
Bringing Application Functionality to Small Devices
W@PNotes

Andreas Zeidler
Databases and Distributed Systems Research Group

Wilhelminenstr. .7
64283 Darmstadt, Germany

+49 6151 16 6233
az@ubicomp.de

ABSTRACT
User interface (UI) design for ubiquitous computing is
different from UI design for classical desktop-oriented
applications. Interaction of a user with the system and
applications takes place in a highly distributed fashion.
Input- and output functionality is distributed over space, as
well as time. Human-computer interaction (HCI) has to
take place wherever needed and whenever needed. Due to
the highly dynamic pattern of use, “classical” UI design for
a single screen is poorly suited.
This paper presents an architecture for designing
applications bringing different input- and output channels
to small devices, like mobile phones, as well as taking
advantage from the benefits of a desktop computer. The
W@PNotes system serves as a proof of concept for the
successful use of this architecture.

Keywords
User interface design, multiple input/output channels,
function shipping, ubiquitous computing, Wireless
Application Protocol.

INTRODUCTION
Obviously, in the vision of ubiquitous computing [1]
“distribution”' of human-computer interaction is crucial.
The user and her need to interact with her applications has
to be in the center of UI design. Given this and the need
for ubiquity, the term “distributed systems” must be
defined for the distribution of system functionality as well
as for the distribution of UI functionality. Apparently, the
distribution of UI functionality needs new paradigms of
design. UIs have to become “smart” and “intelligent”.
From a top-level point of view, two distribution schemes
for UI functionality to actual devices seem to be appealing:
(1) Use the input- and output devices available “here and
now”, including public displays and/or terminals, (2) try to
take advantage of devices with some input-/output

capabilities carried around by the user anyway, like mobile
phones or personal digital assistants (PDA).
The W@PNotes-system presented here serves as an
example for the second approach, although it incorporates
some aspects of the first design dimension, too. The main
goal of the system is (1) the design of smart and distributed
user interfaces and (2) the underlying architecture, which is
able to (a) separate and distribute system’s functionality
over several computers by means of service-oriented
design using Jini [3] as an underlying distribution
infrastructure and (b) bring advanced functionality to a
very limited device, such as a mobile phone with an
integrated browser for the Wireless Application Protocol
(WAP) [6].

In the next section we will present the research goals of the
W@PNotes project. After that, the architecture is described
on a more technical level. Then, we will give some
discussion of the achieved goals. Concluding, we will give
a summary and an outlook.

RESEARCH GOALS
The W@PNotes project is an ongoing research project.
The research goals of this project can be summarized as
follows:

• Design and architecture of APIs for ubiquitous
accessible applications.

• Design of UIs for ubiquitous accessible
applications.

• Distribution of application functionality among
various components and separation of concerns by
using service oriented programming.

• “Good” composition of concerns, on the other
hand.

• Distribution of customized HCI functionality
among various UIs.

 • Exploration of UI limitations with respect to
device capabilities

Database

Service-
Backend

Interface

Event Queue

Event-
Mechanism/
Service

write/
read

update

add

read

inform

Service-
Frontend

Event-
Service-
Client

inform

Service-
Frontend

Event-
Service-
Client

Client 1
...

Client n

register

notify

re
gi

st
er

no
tif

y

Programmatic
Interface

Human-Computer
Interface

Jini
Service

Jini
Service

Figure 1. Top Level Architecture

The main research focus lies on the design patterns for
designing distributed applications in an ubiquitous
computing infrastructure. This includes the “how” of
distribution by means of separation of concerns between
different components (services) of this environment. On
the other hand “composition of concerns”, by means of a
supporting framework for combining all those autonomous
parts of a system in a reliable way, is as demanding.
Part of almost every application is a variety of user
interfaces. Traditional application design interweaves the
functional part of the application with the UI. Part of our
research in this project is to separate application
functionality completely from the input-/output channels.
Moreover, UIs must be (1) distributed to the user, and (2)
must match the capabilities of the device they are running
on. It should be clear that not every UI is suitable for every
device. We believe that the functionality offered to a user
by the UI has to be adaptive with respect to the user and the
device it is displayed on.
For example, a small device, like a mobile phone, typically
has a very small display (5-6 lines of text, optionally b/w-
graphics) and not much bandwidth to connect to a network.
Therefore, it does not make much sense to display large
amounts of information or a complex menu structure to the
user. We feel that a configurable and reduced

amount of output and a selected set of input options are
more productive in this scenario. The combination of
several adaptive UIs and a reliable framework for
synchronizing the user interfaces provides the full
functionality.
For example: There is no convenient way to edit items on a
list using a mobile phone and WAP. But, there are a rich
variety of editing options using the Java Swing Toolkit on
a desktop computer.
When using the mobile phone only for adding a reminder
of what to edit should be enough to remind you to edit the
list, once sitting in front of your desktop computer where
the UI offers the complete functionality and was
automatically updated by the system to reflect the changes
made on the mobile phone.
The choice of a mobile phone with integrated WAP
browser as a device in the W@PNotes project has three
reasons: (1) it is the most ubiquitous device available
today; (2) it has built-in access to the world-wide web via
WAP; (3) in many respects it is a very limited device.

Throughout the next section we describe the realization of
this research goals in the W@PNotes system.

W@PNotes -- Architecture and Design Goals

W@PNotes-
EventService

Service-
Frontend

Event-
Service-

Client

W@PNotes-
Service

Service-
Registrar

Jini Lookup-
Service

Client-
Launcher

Ref(W@Pnotes-Service),
Attr(1)...Attr(n),
EventServiceEntry,
UIDescriptor(1..n)

Event-
Service-

Entry

UI-
Descriptor

Ref(EventService),
Attr(1)...Attr(n)

Factory
Objects

return

return

7

register
services1

lookup2 Returns copy of

3

get
XY

4

6

5

Roughly, this section is separated into three parts: (1) A
short description of the functional part of the W@PNotes
system; (2) a description of the backend part of the service;
(3) the mechanisms used to transport a specific front-end
dynamically to a client.
The functional part of the W@PNotes-system is a
distributed and multi-user enabled PostIt-like application,
which is neither new, nor exciting. The application itself
serves only as a demonstration and proof of concept for the
underlying architecture for composing application out of
separated services and bringing application functionality
over a network to all sorts of devices. The functionality is
limited to some of the features, which can be expected
within a PostIt-like application: Addition and naming of a
note, deletion, altering of items in a note. Moreover, some
convenience functions were defined.
The PostIt-like application consists of a single backend
database, storing and maintaining the actual notes for each
user of the system (see figure 1). Through a well-defined
interface other components of the application gain access to
the stored messages. A user-authorization mechanism is
under development in order to protect the privacy of the
messages stored in the system.
Separated, except for a common message-queue, an event
mechanism can be coupled to the database. This
mechanism, following the observer pattern, can
communicate changes in the database to interested listeners
via the remote event mechanism defined by Jini. We use
remote events to communicate changes made on one UI to
all other UIs. Every UI has to register with the W@PNotes
event service after initialization and to update the UI
according to the type of event received after a change in
one of the active UIs was made.
One architectural goal at this point of design was, to
explore to which degree separation of concerns can be
achieved by using Jini services as components of a system
and therefore, how and whether systems can be composed
out of autonomous entities only and which impact such a
paradigm has on the design process. This is what we call
service-oriented design. Both, backend database and event
mechanism, are accessible as separate services. Both
services are registered as fully qualified services in the Jini
registry, called Lookup Service (LUS) [5], and can be
found by the standard lookup mechanism [4] provided by
the Jini infrastructure. These components are autonomous,
functionally separated, and can communicate only through
well-defined interfaces, defining their functionality on a
syntactical and type-safe level. The overall functionality of
the application is achieved by combining appropriate
services at runtime, using the infrastructure provided by
Jini and the framework defined within the W@PNotes
system. Figure 2 illustrates the different components and
protocol steps at runtime.

Figure 1. Using Mobile Code for Transportation

Three major players can be identified: (1) The W@PNotes-
service, consisting of event mechanism and service

functionality; (2) the client, consisting of some initial
bootstrapping mechanism (client-launcher) and
dynamically downloaded and initialized code, used for
event delivery and service interaction; (3) the Jini
infrastructure.
At runtime the behavior is as follows:

• Once initialized, the services will register with the
Jini Lookup Service (refer to (1) in figure 2). The
registration consists of (a) a reference to the actual
service and (b) a set of Java objects, called
attributes or entries, which by type and behavior
define descriptive information about the service.
Note that Jini relies on code mobility offered by
the Remote Method Invocation mechanism (RMI)
of Java, which means that attributes are
transported to a client and might become active
there. This feature is used for client initialization.

• Due to the overall architecture there is no explicit
need for a special client application knowing
about the W@PNotes service1. The architecture
chosen makes use of a framework defined in the
“Jini ServiceUI” project (see [2]), which defines a

1 The prototype uses a generic Jini desktop as client
launcher, developed as part of another project and which
has no a priori idea of the W@PNotes system.

standardized way for describing, generating and
initializing user interfaces based on a role model.
In this framework, factory objects are used to
generate the appropriate UI at runtime. Those
factories are encapsulated and transported to a
potential client as Jini attributes. The
transportation takes place during the lookup
process (refer to (2), (3), and (4)).

A similar approach was developed to describe,
find, and initialize various event sources for state-
change propagation. As a result, the whole client
part of the W@PNotes service is transported or
generated on demand at runtime (refer to (5) and
(6)) on the platform running the launching
application and is initialized by information, either
contained in the attributes, or obtained
dynamically by a sequence of lookup-operations
on the LUS. Using context from different sources
than the Jini infrastructure is scheduled for future
research.

The architecture is easily extensible. As both services,
W@PNotes service and event service, are decomposed into
their functional part and their UI or client, respectively,
new UIs and event clients can be “plugged in” at runtime
by re-registering the service with a new set of attributes.
The new attributes encapsulate factories for the new UIs
and event clients, together with a new description of their
role. By the time of this writing a Java Swing user
interface with full functionality, in the role of a MainUI,
and a programmatic user interface, in the role of a WapUI,
exist. One might think of a Java AWT (Abstract Window
Toolkit) user interface, as well as of a Java Applet.
The WapUI programmatic interface is transported and
initialized as described above. Once initialized the WapUI
has the functionality of a W@PNotes-to-WML (Wireless
Markup Language [6]) gateway. On the host running the
gateway a server-socket is opened and is listening for
incoming HTTP-requests. This requests are mapped to
appropriate method-calls on the W@PNotes service. Any
return-value is used to generate an appropriate WML
document, which is delivered via HTTP to the WAP-
Gateway the user uses for access from her mobile phone
(see [6] for the details on WAP). Part of the WML-
document are the command options the user has at this
stage, encoded as links in the document. In short, the
content and command options are dynamically translated to
a virtual WML document tree.
Parts of the WML documents are input fields for the user
(e.g., adding a new item to a note is translated to an input
field). The input typed in here is translated by the WapUI

to an appropriate method call on the W@PNotes service
(i.e., addItem(<UniqueNameofNote>, <itemtoadd>)). The
W@PNotes architecture is then responsible for delivering
the change made on the mobile phone to all other user
interfaces currently registered with the service. One major
drawback of using WAP is visible here: The
synchronization mechanism is not able to push changes
made on other UIs to the mobile phone. The change is
visible only if the user is requesting the document on which
the change is visible. This drawback is getting importing
when thinking of allowing other users of the system to add
notes for a user to the system.

Summary and Discussion
Various research goals have been tackled in the
architecture presented here. We feel distributed user
interfaces and HCI are touching many layers of a
distributed system Especially, separation of concerns, like,
separation of function and UI is very important. Otherwise
adaptivity and extensibility are hard to guarantee. Also, on
lower layers of an infrastructure for ubiquitous computing
the choice of services as separated components seems to be
a feasible approach. Here, asynchronous delivery and
encapsulation of state changes into discrete events seems to
be a good approach. But, as mentioned, not every protocol
is well suited for delivering changes to a device. WAP as
an example is not able to push content to a device like a
mobile phone. Here, the WapUI is the terminal point of the
architecture. Also, the limitations of a mobile device
imposed by the small display and the keypad as input
device are painful. This limitation might get weaker in the
near future with the advent of new protocols and devices
for the consumer market. To summaries, we think that the
approach presented in this paper, as an example of ongoing
research in the field of UI design for ubiquitous computing,
is both: Promising and far from being finished.

REFERENCES
1. Mark Weiser. The Computer for the Twenty-First

Century.
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

2. ServiceUI Project. http://www.artima.com/jini/serviceui/.
3. Sun Microsystems Inc. Jini Architecture Specification–

Revision 1.1, 2000.
4. Sun Microsystems Inc. Jini Discovery and Join

Specification– Revision 1.1, 2000.
5. Sun Microsystems Inc. Jini Lookup Service

Specification– Revision 1.1, 2000.
6. The Wireless Application Protocol Forum.

http://www.wapforum.org/.

