computing base. If a client needs some kind of security (like authentication or integrity),
it can choose to use any protocol (e.g. SSL) that provides the required security proper-
ties. The Jini approach is fundamentally different. Jini clients do not implement any net-
work protocol at all. They rather rely on the service’s proxy object to perform the com-
munication with the server. As mentioned before, proxy objects originate from some
(usually untrusted) source on the network. This includes the download and execution of
code from that source. Clients do not know what these objects are doing. Studies of the
security risks of mobile code (e.g. [RG98]) usually focus on the protection of the execu-
tion platform against malicious actions of downloaded code. If we assume that effective
protection of the platform can be achieved by the Java sandbox model by appropriate

4



security policies [Gon98], we still have a different concern here: a client does not and
cannot know what a proxy object is doing with supplied data. A security approach that
is different from those of traditional client/server systems is therefore required. Because
the proxy is supplied by its associated service it should know which kind of security is
appropriate for its application domain. We therefore trust the proxy to enforce the cor-
rect security constraints. By doing this we do not solve the problem of mobile proxies –
we shift it to the problem of how to establish trust in proxy objects, and by implication,
trust in the service provider that supplied the proxy. In the sequel we describe how this
can be achieved.

Proxy Integrity. An obvious thing that is required to establish trust in a proxy object
is to ensure its integrity. The object should not be changed on its way from the service
(via the lookup service) to the client. As said before, an object consists of the two
parts: state and code. Both parts’ integrity must be ensured. It is therefore necessary
to digitally sign the code as well as the state. As we do not want anybody to observe
the in-traffic service descriptions, the connections between the lookup service and its
clients1 should be encrypted.

Lookup Service Interaction. Even if we have encrypted communication and authen-
tic objects, we still have to trust the lookup service. Even if a lookup service provides
us with untampered objects, it might do so in an unfair manner. Instead of sending
us the cheapest service (or whichever we are interested in), it might always only sup-
ply its preferred service provider. From a service provider’s view even the knowledge
of a service’s existence might be considered a valuable asset that must be protected.
For example, a network operator might have a Jini network management service. The
knowledge of its existence might be interesting to competitors. A competitor could find
out about that service by simply starting its own lookup service waiting for the service
to register itself. It is therefore necessary to trust the lookup service a client is talking to.
This can be achieved by requiring the lookup service to authenticate itself to its clients.

Now that we trust the infrastructure, it is still possible to have malicious services
registered with secure lookup services. We therefore require services to authenticate
themselves to the lookup service. Likewise, clients too are required to authenticate
themselves to the lookup service. This is an obvious requirement as it is important
to make sure that only authorized people access somebody’s bank account.

An alternative for the indirect authentication (via the lookup service) would be to
shift the authentication to a mutual authentication procedure between each service and
client directly. Besides the disadvantage of needing authentication methods in every
service interface, trust could only be established after the proxy has been downloaded
to the client. This is too late as unknown code (e.g. the constructor or the method for
performing authentication) is already executed at the client.

Administrative Issues. So far, the described requirements allow us to have trusted prox-
ies. No distinction was made between different services: they all have the same security

1 From the lookup service’s point of view, any communication partner, whether it is an actual
Jini service or client, is considered a client.

5



level. But usually different levels of security are desired. An example are administrators
that have access rights for more services than ordinary users. We therefore partitioned
the services by introducing secure groups. Services that have the same access restric-
tions are put together to form a secure group. Every service registration is associated
with one secure group. Clients need appropriate access rights to view and access mem-
bers of a group. The same holds for services: to prevent them from registering in arbi-
trary groups, they too must have the appropriate access rights. We must therefore have
introduced two different access rights, namely register and lookup, which are currently
sufficient to model access rights to groups.

Summary. To wrap up this section, we summarize the requirements that our secure Jini
architecture has to fulfill:

– signed proxy objects (code and state),
– encrypted communication with lookup services,
– authentication of all participants (lookup services, services, and clients),
– access control to services, and
– limited visibility of service descriptions.

These requirements have guided the development of a secure Jini service architecture.

4 Architecture

Our design was influenced by two objectives. First of all we wanted to preserve com-
patibility with the existing Jini specifications: legacy clients and services should run
without changes. Secondly, it was our aim to keep as much as possible of the dynamic
behavior of a Jini federation, although this conflicts with security aspects as we will
show later.

Figure 2 illustrates the Jini architecture with our security extensions: additional
components are a certification authority (CA) and a capability manager (CM). Cer-
tificates provide for authentication of all participants. Capabilities are used for access
control in the lookup service. The capability manager administers the rights for each
user.

The only workable solution for the problem of opaque proxies is trust. In a dynamic
environment with thousands of services it is impossible for an entity to make a decision
about the trustworthiness of each service on its own. In our architecture this process is
therefore delegated to the combination of lookup service and capability manager. They
are part of the trusted computing base of our architecture.

Secure transfer of the proxy is guaranteed by adding a digital signature to the re-
sponse message (callback) of the lookup service in the discovery protocol. Service de-
scriptions are kept private by an encrypted connection between lookup service proxy
and lookup service.

We have introduced the concept of secure groups in the lookup service. Every ac-
cess to these groups is controlled by capabilities. A lookup service client must present
appropriate capabilities for both registering and looking up services. Through this it is
possible to restrict the registration in groups with high security to known services which
meet the requirements and to control to whom the service descriptions are passed. Ser-
vices in other groups are invisible.

6



Lookup Service

Client

Web Server

CA CM

Service

Capabilities

Secure Communication
(Authentication, Integrity, Privacy)

Certificates

Fig. 2. Secure Jini Architecture

4.1 Certification Authority

Certificates provide for authentication of all participants. They are signed by a well-
known certification authority, whose public key is assumed to be known by everyone.
There are four categories of certificates and keys issued by the CA:

1. for signing system classes and LUS proxy code,
2. for the capability manager used to authenticate and sign capabilities,
3. for lookup services used to authenticate and sign LUS proxies, and
4. for clients and services used only for authentication.

A signature is rejected if the signer’s certificate does not belong to the appropriate cat-
egory. This ensures that an entity cannot simulate another component without proper
authorization. The use of certificates and the administration of the capabilities require
some initial configuration. The lookup service additionally uses the capability man-
ager’s key to verify the presented capabilities. These administrative requirements ob-
viously reduce the dynamics of a Jini federation in which otherwise any services and
clients can participate without any control restrictions.

4.2 Secure Lookup Service Discovery

Before any interaction occurs, both client and service have to locate a lookup service
using the discovery protocols. As a result a participant gets a proxy for the lookup ser-
vice which performs the actual communication. The proxy is transferred as a serialized
object which contains its codebase and state. It is important to assure that this proxy
arrives unmodified and is authentic. The signature for the transferred serialized object
and the signer’s certificate are therefore added at the end of the response message of the
lookup service. This guarantees compatibility with the existing protocols because the

7



additional data is ignored by standard clients. The signature can be used to verify the
integrity and identify the signer.

If the proxy classes are unknown, the code will be loaded from the web server
indicated by the codebase in the serialized object. Again it has to be ensured that the
classes arrive unchanged and are trustworthy. This can be achieved by signed classes
using the standard mechanisms Java already provides. Before an entity uses the lookup
service proxy it has to verify the signatures of both object and code and has to make
sure that the signers are authorized by the CA.

4.3 Lookup Service

In our extended architecture the lookup service is not only the main component in the
service discovery process but also the center of the trusted computing base. It has to
enforce the capability-based access control mechanism and assure the privacy of the
service descriptions. Therefore, the lookup service has to be authentic and the commu-
nication with it must be secure.

The lookup service permanently listens for request messages. It is therefore open
for denial of service attacks. A message format which supports authentication may be
a solution. In this case the lookup service would not even respond unless the request
is from an authorized source. We did not evaluate this option because of our goal of
compatibility. Practical tests have to show whether this is a real security problem.

4.4 Secure Groups

To simplify the administration of access control and to make a differentiation between
secure and less secure services possible we have decided to organize service descrip-
tions in groups. These groups are not to be confused with Jini’s group concept for
organizing lookup services, in which we are not interested in. Therefore we had to de-
velop an orthogonal concept for the administrative management of services. A client or
service needs the access rights for a secure group before it is allowed to do any action
on it. Every entity proves its authorization by an appropriate capability.

It is useful to arrange the groups in a hierarchy. An authorization for a group im-
plies the same rights for all subgroups. By this a number of groups can be united in
a simple manner. A group is represented by its name which is denoted like a package
name in Java: group.subgroup.subsubgroup. . . For example we can have two groups
ito.printers.deskjet and ito.printers.lj4000 which contain services for different printers.
The right for ito.printers permits access to all available printing services.

To maintain compatibility with the Jini specifications a special public group exists
which can be accessed without any permission. Legacy services and clients use this
group for registration or lookup.

4.5 Capabilities and the Capability Manager

A client or service proves its authorization to the lookup service through a capabil-
ity object. A capability is similar to a certificate that contains an entity’s name and its

8



access rights. It is signed by a central authority called capability manager. The CM ad-
ministers a list of names and the appropriate access rights. Upon request the CM creates
a capability object and signs it with its private key. Capabilities allow for offline veri-
fication, i.e. the verification can be done even if the CM is not accessible. A certificate
is not delegateable and can only be employed by an entity which can verify itself as
the mentioned subject. Hence, there is no need to protect the communication with the
capability manager, although it is definitely necessary to protect the capability manager
itself from any unauthorized access.

We have implemented capability managers as Jini services. For this purpose a spe-
cial group has been introduced in which registration is restricted to authorized CM
services only, but lookup is open to all users. This is necessary for the bootstrapping
process, because an entity must get its capabilities before it can access any restricted
service.

5 Implementation

The implementation of our security architecture is based on the source code which
comes with Sun’s reference implementation of Jini (version 1.0). Parts we changed
are the implementation of the lookup service and the classes which are responsible for
the discovery protocols. Additionally, we have implemented a capability manager as a
separate Jini service.

Sun’s implementation of the lookup service is called Reggie (package com.sun.
jini.reggie). It consists of two parts: the actual directory service (RegistrarImpl) and
a proxy object (RegistrarProxy). Both communicate via Java’s RMI mechanism. We
protect the RMI message exchange by tunneling RMI traffic through the SSL proto-
col. An SSL socket is therefore created instead of the standard socket. SSL has the
advantage that besides encrypting the communication it can also be used for authenti-
cation of participants. The freely available ITISSL [Pop99] package has been used as
implementation of the SSL-API. The lookup service authenticates itself by presenting
its certificate in the SSL handshake.

The certificates used by SSL are issued by a certification authority. In an experimen-
tal setup the ca-tool that comes with ITISSL is sufficient. In a deployment environment
a commercial variant should be used. The security of the architecture highly depends
on the correct use of certificates.

The functionality of the lookup service is described by the ServiceRegistrar inter-
face (package net.jini.core.lookup). We added new lookup and register methods which
have the user’s capability and a group name as additional parameters. The group name
indicates the preferred group for registration and lookup and must be implied by the
presented capability. The lookup service otherwise rejects the requested action.

A capability consists of a name and a list of permissions. We use signed objects
(java.security.SignedObject) for capabilities. A special permission class describes an
entity’s rights. It is similar in structure to a file permission with the group being the
target and register or lookup being the possible actions. The capability manager is im-
plemented as a Jini service and communicates with its proxy via RMI over SSL.

9



6 Related Work

There are a few research efforts that partly deal with the same area as the work described
in this paper. A number of other technologies enabling dynamic service discovery ex-
ists. Among those we chose SLP and SDS and take a short look at their security features.
Another effort promising to bring security properties to the Jini architecture is the RMI
Security Extension.

ICEBERG Service Directory Service. The SDS [CZH+99] is the central service trad-
ing component of the ICEBERG project at UC Berkeley. Service providers use the SDS
to advertise service descriptions, while clients use the SDS to query for services they
are interested in. Services are described with XML [BPSM98] documents that encode
different service properties, e.g. service location. SDS has been designed with security
properties in mind. All security critical communication is either encrypted or authenti-
cated. Similar to our approach capabilities are issued by a capability manager to allow
service providers to register their services with an SDS server.

Service Location Protocol. SLP [VGPK97] is a service trading architecture that enables
service providers to register service descriptions with a central component called direc-
tory agent. Although communication between SLP components is unprotected, SLP
offers so-called authentication blocks to digitally sign messages to ensures integrity of
the transmitted data. SLP does not specify how key distribution should be managed in
an SLP environment.

RMI Security Extension. Sun Microsystems is currently working on an extension to
RMI that is supposed to allow secure interaction with RMI-based servers including the
establishment of trust in downloaded proxies. The specification [Sun99a] is currently
in draft status. It allows fine-grained control of different security properties. While the
extension is currently only aimed at RMI it is supposed to be possible to use the same
methods and interfaces for other middleware architectures as well.

The most interesting part of the specification deals with the establishment of trust
in downloaded proxies. The basic method used here is to allow only trusted code to be
run. Further security properties (e.g. authentication and encryption) are then guaranteed
by the trusted code. Trusted code includes dynamically generated RMI stubs. If a proxy
is not an instance of a trusted class, it is asked to present another object which is trusted.
The associated server is then asked if it trusts the original object. This method seems to
restrict spontaneous networking to RMI-based services.

Furthermore, a few problems that we regard as essential are not addressed. First,
objects are instantiated before establishing trust. Malicious code could therefore be ex-
ecuted in the constructor of the proxy. Secondly, the specification is aimed at RMI in
general and does not address Jini in particular. Services are therefore still visible to ev-
erybody. Different security levels can only be enforced after downloading the service’s
proxies and depend on their enforcement by every client and server.

10



7 Conclusion and Future Work

With our approach we believe to have solved the most urging security problems in Jini
environments. Clients can safely assume that the service proxies running in their JVM
have been properly authenticated to the security infrastructure and have been shipped
without loss of integrity. Service providers themselves trust the infrastructure that only
clients with the correct capabilities are able to access them. This might be important in
those cases where service providers are only interested in the fact that services are ac-
cessed by authorized clients only, without exactly knowing the identity of the client. We
think that for many application areas the fact that the infrastructure guarantees certain
security properties, simplifies the development and shipment of services to a significant
extent.

While we presented a solution to the problem of secure service registration and
lookup, it is important to note that this covers only a part of the Jini architecture. The
Jini specifications describe a number of further concepts that were not considered in
our research. These concepts are leasing, distributed events, and transactions. We do
not know yet what the security concerns are, not to mention how to solve possible risks.

But even in the presented architecture, a few questions are still open. We assume that
there is one central CA. In a dynamic environment, a distributed architecture would
probably be a more favorable solution. An overview of work in this direction can be
found in [Per99].

Despite the obvious advantages of a secure service infrastructure we should not for-
get that it does not come for free. The drawback is the partial loss of “spontaneity”
of client/service interactions which was said to be one of the initial advantages of Jini.
Plugging devices and services into the network, spontaneously finding these devices via
the lookup service, and using them are easily done. Establishing trust relationships in
such spontaneous environments seems to be a task that results in a decrease of spon-
taneity, since prior to actual use administrative processes (e.g. distributing keys) must
take place first.

Open is the question whether the trade-off between trust and spontaneity can be
avoided by additional means that take the mobility of users and devices into account.
We think that mobility is likely to be a driving force for changing service environments.
Further work aims at identifying properties and usage models that may facilitate key
distribution and granting of capabilities in our architecture.

Acknowledgements

We would like to thank Andreas Zeidler and Prof. A. Buchmann for their valuable
comments on an earlier version of this paper.

References

[BPSM98] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
XML 1.0. W3C, February 1998. Available at http://www.w3.org/TR/1998/REC-xml-
19980210.

11



[CZH+99] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony Joseph, and Randy Katz.
An Architecture for a Secure Service Discovery Service. In Fifth Annual Interna-
tional Conference on Mobile Computing and Networks (MobiCOM ’99), Seattle, WA,
August 1999.

[Gon98] Li Gong. Java Security Architecture (JDK 1.2). Technical report, Sun Microsystems
Inc., October 1998.

[Per99] R. Perlman. An Overview of PKI Trust Models. IEEE Network, 13(6):38–43, Novem-
ber 1999.

[Pop99] A. Popovici. ITISSL - A Java 2 Implementation of the SSL API based on
SSLeay/OpenSSL. http://www-sp.iti.informatik.tu-darmstadt.de/itissl/, 1999.

[RG98] A. D. Rubin and D. E. Geer. Mobile Code Security. IEEE Internet Computing,
2(6):30–34, November 1998.

[Sun99a] Sun Microsystems Inc. Java Remote Method Invocation Security Extension (Early
Look Draft 2), September 1999.

[Sun99b] Sun Microsystems Inc. Jini Architecure Specification – Revision 1.0.1, November
1999.

[Sun99c] Sun Microsystems Inc. Jini Discovery and Join Specification – Revision 1.0.1,
November 1999.

[Sun99d] Sun Microsystems Inc. Jini Lookup Service Specification – Revision 1.0.1, November
1999.

[VGPK97] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location Protocol (SLP).
Internet RFC 2165, June 1997.

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing. Communications
of the ACM, 42(7):76–82, July 1999.

12


