7th IEEE International Workshop on Practical Issues in Building Sensor Network Applications 2012

SenseApp 2012, Clearwater, Florida

Diagnosing the Weakest Link in WSN Testbeds:
A Reliability and Cost Analysis
of the USB Backchannel

Pablo E. Guerrero, Iliya Gurov, Alejandro Buchmann
Databases and Distributed Systems Group

Technische Universitit Darmstadt
Darmstadt, Germany

{guerrero, gurov, buchmann} @dvs.tu-darmstadt.de

Abstract—This paper highlights and characterizes the main
obstacle to deploying a robust wireless sensor network testbed:
the USB connections that link each of the nodes via ethernet
gateways to the central server. Unfortunately, these connections
are also the components that, when properly installed, can
reduce testbed costs by attaching multiple nodes per gateway.
After illustrating how unreliable current solutions can become
(regardless of the used sensor nodes, USB cabling, or gateway
setup), a set of experiments led to a list of dos and don’ts in
testbed deployment. Furthermore, a simple and cost-effective
suggestion is presented that allows to bypass current USB
backchannel issues, leading to a more robust testbed that avoids
manual maintenance of individual nodes.

Index Terms—experimentation; testbeds; testbed reliability;
sensor node reprogramming; universal serial bus

I. INTRODUCTION

Testbeds are a valuable research tool as they both facilitate
and speed up the evaluation of sensor network software.
Installing and running larger testbeds quickly becomes an
expensive and time-consuming endeavor, with costs originat-
ing primarily from a) the initial hardware acquisition and
installation, and b) the day-to-day testbed maintenance. Inter-
connecting the sensor nodes under evaluation with a central
gateway through a Universal Serial Bus (USB) infrastructure
has become the method of choice since USB can provide
power to the nodes, be used to reprogram nodes, and act as
data-logging backchannel. This is in contrast to other experi-
mental approaches of lower efficacy, including reprogramming
nodes over the air (e.g., Deluge [8]) or resorting to a wireless
backchannel (e.g., [10], [3]).

However, the design and installation of this sort of USB
infrastructures is often an underestimated task with pitfalls
that can cause the testbed to become highly unreliable and
costly to maintain. First, implementations of the current USB
protocols involved at hardware and software level in current
WSN components and prototypes are not bug-free: although
a testbed health monitoring system or a testbed engineer
could troubleshoot these issues, frequent manual intervention
to restart and reconnect sensor nodes is required on-site. In

978-1-4673-2129-7/12/$31.00 ©2012 |EEE

Kristof Van Laerhoven
Embedded Sensing Systems
Technische Universitidt Darmstadt
Darmstadt, Germany
kristof @ess.tu-darmstadt.de

an unattended setup, this increases the maintenance costs and
additionally reduces the testbed nodes’ availability.

Secondly, this issue is exacerbated with larger USB topolo-
gies, where cabling quickly reaches longer lengths and con-
tains hubs that fan out to many nodes. Despite employing
USB topologies and parameters within the USB specification,
even high quality off-the-shelf USB components do not play
well with these rather extreme setups, exhibiting considerable
instability for power and data lines and thus causing nodes
to become unreachable. Although the unreliability of the
gateway-nodes USB backchannel is well-known in the WSN
testbed community [7] and bypassed by manually resetting
individual nodes, the literature falls short in describing this
problem in detail.

This paper’s contributions are threefold: First, typical USB
backchannel failures are reported as observed in TUDuNet
[6], a 46-node testbed based on MoteLab [15], monitored over
an extended in-use period. Second, a systematic evaluation of
performance and reliability is given with varying amounts of
nodes per gateway, different types of gateways and nodes, and
different cabling topologies, leading to a list of best practices
in installing the USB backchannel. Third, a mechanism to
increase the backchannel reliability is presented based on
port power switching of USB 2.0 hubs. We describe the
implementation of the necessary steps to exploit such power
control and quantify its performance and added-value.

Section II provides an overview of testbed architectures
focusing on the design space of USB backchannels. Section
IIT describes USB failures and characterizes their frequency
in TUDuNet. Section IV explains the evaluation methodology
and reports the results of a number of USB topologies. In
Section V we discuss the usage of power switching to improve
backchannel reliability. We conclude in Section VI

II. BACKGROUND

Sensor network testbeds typically have an architecture that
is essentially a tiered model (Fig. 1). Testbed users create the
software under test (SUT, or program image) to evaluate and
upload it to a server. The server in turn offers a web interface

938

a) b)
% <

sensor nodes 802.15.4

Fig. 1: Generic testbed model: users supply software (a) to a server
(b), which forwards these to the right nodes at the right time, and
captures debug messages via the backchannel (c).

ethernet

ﬁ\
gateways

-

Fig. 2: Example of a wired testbed with gateway (upper) tier
connected via a wired backchannel to one or more WSN nodes.

or a set of scripts to define the experiment’s properties (amount
of nodes required, location) and scheduling information (time,
duration and order).

At the experiment’s start time, the server allocates the
necessary resources and distributes the images to the respective
sensor nodes via the so-called backchannel (Fig. 1.c). During
the experiment, this communication line is also typically used
to send the captured debug messages to the server for any
posterior SUT debugging and analysis.

Depending on how the sensor nodes are interconnected to
the server, we can classify testbeds into wireless or wired:

1) Wireless Testbeds: These resort to the wireless channel
to distribute software images and to transmit debug mes-
sages. Deluge [8], for instance, is a mechanism to distribute
TinyOS programs over the air, which can be used for this
purpose. Reported image dissemination performance places a
considerable overhead on a testbed that must be shared with
many users (for instance, 90 bytes/second implies >5 minutes
to distribute a 30kB image). In addition, Deluge’s service
messages themselves might interfere with the SUT’s network
traffic, making it tough to debug networking issues.

The approach employed by Greenlab [10] consists in split-
ting the testbed’s state in two: one for doing service tasks (e.g.,
reprogramming) and one for running experiments. Across
states, data is stored on external flash. However, using the
wireless channel to convey all control messages is reportedly
not robust to node failures, blocking the entire testbed for
further experiments until a reconnection occurs.

A third wireless approach is to use an additional tier
between sensor nodes and the server. An example of this
approach is a deployment support network [3], which consists
of sensor nodes that carry out the management tasks and

connect each to one sensor node through a wired interface.
Although running the support tier out-of-band effectively elim-
inates disturbing the experiment results, resource constraints of
the support nodes limit the information that can be transported
to the server, which requires modifying the SUT to produce a
reduced amount of debug messages.

2) Wired Testbeds: For obtaining an architecture that is both
faster and more robust for the task at hand, using a wired (e.g.,
ethernet) infrastructure between the server and the support tier
is traditionally favored, resorting to more powerful devices as
gateways (Fig. 2). The benefits of the wired backchannel come
at the cost of running cables through the environment, although
these costs are often amortized over testbed deployment time.
Several platforms have been used in testbeds as gateways,
including an ethernet port and a serial port to connect to
sensor nodes. The most widely used of these serial connections
between gateway and nodes allows routing power and a high-
rate data flexibly to several sensor nodes via hubs and cables,
and will be the focus in the remainder of this paper.

A. USB as Node Interface

All sensor nodes (except perhaps for final products) require
a programming and debugging interface. Early platforms like
the Mica2 made use of a specialized programming board [11],
to which they attached via a 51-pin connector. This connector
would typically wear out after a number of reconnections.
JTAG is another interface broadly adopted for device repro-
gramming and debugging (e.g., the EyesIFX node). To the best
of our knowledge, USB was first used to interface the widely
available Telos sensor node [12].

Table I summarizes various sensor nodes that employ USB
to connect to a host computer. Some sensor nodes’ micro-
controller units (MCUs), such as the Telos’ MSP430, export
UART pins for reprogramming and debugging, thus require a
USB converter chipset (which can be either on-board or on
a separate device). Other nodes, such as the jNode [13] have
MCUs with USB support already built-in. In this work we
focus the evaluation on a number of nodes based on the very
popular MSP430 MCU, with a wide variety of USB chipsets;
an exhaustive evaluation of additional WSN node types is
deemed out of the scope and is left as future work.

B. USB Topologies, Hubs, and Cabling

A USB topology connects sensor nodes with a gateway.
Physically, the USB forms a layered star topology (Fig. 3),

TABLE I: Various sensor nodes with USB interfaces.

sensor node USB type USB chipset / MCU
Telos on-board FTDI FT232BM
Econotag on-board FTDI FT2232HL
jCreate separated FTDI FT232RQ

Z1 on-board Silicon Labs CP 2102
iMote2 built-in Intel PXA271
SunSPOT built-in Atmel AT91RM9200
Egs, Opal built-in Atmel SAM3U
jNode built-in Atmel ATmega32u4

939

Host Gateway

hub:
-self-powered
(M -port-power switching
® sensor node

passive cable

B active cable

Layer 1

Layer 2

Layer 4

Layer 5
Layer 6

Layer 7

Fig. 3: Key components of a USB topology in several layers: root
hub, active and passive hubs and cables, and nodes.

or tree, with hubs at the center of each star, and the root hub
typically embedded in the host gateway device. Hubs can be
passive (bus-powered) or active (self-powered). Due to timing
constraints, up to 7 layers are allowed. Nodes and hubs connect
to their parent hub via point-to-point USB cables. These cables
can be passive (limited by power and timing constraints to
a length of 5 meters) or active (extend the length to 10 or
12 meters by using signal repeaters and specialized circuitry).
By chaining a sequence of up to 5 passive cables and active
USB hubs, the distance can be extended to 30 meters and
still conform to the USB standard. As we will show, this is
the most robust topology, and comes at the expense of extra
power lines for each active hub.

C. Gateways

The literature reports various host platforms being used
as gateways. Due to its low-cost hardware, the NSLU2 was
adopted early on as gateway for Telos nodes (e.g., [15], [7]).
Intel Stargates, featuring a broader set of ports (PCMCIA,
CompactFlash, I2C, etc.) and a faster processor, were used in
[4]. Similarly powerful, a number of routers with USB ports,
like Buffalo’s, have been chosen as gateways and customized
with slimmed-down Linux distributions such as OpenWRT,
e.g. in [6]. All these platforms require some major involvement
in setting up the gateway software due to their incompatibility
with x86 architectures. Finally, some testbeds employ general
purpose PCs as gateways as well (e.g., in [1] and [2]). Such
added flexibility in the testbed software preparation comes at
a higher price per gateway. Table II summarizes these, ordered
by increasing processing power.

D. Gateway-Node Ratio and Scale

In some testbeds, only one sensor node is connected to each
gateway, either directly (e.g., Kansei [4]) or with a very short
cable (e.g., MoteLab [15]), thus a large number of gateways
is needed. By employing USB cabling between gateways
and sensor nodes, the number of design options increases
considerably: In TWIST [7], USB hubs are used, enabling
up to 7 sensor nodes to be connected to each gateway while

TABLE II: Common gateway options: the Linksys NSLU2 (Slug),
the Buffalo WZR-HP-AG300NH (Buffalo), and a PC.

Platform CPU type, speed RAM / ROM USB Price ($)
Slug Intel IXP42x, 266 MHz 8MB / 32MB 2x2.0 90
Buffalo Atheros AR9132, 400MHz 32MB / 64MB 1x2.0 100
PC Intel Dual Core, 2.5GHz 1GB / 80GB 4x2.0 500

TABLE III: Some well known WSN testbeds with gateway (gw.)-
node ratio comparison for their USB backchannels.

Testbed No. gws. No. nodes Ratio Distance
gw:nodes gw.<>node (m)

Kansei 210 210 1:1 0
Motelab 90 130 1:{1.2} 0.5
TUDpNet 15 46 1:{2..6} {2..15}
KanseiGenie 112 432 1:4 0.5
TWIST 90 204 1:{4..7} <15
NetEye 15 130 1:{6..12} <10
Indriya 6 127 1:22 <25
SignetLab 1 48 1:48 <15

achieving a similar amount of nodes in the testbed. There, also
a combination of passive and active USB cables is used to
extend the distance between gateways and sensor nodes up to
15 meters. Indriya [2] resorts to high quality active USB cables
which can be daisy-chained to cover a maximum distance of
up to 25 meters. This enables covering longer distances with
very few gateways. In SignetLab [1], 48 nodes are connected
through a two-level USB hub hierarchy to a single gateway (a
PC). We summarize these properties in Table IIT'.

The choice of gateway-node ratio is a precarious one: From
a costs perspective, more nodes connected per gateway implies
a lower setup investment and lower gateway maintenance
efforts for the duration the testbed will be deployed and active.
However, reducing the number of gateways while covering the
same area requires more USB cabling, with choices of topol-
ogy and, as we will see, risk of failures rapidly increasing, as
more complex USB infrastructure between gateway and nodes
is deployed. Ultimately, up to 127 devices (including nodes
and hubs) can be connected to a single USB host according to
the USB standard [14], yet gateways will eventually require
too much processing power as well as storage capacity to cope
with the management of the attached devices. Furthermore,
power variations and transmission timing errors are likely to
become a major obstacle to increasing the ratio to such high
scale.

III. USB BACKCHANNEL ISSUES

Testbed USB backchannels are exposed to several types of
failures, which is why there is no guarantee that a topol-
ogy will work reliably, even when adhering well within the
specifications. Variations in the input power of a sensor node
(or its USB converter chip) can cause clock synchronization
failures. Software glitches in the USB stack and the bootstrap
loader, and increased bit error rates can lead to an inconsistent

Published details were not always specific; in this case, the respective
authors were consulted and figures adjusted, so table data might be different.

940

50

5
3

27

45 ° jobs w/o failed nodes —1
[& jobs with % failed nodes > 0% T pl
__40r & 4
B3 L i —
%}’ 35 2 4
g0y] g
3 2]
S o532 i S 45|
3 has i
g2 8 gl 1t
gor EMEEEEEE I
T ¥ 3
10r g TR SR £ &
5| (NSl (ke R R R R =
o =)+ Aeem 20
0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Telos rzza
Al

&/

FTDI ==

Telos ezza T
pal SiLabs

45.22

250 2|

N 45.73

25

20

20,99 ————

36.71
35.45
21.20

241

23

22

JLo1 L

20

Reprogramming Time (secs)
Reprogramming Time (secs)

22.20
23.06

11.04 b—o

11.48

Failed Nodes (%)

Fig. 4: Histogram characterizing USB reprogramming fail-
ures in a WSN testbed over 10 months: 11.35% of the
testbed jobs deployed to all nodes; for the others, between
4% and 46% of nodes were not reprogrammed.

(a) program file size

small medium large small medium large moteiv crossbow advanticsys zolertia
5000 z1

tmote sky telosb cm500!
(b) reprogramming time (c) reprogramming time for vari-
ous MSP430 platforms

Fig. 5: The effect of the node manufacturer on reprogramming time for a
single-node: with differently-sized programs, several platforms can be seen to

have significant differences in programming time.

protocol state. These can render a node non-programmable and
non-addressable after the error occurs.

Fig. 4 presents a histogram with the percentage of failed
nodes of a subset of TUDuNet [6] testbed SUT jobs since its
first deployment 10 months ago. This set only contains jobs
addressing more than 10 nodes, with other types of failures
omitted (spanning around 200 jobs). This shows that only in
11.35% of the jobs no nodes failed, while in all other jobs at
least one node did. It is important to note that the referred
USB topologies conformed to the USB standard, and that
none of these faults were due to faulty nodes, nor occurred
at one specific position within a topology. These node failures
occurred in patterns that are hard to track down or reproduce.

Such nodes resemble the so called fail-stop behavior’:
nodes stop being reprogrammable, identifiable through an
error message, and remain in this state until being serviced.
Two types of solutions exist: A purist approach including
tracing and debugging the entire software (including USB
drivers, OS kernel, and serial bootstrap loader) and hardware
stack proved to be very tough in prototype environments.
Alternatively, methods to reconnecting the node to the USB
port can be explored, removing power from the node and
its USB converter, and reenabling it. Without servicing failed
nodes, the number of available (i.e., reprogrammable) nodes in
the testbed drops monotonically. In a permanent, unattended
testbed, non-programmable nodes that require manual inter-
vention imply bad experiment repeatability.

Note that technically, the USB 2.0 bandwidth is sufficient
for the maximum possible amount of nodes (126 nodes at
38,400bps represent ~1% of 480Mbps). The following section
will characterize the failures for different topologies.

IV. EVALUATION

In order to evaluate the different backchannel scenarios, we
proceeded with the same basic set of steps: a) physical prepara-
tion of the topology (connection of hubs, cables and/or nodes),
b) verification of power on all nodes, c¢) verification of correct,

2This is in contrast to fail-silent failures, where the device would provide
no hints that it has become non-programmable.

stable node enumeration (i.e., registration) at the host gate-
way, d) execution of microbenchmark. The microbenchmark
software has minimal impact on the measured results, since
it simply consists of repeatedly reprogramming the node(s),
which was done with the default bootstrap loaders provided
by Contiki and TinyOS for the respective sensor node and host
platform combination. The implementation was written in Perl
and exploits parallel processes for reprogramming the nodes
as necessary. This approach allowed us to identify topology-
related (i.e., spatial) issues. Although tests lasted from several
hours to a couple of days, we could only capture a fraction of
the temporal issues that can emerge on a long-term, permanent
testbed as presented before.

Across our tests we resorted to binary images of three sizes.
A hello world program represented our smallest image.
Scopes [9], a sensornet node grouping system, was used as
mid-size image. Finally, we use the binary image from the
ukuFlow [5] workflow engine as our largest test program. The
program sizes for two popular platforms, the Telos and Z1
WSN nodes, are summarized in Fig. 5a.

A. Gateway to Single Node Tests

We evaluated more than 50 cases with single-node topolo-
gies in total. For this purpose we elaborated a simple mi-
crobenchmark which consisted of sequentially reprogramming
the tested node. This sequence was repeated until the node
failed, or reached 1,000 iterations. In case of a failure, the
procedure was restarted, either by automatically rebooting the
gateway when the device’s root hub turns off attached devices,
or otherwise by manually reconnecting the node. This was
repeated 25 times to ensure statistical validity.

Fig. 5b presents the reprogramming time for both Telos
and Z1 nodes with the three file sizes described earlier, when
nodes were connected directly to a gateway. As expected, the
larger the file size, the longer the average reprogramming cycle
was (averages are connected by dotted lines). The error bars
show an outlier, which is normally the first iteration, where
the bootstrap loader and the program image files must be
loaded into memory. Interestingly, no major differences were

941

40
35
30

passive cables ---+---

20
15

1

3

7.2
10.8

40
35
30
25

active cables ---+--

15

©o gon
© oOr un

20
)
30
40
50

40
35
30
25
20 E— +
15

Reprogramming Time per cycle (secs)

active hubs ---+--

32.4
43.2
64.8

Total USB Cable Length (m)

Fig. 6: Reprogramming time vs. total cable length.

noticeable between the two node types, although they used
a different USB converter chipset (FTDI versus SilLabs). A
closer look at different manufacturers of these nodes revealed
similar reprogramming times (cf. Fig. 5c¢), except for moteiv’s
Tmote Sky nodes, which took longer and had a higher vari-
ability. We believe this could be due to these nodes belonging
to some of the very early manufactured revisions. In terms
of reliability, no differences could be observed across these
sensor nodes (not depicted).

How far can we put the gateway and node apart? For
many environments, long connections between a gateway and
a node are advantageous. Since the USB standard dictates
a maximum cable length of 5 meters, we evaluated various
topologies with different cables and hubs for reprogramming
performance and reliability (Figs. 6 and 7). The components
used in these topologies, their order, and the resulting number
of USB layers, are listed in Table IV.

By chaining standard 1.8 meter passive cables, it was
possible to power a node located up to 10.8 meters. Though
this is surprisingly well beyond the USB specification, nodes
were correctly enumerated and worked reliably. As expected,
the time performance variance grew with the total length, with
the average reprogramming time dropping slightly with length.
All nodes used in these topologies were correctly recognized
and reprogrammed for the full 1,000 iterations. From 12.6
meters onwards, nodes were not enumerated anymore.
Conclusion 1: standard passive cables will work to cross a
distance from gateway to a node of up to 10 meters.

When resorting to active cables, the 10 meter limit was
overcome using various 5 and 10-meter cables of this kind.

1000

passive cables ---x--- 3

100

10.8

; it active cables --x--- 3

17176

©w© goo @
© Ccor un

20
36.8
40
50

Reprogramming Cycles Between Failures
[o2]
(5]
S

1000 active hubs ---x---

100

10 “eg2

N
I
@

Total USB Cable Length
Fig. 7: RCBF vs. total cable length.

432
54
64.8

m)

TABLE IV: Some of the single-node topologies tested to reach a
certain length between gateway and node. (p.c. = passive cable; a.c.
= active cable; a.h. = active hub)

length components USB
(m) layers
0.0 direct 2
1.8 1 x 1.8m p.c. 2
3.6 2 x 1.8m p.c. 2
7.2 4 x 1.8m p.c. 2
10.8 6 x 1.8m p.c. 2
5.0 1 x 5Sm a.c. 3
6.8 1 x5mac. +1x 1.8m p.c. 3
10-a 2 x Sm a.c. 4
10-b 1 x 10m a.c. 3
11.8 1 x 10m a.c. + 1 x 1.8m p.c. 3
15-a 1 x5mac. +1x 10m ac. 4
15-b 1x 10m a.c. + 1 x 5Sm a.c. 4
20 2 x 10m a.c. 4
25-a 2 x 10m a.c. + 1 x 5m a.c. 5
25-b 5 x 5m ac. 7
30 3 x 10m a.c. 5
36.8 3x 10m ac. + 1 x Sm ac. + 6
+1x 1.8m p.c.
40 4 x 10m a.c. 6
50 5 x 10m a.c. 7
324 3x6x 1.8mp.c., 5xah 7
432 4x6x 1.8mp.c,5xah 7
54.0 5x6x 1.8m p.c., 5 x ah. 7
64.8 6x6x 1.8m p.c., 5 x ah. 7

Since these work internally as a hub, technically up to 5
of these can be chained, thus potentially reaching 50 meters
with active cables plus a last passive segment of 10.8 meters.
With these components, however, correct enumeration was

942

found to be limited to a maximum of 50 meters. Average
reprogramming time and variance grew with cable length,
with the reliability decreasing considerably. With three 10- , : :
meter cables, for instance, we observed an average of 9.28 A bl L
reprogramming cycles between failures (RCBF). Remarkable

was also that having a 10-meter cable as the last segment
always led to poor reliability. b)
Conclusion 2: active cables extend the distance to the gateway,

at the cost of decreasing reliability, to 40 meters.

By employing active hubs and passive cables, the length s.am
was stretched further. Inter-hub lengths of 5.4, 7.2, 9.0 and : : : :
10.8 meters were tried, for a total of 32.4, 43.2, 54 and o o o . o o |o o
64.8 meters, respectively. The longest length achieved with a : i ‘
reliable behavior was 43.2 meters. At 64.8 meters, nodes could
be correctly powered and enumerated, but not reprogrammed.
All other topologies were either extremely unreliable, or nodes
were enumerated but could not be reprogrammed.
Conclusion 3: active hubs allow extending the distance to the
gateway, at the cost of routing power to the hubs, to 43 meters.

B. Gateway to Multiple Node Tests

t
.
t
When connecting multiple nodes to a gateway, reliability :
can be expected to drop as the USB backchannel’s topology T
becomes more complex. This was already noticed in steps d)
b (verifying power) and c (enumeration) of the evaluation ‘
methodology. When having more than 64 nodes, and thus ¢ o o e e .
more than 3 layers of 4-port USB hubs, enumeration became : :
very unreliable. This was due to sections of the tree not being
powered in a stable manner. We believe that this is an issue
in the USB handshake protocols. We managed to power 64
nodes and have them registered with the OS, though this
required some effort since at this scale, the topology became
very sensitive to cable quality. Fig. 8 presents the multi-node
topologies that worked reliably (summarized in Table V). e) b e e -6 o o
The microbenchmark for multiple-node topologies was pa- f
rameterized to support several concurrent processes. Fig. 9 ’ ¢ o o o o
exemplifies two instances of its execution. In Fig. 9a, the :
amount of nodes equals the amount of processes (n=p=4). At
the third inner iteration, nodes 2 and 4 fail to reprogram; the
others continue. Once all nodes fail, the system is reinitialized _2m

wgLzL

- — 0 — O ——@ @ L ZEREeE L e)
and the whole procedure is repeated (25 times). In Fig. 9b :]
there are more nodes than processes (n=8, p=3), therefore, at SRR © o ¥
least three rounds are necessary in each inner iteration. We ; R « « . i
observed that the fewer nodes a round had, the shorter the i 1
reprogramming time was. f) :’ A
[) L] L] L] L) L] L) []
TABLE V: Multi-node topologies in detail.
[} L] L[] L] L] [] L] [] o o o o o
grid nodes area density USB USB
(m?2) (m/m?) layers hubs L 4 ® 4 i . 4 . ¢
a)3x3 9 1296 0.6 5 3 o eeee e e
b) 5x3 15 25.92 0.57 7 5 Fig. 8: Sensor node grid deployments and underlying USB topologies
c) 4x6 24 48.60 0.49 6 8 (details in Table V).
d) 6x6 36 103.68 0.34 5 21
e) 7x7 49 147.91 0.33 5 21
f) 8x8 64 147.91 0.43 5 21

943

N1 N2 N3 N4 N1 N2 N3 N4 N5 N6 N7 N8

pl p2 pl

pll 2

Ist. inner iteration

| 2

pl p3

4th. inner iteration 3rd. inner iteration 2nd. inner iteration Ist. inner iteration
2nd. inner iteration

time

a) b)

Fig. 9: Microbenchmark sample instances.

a
S

1000

RCBF for 10-b

IS
o

IS
S

100

@ [~
S &

Reprogramming Time (secs)
»
3

slug buffalo pc slug

N
5
Reprogramming Cycles Between Failures

o

buffalo pc

Fig. 10: Comparison of gateway platforms of Table II.

What difference does the host gateway make? The selection
of the gateway platform plays a major role in the overall
testbed costs. We compared the reprogramming performance
of the three host platforms of Table II. The left plot in Fig.
10 shows that faster gateways also exhibited faster average
reprogramming cycles. This suggests that the more nodes
a topology has, the better suited a more powerful gateway
is. This assumes that the topology is reasonably designed:
the scenario with only the 10-meter cable shows that the
reliability decreases with more powerful gateways (Fig. 10,
right barchart).

Conclusion 4: The choice of gateway platform should link to
the speed at which all its nodes need to be programmed.

Sequential or parallel reprogramming? A topic that arises
when reprogramming multiple nodes from a single gateway is
that this should ideally be done in parallel since this might
save time, compared to a sequential reprogramming. The
limited resources of single-board computer gateways, however,
constrain the degree of parallelism. The table in Fig. 1la
presents our findings on the maximum degree of parallelism
(row called max ||°) of each gateway; reprogramming more
nodes caused the host platform to hang. (Note that a PC
could probably reprogram more than 59 nodes, but this was
a limit in our test topologies due to power and enumeration.)
The bottom part of the table indicates in how many rounds a

max || izza
sequential
]
=) 20}
g 3 o =
7] 3 -4 %
E 15}
max |° | 5 8 59 5
£
. 4 1 1 1 § 10l
Sgnz|3 2 1 ¢
%245 3 1 &
5.4 |10 6 1 i /
ST6 |13 8 12 7 E
0 T T T

3x3 5x3 4x6 6x6 7x7 8x8

(b) total time

(a) parallel capacity

Fig. 11: Possibilities for parallelism.

topology of a given amount of nodes can be divided in order
to exploit parallelism. Evidently, the slug will require many
rounds to reprogram large topologies, while a PC could do it
in one or two rounds. Fig. 11b presents the observed average
time it took to the Buffalo gateway to reprogram once all
of the nodes in each of the topologies of Fig. 8, both with
the maximum degree of parallelism (bottom) and sequentially
(top). The diverging curves show that parallelism should be
preferred. From the reliability perspective, it was not relevant
how nodes were reprogrammed.
Conclusion 5: Topologies with many nodes should exploit
parallelism to reduce the reprogramming overhead time.
What difference do USB hubs make? We have in these
experiments inspected a total of 10 4- and 7-port USB hubs,
bus- and self-powered. In our experiments, no noticeable
effects were obtained, neither in terms of reprogramming time,
nor in reliability. The next section indicates, however, which
hubs are to be preferred for a testbed.

V. USB POWER CONTROL TO ENHANCE RELIABILITY

Manually reconnecting nodes to the USB cabling, in order
to remove power temporarily and cause a hard reboot effect,
is a costly solution to the backchannel problems. By using
a feature of USB 2.0 hubs, namely hub port power control
(HPPC) [14], it is possible to achieve the same effect, but
without requiring manual intervention. Power control was first
used in TWIST [7] to emulate node deaths. Here we resort to
it in order to increase the reliability of the testbed. Next we
describe the procedure to exploit this functionality.

A. Exploiting Power Control

The power control procedure begins by constructing a tree
reflecting the attached USB topology (as for example the one
shown in Fig. 3). This is done by exploring operating system’s
data structures. For each element in the tree, the OS provides
metadata such as whether the element is a sensor node or a
hub (and whether it is active or passive), its manufacturer, the
product ID and other descriptors. Details matter, since many
hubs for instance share the vendor and product IDs, but are
very different internally.

Once a gateway has constructed its USB tree, HPPC can
be applied to all nodes or a selected one. Switching power
of all nodes can be used, e.g., to do a testbed soft reboot

944

of the lowest, sensor node tier. For this case, the procedure
starts traversing the tree from the root hub and, in a post-
order fashion, switching power (on or off, as requested) of all
of a hub’s ports, assuming it supports HPPC. Note that it does
not suffice to stop at the first USB hub that supports HPPC,
since downstream hubs could be self-powered (thus connected
nodes would remain unaffected).

Switching power of a particular node (without affecting the
others) is used if for instance a test job is running on some
nodes within the tree, and some other need to be restarted or
reprogrammed. After searching for the target node in the tree,
the procedure checks whether its direct parent hub supports
HPPC. If it does, power switching is requested for the specific
port of that hub to which the node is attached (this is the case
for node N1 in Fig. 3). If it does not, the procedure backtracks
through parents until it finds one that does. Since this could
imply switching power to nodes in the common branch, care
must be taken to consider this undesired side effect (e.g.,
N7 is safe through hub 3, but N4 is not safe through hub
1). We have additionally implemented a force option, which
aggressively ignores switching other node’s power. This is
useful for troubleshooting tasks.

B. Reliability Improvements

Applying HPPC has shown to overcome many (though not
all) of the issues in our testbed. Fig. 12 presents a quantifi-
cation of the effects of HPPC on three of the problematic
single node topologies (20, 30 and 54 meters), extended with
an HPPC-able USB hub connected to the root. The plot
shows the relative improvement in RCBF in these three cases,
and suggests that the more complex the USB topology, the
higher the improvement achieved by applying HPPC before
reprogramming a node.

Enabling HPPC in a USB topology for any given node
works best when having USB hubs that support this function as
its direct parent. Although the USB standard specifies that bus-
powered hubs are required to implement this function (self-
powered hubs might) [14], in practice, few of all the USB
hubs we tried were manufactured with the necessary circuitry
to support it, to the point that it is very hard to find any on
the market. Mass production, however, does not imply that
this circuitry adds a significant price to the USB hub?, and the
reliability gains greatly outweigh its cost. Conclusion: using
HPPC is an inexpensive mechanism to improve reliability for
an unattended testbed operation.

C. Alternatives

As indicated earlier, some gateways’ root hub USB circuitry
effectively powers down attached USB devices when doing
a software reboot. Besides implying shutting down critical
services running on the gateway, boot cycle time (especially
of single board computers) can take minutes, reducing the
testbed availability. Although we have not searched exten-
sively, among the hardware we inspected only the Buffalo
WZR-HP-G300NH (rev. 2.0) routers exhibited this behavior.

30ne such hub is the DeLock 4-port 87445, which retails for around $7.

2419 %

n
o

N
S

o

12.38 %

=)

5.03 %

Relative RCBF Improvement (%)

o

0

20m aom sam
Fig. 12: Effects of Hub Port Power Control (HPPC) on the reliability
within the testbed.

VI. CONCLUSIONS

Using the USB backchannel in a WSN testbed is a double-
edged sword: On one hand, presently available hardware and
software for WSN deployments do not guarantee a reliable
USB communication, resulting in severe reliability issues that
are exacerbated when the USB topology is enlarged. On the
other hand, extending such USB backchannels leads to sig-
nificantly fewer gateways — and therefore costs. Investigating
this trade-off has been this paper’s main goal.

From a case study with a deployed WSN testbed, we show
the urgent need for such investigation: during a 10-month
period, we observed that for a 46-node testbed in an office
environment, only about 11% of the jobs were successfully
deployed to all targeted nodes. All other jobs had one or more
nodes becoming unresponsive during reprogramming due to
a USB backchannel failure, and remained so until they were
manually serviced.

Our analysis of possible designs of such USB backchannels
has led to the following recommendations:

« passive cables will work to cross distances till 10m

¢ active cables can extend that distance, though at a cost
of reliability

o active hubs further extend this to 43m, but they need
power

« faster gateways reduce reprogramming time, but reliabil-
ity might decrease

o parallel reprogramming can and should be practiced

with no remarkable differences noticed between different types
of hubs or cables, apart from one particular 10-meter cable.

As a particularly interesting method, the cost-effectiveness
of using hub port power control (HPPC) is highlighted, which
allows failed nodes to be rebooted without servicing them
manually. Tests in unreliable topologies showed that rebooting
nodes by applying HPPC before each reprogramming cycle
can increase the reliability by up to 24%.

ACKNOWLEDGMENTS

This work is partly funded by the LOEWE Priority Program
Cocoon, http://www.cocoon.tu-darmstadt.de, as well as the
Research Training Group GRK1362, Cooperative, Adaptive
and Responsive Monitoring in Mixed Mode Environments.

945

REFERENCES

[1] Riccardo Crepaldi, Simone Friso, Albert Harris III, Michele Mastro-
giovanni, Chiara Petrioli, Michele Rossi, Andrea Zanella, and Michele
Zorzi. The Design, Deployment, and Analysis of SignetLab: A Sensor
Network Testbed and Interactive Management Tool. In 3rd Int. Confer-
ence on Testbeds and Research Infrastructure for the Development of
Networks and Communities, TridentCom, pages 1-10, may 2007.

[2] Manjunath Doddavenkatappa, Mun Choon Chan, and A.L Ananda.
Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed. In 7th Int.
Conference on Testbeds and Research Infrastructure for the Development
of Networks and Communities, TridentCom, pages 302-316, Shanghai,
China, apr. 2011.

[3] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele,
Kevin Martin, and Philipp Blum. Deployment Support Network, A
Toolkit for the Development of WSNs. In 4th European Conference on
Wireless Sensor Networks, EWSN’07, pages 195-211. Springer-Verlag,
feb. 2007.

[4] Emre Ertin, Anish Arora, Rajiv Ramnath, Mikhail Nesterenko, Vinayak
Naik, Sandip Bapat, Vinod Kulathumanit, Mukundan Sridharant, Hong-
wei Zhangt, and Hui Cao. Kansei: a Testbed for Sensing at Scale.
In 5th Int. Conference on Information Processing in Sensor Networks,
IPSN’06, pages 399-406, New York, NY, USA, apr. 2006. ACM.

[5] Pablo E. Guerrero. The ukuFlow Macroprogramming System.
http://www.dvs.tu-darmstadt.de/research/ukuflow/, 2012.

[6] Pablo E. Guerrero, Alejandro Buchmann, Abdelmajid Khelil, and Kristof
Van Laerhoven. TUDuNet, a Metropolitan-Scale Federation of Wireless
Sensor Network Testbeds. In 9th European Conference on Wireless
Sensor Networks, feb. 2012.

[7]1 Vlado Handziski, Andreas Kopke, Andreas Willig, and Adam Wolisz.
TWIST: A Scalable and Reconfigurable Testbed for Wireless Indoor
Experiments with Sensor Networks. In 2nd Int. Workshop on Multi-
hop Ad Hoc Networks: from Theory to Reality, REALMAN’06, pages
63-70, New York, NY, USA, may 2006. ACM.

[8] Jonathan W. Hui and David Culler. The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale. In 2nd Int.
Conference on Embedded Networked Sensor Systems, SenSys’04, pages
81-94, New York, NY, USA, nov. 2004. ACM.

[9] Daniel Jacobi, Pablo E. Guerrero, Ilia Petrov, and Alejandro Buchmann.
Structuring Sensor Networks with Scopes. In 3rd European Conference
on Smart Sensing and Context, EuroSSC’08, Zurich, Switzerland, oct.
2008. IEEE Communications Society.

[10] Aslak Johansen, Thomas Sorensen, and Philippe Bonnet. Service
and Experiment: Towards a Perpetual Sensor Network Testbed without
Backchannel. In 8th Int. Conference on Mobile Adhoc and Sensor
Systems, MASS’11, pages 626-633. IEEE, oct. 2011.

[11] MEMSIC. Interface Boards Datasheets. http://www.memsic.com.

[12] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling
Ultra-Low Power Wireless Research. In 4th. Int. Conference on
Information Processing in Sensor Networks, IPSN’05, pages 364-369,
Piscataway, NJ, USA, apr. 2005. IEEE Press.

[13] Philipp M. Scholl, Kristof Van Laerhoven, Dawud Gordon, Markus
Scholz, and Matthias Berning. jNode: a Sensor Network Platform that
Supports Distributed Inertial Kinematic Monitoring. In 9th Int. Con-
ference on Networked Sensing Systems, INSS’12, pages 1-4, Antwerp,
Belgium, jun. 2012.

[14] USB Implementers Forum. Universal Serial Bus Specification Revision
2.0, apr. 2000.

[15] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. Mote-
Lab: a Wireless Sensor Network Testbed. In 4th Int. Conference on
Information Processing in Sensor Networks, IPSN’05, pages 483488,
Piscataway, NJ, USA, apr. 2005.

946

