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ABSTRACT
Typing is a core issue in federated networked distributed
applications, which are increasingly modeled as event-based
systems. Constraining such a system to globally agreed
types for exchanged event objects is impractical, and struc-
tural typing typically mediates only between types with attribute-
wise correspondances.

This paper advocates a transformation-centric model for fed-
erated distributed applications. Our approach is generic in
that it assumes the existence of certain global object types,
which may be defined by a separate specification language
and/or may arise during system deployment. Processes can
define their individual sets of local types, and define confor-
mance to global types via explicit transformations of values.
Every process can thus be viewed as defining its own context,
where transformations of incoming and outgoing objects can
be manually programmed or generated.

We propose a flexible and expressive language to declare
object transformations, covering the full spectrum: from
symmetric equivalences between types to asymmetric pro-
jections of types or enrichment of objects which structural
subtyping can not capture. We present a type system that
resolves the relevant transformations and verifies that cor-
responding functions respect high-level mappings between
global and local types. We present empirical evidence of the
efficiency of our approach.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Concurrent Program-
ming—Distributed programming
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1. INTRODUCTION
Large-scale distributed software systems are the backbone
of today’s economy, enabling companies to cooperate across
the globe. Corporate business generates a huge amount of
information that has to be distributed effectively in nearly
realtime among heterogeneous software components, and
has to be interpreted correctly. This information often de-
scribes meaningful events in the form of event objects which
are conveyed via network messages to all subscribers with
matching interests. Communication happens across com-
pany and even national borders in an n-to-m fashion, often
without direct references between communicating compo-
nents.

The federated software systems supporting these commu-
nications are loosely-coupled, highly heterogeneous and de-
veloped by many parties. Thus we cannot assume that all
information producers and consumers share the same in-
terpretation of data (see Figure 1). Local interpretations
— contexts — differ based on geographical, cultural, legal,
or technical reasons. The issues faced here are similar to
semantic data integration, but more stringent in terms of
performance and flexibility: we must match data on the fly
and event producers and consumers can join and leave dy-
namically.

Example applications.. As running example we adopt a
scenario considered by two ongoing research projects — Dy-
namoPLV (www.dynamo-plv.de) and EMERGENT (www.
software-cluster.org) — investigating seamless integra-
tion of production, logistics, traffic management, and trans-
portation.

Today’s complex supply chains involve many companies world-
wide, and production strategies like just-in-time production
have strongly increased the need for continuous flows of in-
formation between participants in a chain. Manufacturers,
for example, need to know the delivery status of key compo-
nents, e.g., current position, to adapt as early as possible to
disturbances in stock supply. However, there is a multitude
of data formats to provide positioning information (e.g., lat-
itude/longitude coordinates in GPS tracking systems) and
almost every country has its own surface mail address for-
mat. Logistics providers, in turn, base their prices for trans-
portation on a shipment’s characteristics such as weight, di-
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mensions, fragility, or risk of deterioration. Moreover, ship-
ments with high priority (e.g., guaranteed delivery within a
given timeframe) are usually delivered using different means
than low priority shipments. All this information has to be
considered by logistics providers when trying to trade off op-
timal resource utilization while meeting individual delivery
conditions. Thus, these providers have to collect informa-
tion about shipments in advance and continuously monitor
these shipments and traffic situations along delivery routes.
In world-wide settings, though, companies use different unit
systems (e.g., Metric vs. Imperial); even within one unit
system, there are alternatives (e.g., grams vs. kilograms).

Scenarios like the one sketched out here will be more com-
mon given the continuing globalization of economy; the vi-
sion of “ubiquitous computing resources” promoted by the
cloud paradigm and the availability of event notification
systems for clouds (e.g., Amazon Simple Notification Ser-
vice [1]) will technically support the trend. Similarly, the
proliferation of social networks interconnecting people with
different cultural backgrounds and the use of notification ser-
vices for communication therein (e.g., LinkedIn’s Kafka [2])
will increase the need for mediation between data types.

Federated event objects.. Existing approaches to typing
of data in distributed message passing systems falls broadly
into the well-known approaches of nominal or structural typ-
ing. As an example of the former approach, Java RMI ex-
tends Java’s static nominal typing to method invocations on
remote objects. Just like several research languages or lan-
guage extensions for distributed programming [13, 14], most
work on n-to-m dispatching of events (e.g., [7, 18]) promotes
the latter approach, following the model of self-describing
messages [16] – maps of key-value pairs which are manually
populated by producers and inspected by consumers.

Both approaches have well-known benefits. Nominal typ-
ing supports efficiency, as decentralized dispatching of event
objects based on type identifiers is more efficient than full
traversals of objects. Static nominal typing can catch many
errors at compilation, improving safety. Structural typing
inversely can lead to accidental matching. Nominal typing,
however, forces an agreement, hampering flexibility broadly.
Legacy system integration requires changes to independently
developed components. Furthermore, providing adaptabil-
ity of deployed types can require tediously coordinated up-
dates. Interoperability is another issue: even within a lan-
guage, two sets of modules developed independently are not
always easily integrated. For instance, single inheritance
may keep a class from being adapted to a framework.

In the applications mentioned in Section 1 both nominal
and structural typing fall short. Nominal typing is an in-
tuitive first choice, as most such applications are written in
languages like Java, C++, or C#. Changes with respect to
event object types, when they occur though, are not well ac-
commodated, and components written in different languages
can hardly interact. Structural typing provides such flexibil-
ity, but only mediates between types and not values. That
is, several relevant scenarios remain unaddressed:
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Figure 1: Architecture. Producers (prodi) send event no-
tifications to consumers (consj) through a communication
substrate. A client supplies mappings and transformation
rules to mediate between the global types and its local types
(omitted for cons1, prod2).

• automatic changes of attribute values: the case of trans-
lating between units, e.g., Fahrenheit and Celsius.

• enrichment : adding a field with a default or null value,
e.g., the state for a European surface mail address in
US format.

• complex conversions: converting entities encoded with
several primitive values, without 1-1 correspondence
of such attributes between types, e.g., Metric and Im-
perial system, Cartesian (abscissa/ordinate) and polar
coordinates (radius/azimuth).

Our target applications require such higher expressivity. Note
that other approaches to interopability in distributed sys-
tems (e.g., OMG’s CORBA) focus on mediating between
encodings of values in a same unit (little endian vs big en-
dian).

A transformation approach.. The approach proposed in
this paper consists in embracing the differences between
types, and generalizing these to a model centered on trans-
formations (see Figure 1). That is, we assume a set of global
event types, which can be defined through a dedicated spec-
ification language with mappings to different concrete pro-
gramming languages, or can simply be the first types to have
been used in a growing application.

Every process can be in a distinct context with regards to the
types it considers. We introduce an explicit notion of context
for processes, including (1) local types, (2) transformation
rules to specify the desired fine-grained transformations to
these local types from global ones and vice-versa, and (3)
high-level mappings used to verify that the rule applica-
tion yields consistent outcomes. Being in a message passing
model where processes operate on respective copies of noti-
fications, our transformations need not be bi-directional as
in predating work on shared data [11].

Contributions and roadmap.. More specifically, in this
paper we

1. introduce our rule-based transformation approach via



concrete examples, arguing for flexibility and expres-
sivity (Section 2).

2. present a core language modeling the targeted event-
based architectures and supporting transformations (Sec-
tion 3).

3. propose a type system for our language achieving safety
by pre-selecting and verifying transformation rules (Sec-
tion 4) which are applied on nested event objects at
runtime (Section 5); we extend our model to deal with
recursive types (Section 6).

4. evaluate an implementation of our approach for Java
based on ActiveMQ [21], demonstrating its efficiency
(Section 7).

Section 8 discusses related work. Section 9 draws conclu-
sions. Additional material and benchmarks can be found at
http://www.dvs.tu-darmstadt.de/research/events/actress/.

2. DESIGN OVERVIEW
We provide a stepwise introduction into event object trans-
formations through examples from the scenario introduced
in Section 1. Figure 2 outlines types and transformations
used for illustration.

2.1 Preliminaries: Event Objects and Trans-
formations

We consider in this paper event objects in the form of typed
records τ [...] of attributes; in a nested fashion, such at-
tributes can be objects with attributes. For example, InvoiceLine [...]
represents an object of type InvoiceLine defined in Figure 2.
The record [...] contains a sequence of objects corresponding
to the attributes of InvoiceLine (i.e., amountToPay, price , spec)
which are of respective types defined by InvoiceLine (Money,
Money, and ItemSpecification ).

A very simple form of transformation of such objects consists
in modifying values of attributes which are of specific primi-
tive types such as float s. These attributes can have a unit as-
sociated with them, e.g., cm or inch (cf. InvoiceLine .amountToPay).
A similar case are conversions of primitive values between
different architectures or platforms. On the other end of the
spectrum, an event may be transformed in a way which af-
fects its internal structure, for example by merging multiple
attributes, dropping attributes, and instantiating new ones.
Any combination of these may be used to deal with ver-
sioning – by adding version numbers to type names and de-
scribing corresponding transformations, large scale systems
can be updated to new type versions without interrupting
functionality.

We now introduce a model of transformations covering the
whole spectrum. Our model is centered around transforma-
tion rules — t-rules for short — which minimize the neces-
sary specifications and align well with the mental model of
programmers.

2.2 Separating Rules and Functions
The logistics provider from our example in Section 1 re-
ceives the specifications for the items to be transported from

its customers. The caveat with this approach is that spec-
ifications do not have a standard format and even simple
things like units vary between countries or even individual
customers.

Intuitively, we would like the ability to define“default”trans-
formations for certain types. Suppose a software service that
calculates the price for transporting goods. As part of the
calculation, it processes instances of ItemSpecification which
contain information in a specific combination of units (e.g.
meters for height, width and depth). After the calculation
is complete, the logistics provider sends the price along with
these specifications to its customers. A US customer is used
to getting these properties in Imperial units (e.g. inches)
rather than the logistics provider’s internal format. A t-rule
to transform all such attributes in all event objects could be
simply expressed as (cf. r1 in Figure 2):

ItemSpecification � toUSSpecification;

The syntax of t-rules such as the above is roughly of the form
b � f where b is a pattern delineating a set of attributes
in event type(s) and f refers to a function (or method in
an object-oriented language). This function is defined sepa-
rately and used to transform such attributes. In the example
above toUSSpecification refers to a function which takes an
instance of ItemSpecification as its argument and produces
an instance of an analogous type USItemSpecification, which
is local to the present context:

USItemSpecification toUSSpecification ( ItemSpecification is )
{ return new USItemSpecification (...); }

2.3 Nesting Level
For convenience we let a pattern like the above apply at any
nesting level within a type. Specifically, the pattern applies
to any attribute of type ItemSpecification at any depth in
events of any type.

There are cases where we want to leave certain attributes in
specific event types unchanged (or apply a different transfor-
mation function). For example, customs declaration papers
require the same units as the logistics provider usually uses.
In this case, the logistics provider does not want to trans-
form the item specification, but just use it as it is. To achieve
this, we can qualify more precisely where to apply this sort
of transformation. The following t-rule

CustomsDeclaration. ItemSpecification � toIdentity;

would apply an identity function (omitted here for brevity)
to attributes of type ItemSpecification in CustomsDeclarations.

To overcome the cumbersome task of enumerating all event
types which contain ItemSpecification s, we introduce intu-
itive priorities among rules. If we combine both t-rules above
into one t-rule set, the second t-rule overrides the first one
for CustomsDeclaration events. All other attributes of type
ItemSpecification are transformed according to t-rule r1 as
depicted in Figure 2. This conveys the first intuition un-
derlying our design: rules with more specific patterns over-
ride rule with less specific ones. In the above example,
CustomsDeclaration.ItemSpecification overrides ItemSpecification .

http://www.dvs.tu-darmstadt.de/research/events/actress/


InvoiceLine

Money amountToPay

string currency

float amount

Money price

string currency

float amount

ItemSpecification spec

float height
float width
float depth

[ = "euro" ]

[ = 100 ]

[ = "euro" ]

[ = 100 ]

USInvoiceLine

Money amountToPay

string currency

float amount

Money price

string currency

float amount

USItemSpecification spec

float height
float width
float depth

[ = "usd" ]

[ = 125 ]

[ = "euro" ]

[ = 100 ]

r1: ItemSpecification  toUSItemSpecification

r2: InvoiceLine.Money toDollars

r3: InvoiceLine.price toIdentity

[ = 1 ]
[ = 0.5 ]
[ = 0.3 ]

[ = 39.37 ]
[ = 19.69 ]
[ = 11.81 ]

InvoiceLine USInvoiceLine

Figure 2: Sample transformation scenario. Simplified transformation rules (t-rules) and mappings are illustrated on the right.

Specificity here translates to length, or, in other terms, nest-
ing level.

As mentioned we consider patterns ending in types to ap-
ply to all occurrences of that type in deeper nesting levels.
That is, one can picture InvoiceLine .Money as representing
InvoiceLine .∗Money where ∗ can match any (possibly empty)
infix. This seems natural when looking at the generic trans-
formations specified in the preceding examples. We apply
this variable nesting level only at the last type in a pat-
tern, prohibiting something like TopLevelType.∗LevelX.∗LevelY.
More expressive patterns could be envisioned by removing
this constraint but this is likely to come at a substantial cost
in terms of simplicity for the programmer.

2.4 Instances over Types
Transforming by type only is sometimes too general. Con-
sider the type InvoiceLine of Figure 2, which represents a
single line on an invoice and contains the item’s specifica-
tions and the cost for delivery (with its own Money type).
Assume that the logistics provider needs this amount in
its currency for internal bookkeeping. However, customers
want this amount in their local currencies. Thus we cannot
treat every attribute of type Money the same way.

We consequently support references to attributes as another
intuitive element in patterns for t-rule application. The t-
rule

InvoiceLine .amountToPay � toDollars;

applies the following function

Money toDollars(Money m) {
if (m.getCurrency() == ”euro”) {

m.setCurrency(”usd”);
m.setAmount(m.getAmount() ∗ 1.25);
} else if (m.getCurrency() == ”yen”) {...}
...
return m;
}

to only the amountToPay attribute of events of the InvoiceLine

type. Other attributes of type Money in an InvoiceLine or
any other type are left unchanged (cf. Figure 2). Even if
succeeded by a less specific t-rule which mandates that all
Money attributes be transformed to include taxes, such as in
the t-rule set

InvoiceLine .amountToPay � toDollars;
Money � addTaxToMoney;

the attribute amountToPay would be transformed via toDollars

and not addTaxToMoney.

We believe that this is a much more natural semantics than
declaration order alone. The intuition behind this second
form of precedence consists in prioritizing attributes over
types on otherwise comparable patterns, i.e., instance-level
declarations over type-level declarations. The outcome above
would be identical if the second t-rule used the pattern
InvoiceLine .Money to define a default translation of all money
attributes in type InvoiceLine .

2.5 Subtyping Level
Subtyping is a fundamental concept in programming lan-
guages. With nominal subtyping in our model, any event
object can at any nesting level have an attribute a carrying
an instance of a type τ ′ which is a subtype of a’s declared
type τ. With that in mind, it seems natural to allow the
programmer to define t-rules which are subtype-sensitive.
For instance, we might define a type WeightedItemSpec which
extends ItemSpec by adding an attribute weight of type float ,
and define a corresponding specific rule

InvoiceLine .spec(WeightedItemSpec) � ...;

It seems natural to favor among a set of competing pat-
terns the one which refers to the most derived type at a
point of comparison, e.g., selecting the above rule over one
with pattern InvoiceLine .spec (defaulting to InvoiceLine .spec(

ItemSpecification)) for an attribute weight of dynamic type
WeightedItemSpec in an InvoiceLine . This selection is similar
to (single) dynamic method dispatching.

2.6 Discussion
The three natural intuitions on precedence (nesting level,
instances over types, subtyping level) can conflict. Among
two patterns b1 and b2, b1 may exhibit a deeper nesting level
but end in a type, while b2 ends in an attribute qualifier;
similarly, b1 may end in an attribute a and b2 in a type τ,
with a of a declared type τ which is a super-type of τ ′. This
demonstrates the need to precisely define the semantics of
patterns and t-rules altogether.

Similarly, when defining t-rules based on patterns for trans-
forming arbitrarily nested attributes, it becomes necessary
to ensure that the transformations respect mappings of types
at the highest level which for instance state that incoming
events of a type τ are mapped to a type τ ′ (τV τ ′). Some
of the above transformation functions yielded types differ-
ing from their arguments, and thus return values can not be



program Π ::= ∅ | Π || g | Π || p | Π || m
incarnation p ::= P〈e, e〉
subscription s ::= subscribe(τ x){e}
expression e ::= publish(e) | f (e) | τ [e ] | x | e.a | v
value v ::= m
notification m ::= τ [v ]

context c ::= (d, u, r)

global g ::= γ ext γ [τ a ]

local l ::= σ ext τ [τ a ]

type τ ::= γ | σ
function d ::= τ f (τ x){e}
pattern b ::= τ | b.q
qualifier q ::= a(τ ) | τ
mapping u ::= τVh τ
t-rule r ::= b �h f
direction h ::= ? | !

Figure 3: Syntax

simply plugged as substitutes for the original ones; the types
in the entire path that led down to that attribute must be
adapted. For instance, when substituting an ItemSpecification

by a USItemSpecification the parent type has to change, e.g.,
to USInvoiceLine (see Figure 2). We proceed in the following
with formalizing the intuitions behind our transformations
and mappings.

3. A CORE LANGUAGE
We introduce a core programming language incorporating
support for transformatons. Our language introduces pro-
cesses which bear superficial similarities with Actors [5] and
are reminiscent of process algebras like π-Calculus [19]. How-
ever our language uses multicast communication and incor-
porates static typing, yet makes simplifications elsewhere,
e.g., omitting higher-order processes.

3.1 Syntax
z denotes a sequence of several definitions z, independently
of separating symbols (e.g., commas in z1, z2, ...). z is num-
bered z1 to zn by default, with n = 0 indicating an empty
sequence; the only exception are sequences of type quali-
fiers τ in patterns of t-rules which are numbered starting at
τ0 because any pattern contains at least one type qualifier.
When constructing a sequence from a set (e.g., by assign-
ment z={...}) any order may be used.

Processes, types, and expressions.. We consider programs
Π consisting in multiple distributed interacting processes. A
process declaration is of the form

P(l, c, s, e)

where P is the name of the process; l refers to a set of local
type declarations, c is a context which describes transfor-
mations, s is a set of handlers of the form subscribe(τ x){...}
(“subscriptions”) to react to τ events, and e is P ’s body. For
example subscribe(USItemSpecification s){...} is a subscription
to USItemSpecifications introduced in Section 2 (see Figure 2).

Figure 3 presents these constituents of processes and our

syntax in more detail. A running program Π consists in a
parallel composition of (a) a set of global types g, (b) a set
of process incarnations p, each of the form P〈e, e′〉 (current
body e, outgoing notifications under transformation e′), and
(c) a set of in-transit event notifications m. As usual parallel
composition || is associative and commutative. A process
incarnation P〈..., ...〉 is thus the runtime representation of a
process declared as P(..., ..., ..., ...).

A type τ defines attributes with respective types. All types
have a super-type, at the exception of the abstract root type
⊥. As usual in practice, if left unspecified in a type declara-
tion, the ancestor of a type becomes automatically ⊥. The
Money type introduced in Section 2 (see Figure 2) for ex-
ample is represented as Money[ string currency, float amount].
For simplicity, as common, we refrain from detailing primi-
tive types and values and their manipulation in our formal-
ism. We prohibit (transitively) recursive type definitions at
this point (we handle these in Section 6), and omit member
functions/methods from types. An event is instantiated as a
nested expression; simply put, an event is an object that is
published (multicast). We use the term notification to refer
specifically to such an expression which is a value (normal
form).

Expressions include, as mentioned, nested objects of which
event notifications m are only a special case; these last ones
are simply nested typed records of values (τ [v ]). Expres-
sions furthermore include publications publish(e) and func-
tion calls f (e). We omit more complex expressions like while
loops typical of Actors (for describing bodies of processes
and reactions), or let expressions, to not distract from the
main issues of expressing contexts in a flexible and safe man-
ner.

Contexts, t-rules, mappings, and patterns.. A context
description c includes a set of definitions of functions f
which are typically used for transforming notifications (e.g.,
toUSItemSpecification in Figure 2). In our Java prototype
implementation described later in Section 7.1, such func-
tions are methods and can obtain information on the path
(e.g., InvoiceLine .price in Figure 2) at which transformation
is currently taking place. Since we assume at most one in-
carnation for a given process declaration there is a 1-1 cor-
respondance between processes and contexts, and thus we
henceforth may refer to a process as (defining) a context.

A context further states a set of (unidirectional) mappings u
from global types to possibly local, context-dependent, types
and vice-versa. τV! γ represents a mapping from (possibly
local) type τ to a global type γ , where τ is a type of events
published by the respective process; inversely, γV? τ repre-
sents a mapping to a subscribed event type τ from a global
type γ . The label h thus distinguishes between transforma-
tions for incoming (h=?) and outgoing (h=!) notifications.
A complete mapping for the example of Section 2 would be
InvoiceLine V? USInvoiceLine (see Figure 2).

A process can directly subscribe to (or publish instances
of) global types of course and the corresponding mapping
is trivial and can be omitted in a concrete language but is
assumed here nonetheless for streamlining definitions. Note



that similarly, for presentation simplicity, a process may only
have a single mapping and a single subscription for a given
global event type.

While mappings define at a high level which local and global
types correspond to each other, a context further contains a
set of more fine-grained t-rules defining how to transform in-
stances of (possibly) local to global types and vice-versa. A
t-rule consists in a pattern b and a reference to a function f
(e.g., r1-r3 in Figure 2). A t-rule applies either to published
notifications (b �! f ) or to received notifications (b �? f).
The first example in Section 2.2 would thus be fully encoded
as ItemSpecification �? toUSSpecification . A pattern b is a se-
quence of qualifiers q each of which, at the exception of the
first, is either an attribute with a type name or simply a type
name: (1) An attribute qualifier a(τ ) in b.a(τ ) denotes the
(nested) attribute a of type τ at the path expressed through
its prefix b in a notification of the type captured by the first
qualifier in b. The type τ in a(τ ) is used for increasing ex-
pressiveness in the face of subtyping; omitting it in practice
by writing simply b.a means that the static type τ of a ac-
cording to b is selected, for example, τ1 for a1 in a pattern
τ0.a1 with τ0 ext ...[...τ1 a1...]. Subtyping is supported in that
we can describe a (additional) t-rule with a pattern τ0.a(τ

′
1)

where τ ′1 is a subtype of τ1. (2) A type qualifier τ at the
first or other position in a pattern refers to all attributes of
the corresponding type at the path expressed through its
prefix; if it occurs at the end of a pattern it also applies
to any deeper nestings from there. Thus τ0.τ1 denotes all
attributes of type τ1 (or subtypes) in notifications of type
τ0 or, recursively, in any other attributes defined by τ . The
pattern τ0.a.τ2 denotes all (nested) attributes of type τ2 in
attribute a in event type τ0. As with attribute qualifiers,
type qualifiers support subtyping. For instance, we can de-
fine a t-rule with a pattern τ0.τ1 where there is no (nested)
attribute of the exact type τ1 in τ0; it suffices that there is an
attribute of a super-type τ ′1 of τ1. For simplicity we assume
that no two t-rules can use identical patterns. In practice
we can deterministically chose, e.g., the last one among such
competing t-rules and issue a warning.

3.2 Auxiliary Functions and Subtyping
We define in Figure 4 some auxiliary functions that allow
us to inquire about characteristics of types and processes
at compilation and at runtime. Any function is sensitive to
the context in which it is evaluated, and thus carries the
corresponding process identifier P as subscript. A function
evaluates to • for a given set of arguments if the function is
not defined for that set. attrsP(τ) yields the signature of a
given type τ in context P . ftypeP(f) provides the signature
of a function f defined in a given context P . fbodyP(f)
yields the formal arguments and body of function f . subsP
returns all subscribed types of P . reactP(τ) returns the
formal argument and body of P ’s reaction to events of type
τ ; if P does not define a reaction for τ then the reaction
for its immediate super-type (≺1

P , see Figure 5) τ ′ is chosen.

rulehP(b) yields the function associated with the pattern b

for h transformations in context P . maphP(τ) = τ ′ denotes
that incoming (h=?) or outgoing (h=!) notifications of
type τ are mapped to notifications of type τ ′. If there is no
specific mapping for a given type τ , its mapping is that of
its ancestor ([M-Type-Inh]).

P(..., c, ..., ...)
c = (..., u τVh τ u′, ...)

maphP(τ) = τ
[M-Type]

τ ≺1
P τ
′attrsP(τ ′) = 〈a′, τ′〉

attrsP(τ) = 〈a′a, τ′τ〉
[E-Type]

τ ≺1
P τ
′ P(..., c, ..., ...)

c = (..., u, ...) @ τVh τ ∈ u
maphP(τ) = maphP(τ ′)

[M-Type-Inh]

attrsP(⊥) = 〈∅, ∅〉
[A-Type-B]

maphP(⊥) = • [M-Type-B]

P(..., c, ..., ...)

c = (d τ f(τ x){e} d
′
, ..., ...)

ftypeP(f) = τ → τ
[F-Type]

P(..., c, ..., ...)

c = (d τ f(τ x){e} d
′
, ..., ...)

fbodyP(f) = 〈x, e〉
[F-Body]

P(..., ..., s, ...)
s = s′ subscribe(τ x){e} s′′

reactP(τ) = 〈x, e〉
[R-Body]

τ ≺1
P τ
′P(..., ..., s, ...)

@subscribe(τ x){...} ∈ s
reactP(τ) = reactP(τ ′)

[R-Body-Inh]

P(..., c, ..., ...) r = b �h f
c = (..., ..., r r r′)

rulehP(b) = f
[P-Fun]

P(..., c, ..., ...) c = (..., u, ...)
γ = {γ | γV? τ ∈ u}

subsP = γ
[Sub-Types]

Figure 4: Auxiliary functions. Subtyping ≺1 is defined in
Figure 5

We introduce two subtyping relations. τ �P τ ′, as common,
states that τ is a subtype of τ ′ and � is a reflexive and tran-
sitive relation. τ ≺1

P τ
′ states that τ is a direct descendent of

τ ′, which means τ is explicitly declared to be a subtype of τ ′

(τ ext τ ′ [... ]), which can happen either in global or local type
definitions; ≺1 is thus neither transitive nor reflexive. For
more compact notation � is defined in terms of ≺1 ([S-Gen])
by adding transitivity ([S-Trans]) and reflexivity ([S-Refl]).

Π = γ ext γ′ [... ] || ...
γ ≺1

P γ
′

[S-GDef]

P〈l σ ext τ [... ] l
′
, ..., ..., ...〉

σ ≺1
P τ

[S-LDef]

τ �P τ [S-Refl] τ �P τ ′ τ ′ �P τ ′′

τ �P τ ′′
[S-Trans]

τ ≺1
P τ
′

τ �P τ ′
[S-Gen]

Figure 5: Subtyping relations τ ≺1
P τ and τ �P τ

4. TRANSFORMATION RESOLUTION AND
VERIFICATION

We now proceed to defining our transformation semantics,
and formally characterize it via a type system.

4.1 Overview
Type checking of any individual process P prior to its de-
ployment ensures that P correctly transforms any incoming
and outgoing notifications such as to abide to the global
event types and its own mappings. In the following we out-
line the intuitions behind selection of t-rules and confor-
mance checking.

Paths.. Our approach verifies for any fully qualified path,
defined below, any transformation functions f to be applied
at that path, and verifies whether the type returned by f
abides to the type stipulated by the mapping for the corre-
sponding event type.



Definition 1 (Fully qualified path). A fully qual-
ified path
〈τ0...τn, a1...an〉 for process P is such that ∃τ ′1...τ ′n,∀i ∈ [0..n−
1],attrsP(τi)= 〈...ai+1..., ...τ

′
i+1...〉 and τi �P τ ′i .

A fully qualified path thus unambiguously and correctly de-
notes an object within a notification. In the following when-
ever referring to paths we mean such fully qualified paths. A
prefix of a path (e.g., 〈τ0τ1, a1〉 for 〈τ0τ1τ2, a1a2〉) is a path
itself.

For every process P our type system identifies for any given
event type τ mapped in or out by P all transformations for
all reachable paths rooted at τ , and retains these. This re-
tained information is of the form 〈τ0...τn, a1...an, f〉, prompt-
ing the evaluation semantics to apply function f at the path
〈τ0...τn, a1...an〉 in any event of type τ0. These t-rules are re-
solved by starting from all subscribed and published types
τ0, and exploring their attribute spaces recursively by fol-
lowing breadth first (e.g., ∀a1 s.t. a1 is declared by τ0)
and then width (e.g., ∀ a2 s.t. a′1s type τ1 declares an at-
tribute a2). To deal with subtyping, for a given path (e.g.,
〈τ0...τi, a1...ai〉) the subtype space is explored similarly in a
recursive manner (e.g., ∀τ ′i ≺1

P τi). A reachable path im-
plies that there is no transformation for any of its prefixes;
nested exploration does not proceed further when a transfor-
mation is identified, as the respective function is responsible
for dealing with nested attributes.

This prevents us from having to resolve any t-rules at run-
time. Upon addition of new types at runtime, individual
processes can re-run the type checking and t-rule resolution;
in practice this can be done in an incremental fashion.

Relaxed conformance.. Remember that there is not nec-
essarily a 1-1 relationship between mappings and t-rules; in
fact that would be undesirable in terms of expressiveness. A
mapping can involve the application of multiple t-rules, and
inversely, a t-rule may be applied by different mappings.

We furthermore strive for a minimal conformance verifi-
cation. More precisely, we do not mandate that every t-
rule in a context respects all mappings for event types with
paths matching the t-rule’s pattern, including those which
that t-rule is never applied to due to priorities among pat-
terns. This allows for default t-rules which typically include
type qualifiers in their patterns to be overridden by more
attribute-specific t-rules. The latter ones produce the cor-
rect type at a given path but the former ones — if applied
there instead — would not necessarily do so.

type (a(τ)) = τ
[Q-Type-A]

type (q)�P type (q′)

q EP q′

[Subtype-Prio]

type (τ) = τ
[Q-Type-T]

b EP b′ q EP q′

b.q EP b′.q′

[Nested-Prio]

a(τ)EP τ
[Inst-Prio]

b EP b′

b.q EP b′

[Depth-Prio]

Figure 6: Priorities among patterns b EP b′

Priorities.. We use the following priorities for competing
t-rules:

P1. Nesting level: A natural choice consists in consider-
ing nesting level as prioritizing measure among oth-
erwise equivalent patterns (see Section 2.3). Deeper
nesting levels translate to more detailed knowledge
about data-structures and thus to more specific be-
havior. Thus a t-rule with the pattern τ0.τ1 will be
chosen over one with pattern τ1 for attributes of type
τ1 in notifications of type τ0.

P2. Instances over types: Another natural choice (see Sec-
tion 2.4) consists in giving attribute qualifiers priority
over type qualifiers among otherwise equivalent pat-
terns. Thus τ0.a1(τ1) would be chosen over τ0.τ1 for
attribute a1 in a notification of type τ0.

P3. Subtyping level: A third natural choice (see Section 2.5)
is to consider for any otherwise equivalent patterns the
ones which use qualifiers with the most derived types.
Thus, with τ ′1 being a strict subtype of τ1, τ0.a1(τ

′
1) is

chosen over τ0.a1(τ1).

P4. Instances over nesting level: We need to break ties
between P1 and P2 (see Section 2.6). Assume we
are transforming at a path 〈τ0...τ3, a1a2a3〉. Now con-
sider two matching patterns (a) τ0.a1(τ1).τ3 and (b)
τ0.τ1.τ2.τ3. Clearly, (a) is more specific than (b) ac-
cording to P2, but (b) has a deeper nesting level than
(a) which thus far prevails according to P1. Even if
there are no attributes of type τ3 immediately in a1,
τ3 is expressed for that prefix τ0.a1(τ1) which is more
specific than the corresponding prefix τ0.τ1 in pattern
(b), and thus (a) is prioritized.

P5. Subtypes over instances: Finally, we need to break
ties between P3 and P1, and between P3 and P2. Both
of these ties are broken by favoring subtyping over in-
stances (P3 over P4). That is, we give priority to the
type of a qualifier rather than whether the qualifier
refers to the considered attribute or only its type; be-
tween a type qualifier τ and an attribute qualifier a(τ )

in the same position with the same type τ we follow
P2.

These priorities are captured by the relation b E b′ defined
by the rules in Figure 6. The type (q) helper function simply
returns the type of an attribute qualifier ([Type-A]) or type
qualifer ([Type-T]). Note that the t-rule resolution semantics
presented shortly can be used with other priorities.

|=P b.a(τ) :τ

|=�P b.a(τ) :τ
[Qual-Attr-T]

|=�P τ :τ [Qual-T] |=P τ :τ
[Qual-Consec-T]

|=P b :τ0
∃a1...an, τ1...τn | ∀ i[∈ 1..n]attrsP(τi−1) = 〈...ai..., ...τi...〉 ∧ τ �P τn

|=�P b.τ :τ
[Qual-Type-T]

|=P b :τ ′ τ �P τi
attrsP(τ ′) = 〈...ai..., ...τi...〉

|=P b.ai(τ) :τ
[Qual-Attr-Consec-T]

|=P b :τ ′ τi �P τ
attrsP(τ ′) = 〈...ai..., ...τi...〉

|=P b.τ :τ
[Qual-Type-Consec-T]

Figure 7: Typing judgements for patterns – |=P b : τ and
|=�P b : τ



4.2 Pattern Typing and Applicability
Next we describe how to validate patterns, e.g., verify whether
for a pattern τ0.a1(τ1) type τ0 actually does contain an at-
tribute a1 of τ1 or of a super-type of τ1. We are conservative
here, meaning that the possibility of some subtype τ ′0 �P τ0
containing some a1 but not τ0 does not suffice; a pattern
τ ′0.a1(τ1) would have to be used.

Figure 7 summarizes the typing judgements for patterns.
There are two kinds of judgements: |=P b : τ (rules of the
form [Qual-...Consec-T]), and |=�P b : τ (remaining rules). In
short, a judgement |=P b : τ asserts that pattern b refers to
an instance of type τ . The second kind of judgement |=�P b :
τ is necessary to deal with the case of patterns b′.τ ending in
a type τ which may only apply to attributes nested further
down from b′. This case is specifically dealt with by [Qual-

Type-T]. For (sub-)patterns ending in attribute qualifiers,
both judgements coincide ([Qual-Attr-T]).

We introduce another kind of judgement, which for a given
sound pattern b (according to |=�) at a given path 〈τ0...τn, a1...an〉
determines whether b applies to that path. Figure 8 summa-
rizes corresponding judgements of the form τ, a P b where
b represents a pattern and 〈τ, a〉 a fully qualified path.

In [Qual-Attr-A] we need not verify whether τn has an at-
tribute a of type τ ; the fact that the pattern is sound (see
|=�) and that such a data structure could be constructed
(which relies on type checking outlined below) ensures this.
Similarly, in [Qual-Type-A] we need not verify whether q
reveals an attribute a of some type τ ′ which is a super-type
of the dynamic type τ.

The following theorem is relevant for sound t-rule selection:

Theorem 1 (Total Order on EP). For any process
P and fully qualified path 〈τ, a〉 and any set of well-typed
applicable patterns b for that path, EP forms a total order
on b.

By the definition of patterns, EP (see Figure 11), and pat-
tern applicability P , EP on b is antisymmetric, transitive,
and total.

Corollary 1 (Uniqueness). For any fully qualified path
〈τ, a〉 and any non-empty set of applicable patterns b for that
path, there is exactly one pattern b ∈ b s.t. ∀b′ ∈ b b EP b′.

τ �P τ ′ τ, a P q

ττ, aa P q.τ ′

[Qual-Type-A]

τ ′, ∅ P τ
[Qual-First-A]

τ �P τ ′ τ, a P q

ττ, aa P q.a(τ ′)
[Qual-Attr-A]

Figure 8: Pattern applicability τ, a P b

4.3 Expression Typing
Next we outline type checking of expressions. Figure 9
presents the corresponding judgements Γ`P e:τ , stating that
in type environment Γ the expression e is of type τ . A typ-
ing environment Γ consists in pairs of the form x:τ where τ
is the assumed type of variable x ([Env-T]).

The type of a nested object is verified by [Val-T]. [Attr-T]

determines the type of an attribute of such an object, and
[Call-T] straightforwardly matches the types of the actual
arguments with the formals in a function call, and assigns
the declared return type as type for the call expression. A
publication expression is typed as ⊥ ([Pub-T]) since the ac-
tion of publishing is asynchronous and thus the publication
will be reduced to an empty record ⊥[ ]. Noteworthy in
this rule is that a publication is only valid if the there is a
valid mapping for outgoing notifications of the type of the
published expression.

ftypeP(f) = τ → τ
Γ`P e :τ′ τ′ �P τ

Γ`P f(e) :τ ′

[FCall-T]

x :τ ∈Γ

Γ`P x :τ
[Env-T]

attrsP(τ) = 〈a, τ〉
Γ`P e :τ′ τ′ �P τ

Γ`P τ [e ] :τ
[Val-T]

Γ`P e :τ map!
P(τ) = γ

Γ`P publish(e) :⊥
[Pub-T]

Γ`P e :τ attrsP(τ) = 〈a, τ〉
Γ`P e.ai :τi

[Attr-T]

Figure 9: Type inference rules Γ`P e:τ

4.4 Well-typed Processes and Contexts
We describe the remainder of the type system in a top-down
manner. Correctness of a process P and its associated con-
text are asserted by [Proc-OK]. The rule requires that all
constituents of the process P be sound in their own respec-
tive ways, including the context c ([Ctxt-OK]) per se and
subscriptions s ([Sub-OK]). In addition, the body of the pro-
cess obviously needs to be well-typed according to our typing
judgments as described in Section 4.3.

[Sub-OK] ensures that there is a mapping for a subscribed
type and that the corresponding reaction is well-typed. [Ctxt-

OK] is predicated on all elements of a context definition be-
ing well-typed. For functions, [Fun-OK] ensures that the
type of the return value (implicitly formed from the func-
tion’s body) respects the prognosed return type assuming
that the actual arguments respect the formals. Correctness
of t-rules is asserted by [Rule-OK] for transformations of in-
coming and outgoing notifications. The rule uses pattern
typing judgments |=�P b : τ described in Section 4.2 and en-
sures that the type of the expression qualified by the pattern
(asserted via |=�P) conforms to the formal argument type of
the function used for the transformation. Note that this
does not contradict the relaxed conformance put forward in
Section 4.1: if the corresponding t-rule is overridden by one
with a pattern which is more specific for that object, then
our priorities imply that the pattern denotes the same type
as the present one (but has an attribute instead of a type
qualifier), or denotes a subtype and thus needs to conform to
the present one anyway (in constrast, two functions applied
by competing patterns can return entirely unrelated types).

4.5 Core Rules for T-Rule Resolution
Finally, [Map-OK] and [Transf] below constitute the core
of the type system and t-rule resolution. Both rules rely
on resolution judgements τ0...τn, a1...an �hP 〈τ, y〉 (see Fig-
ure 11), which yield two things: (1) the type τ of any ex-
pression returned by the resolved transformation at the path
〈τ0...τn, a1...an〉, and (2) a set of resolved t-rules in the form
y = 〈τ0...τn, a1...an, f〉, indicating the application of f at
the respective path as outlined in Section 4.1. (1) is used



c OK in P
s OK in P
∅`P e :τ

P(l, c, s, e) OK
[Proc-OK]

x :τ`P e :τ ′ τ ′ �P τ
ftypeP(f) = τ → τ

f(x τ){e} OK in P
[Fun-OK]

d OK in P
u OK in P
r OK in P

(d, u, r) OK in P
[Ctxt-OK]

∃γ map?
P(γ) = τ

x :τ`P e :τ ′ τ 6=⊥
subscribe(τ x){e} OK in P

[Sub-OK]

|=�P τ.q :τ ′ τ ′ �P τ ′′
ftypeP(f) = τ ′′ → τ ′′′

τ.q �h f OK in P
[Rul-OK]

Figure 10: Well-typed processes

by [Map-OK] to assert for a given mapping (of in- or out-
bound notifications) that the type resulting from transfor-
mation corresponds to the type stated by the mapping. (2)
is retained via the tapplyhP(τ0...τn, a1...an) function which
maps paths to functions f ([Transf]), guiding transforma-
tion upon evaluation as explained shortly.

τ, ∅ �hP 〈τ ′′, ...〉 τ ′′ �P τ ′

τVh τ ′ OK in P
[Map-OK]

τ, ∅ �hP 〈..., y〉
y = ...〈τ0...τn, a1...an, f〉...

tapplyhP(τ0...τn, a1...an) = f
[Transf]

By the structure of [...-Transf-T] rules which use � in their
premises, resolution proceeds in a recursive, top-down, man-
ner, following the nested structure of notifications, i.e., from
the top of a notification type to its leaves, as detailed here-
after. Types and any corresponding adjustments are verified
at every nesting level. As outlined in Section 4.1, these rules
also recursively scans subtypes.

Below we define the detailed resolution semantics captured
by �, summarized in Figure 11, in a stepwise manner. We
first outline a helper function though. pattP(τ, a, q) com-

putes the set of patterns b.q of existing t-rules (rulehP(b.q) 6=•)
ending in a specific qualifier q and applying to the path qual-
ified by the first two arguments (τ, a P b.q). In the case
of patterns ending in an attribute qualifier the correspond-
ing attribute and its type are also used to qualify the path
([Patters-A]), whereas due to nesting captured by patterns
ending in types a corresponding trailing qualifier is not taken
into account ([Patterns-T]).

1. If we have a t-rule that applies to an event type τ
as a whole, we retain the corresponding function f ,
which is responsible for returning an expression of the
expected mapped type maphP(τ) ([Ev-Transf-T]). The
rule recursively evaluates � for any direct descendant
τj ≺1

P τ of the type τ s.t. τ j maps to the same type

maphP(τ) as τ . Any t-rules resolved for such subtypes
τ j are retained (yj), and aggregated with the ones (y)
for τ specifically. The expected return type is the least
upper bound (lub – u ) of (i) all return types of such
subtype τ j transformations and (ii) the return type of
f applied to the present type τ . This lub is then tested
for its conformance to the expected type of the trans-
formed notification by [Map-OK] as explained; since
transformations for all subtypes, recursively, need to
abide to the same mapping it is sufficient to test the

lub for its conformance to the mapping in lieu of all
possible resulting types.

2. If we are in a nested object (length of the pattern
n+1≥ 2), we take the prioritary t-rule for the current
path, if any ([Attr-Transf-T]). That is, several com-
peting t-rules may exist for the current path. The cor-

responding patterns b
′

are obtained via pattP(τ, a, q).
These end either (i) exactly in the last attribute of
the path (see b), or (ii) in the type of that attribute
with a pattern corresponding to a prefix of any length

i of the path (b
′\b). We choose the rule rulehP(b) cor-

responding to the pattern b which is prioritary over

any (other) pattern b′ (b E b′) in the set b
′
. By the

absence of multiple t-rules with identical patterns and
the properties of E (see Corollary 1), there is exactly
one such pattern in a non-empty set of applicable pat-
terns.

Note that just like in the case of 1., we (recursively)
perform the same resolution for all direct subtypes τ ′j
of τn, and return the union of all correspondingly re-
solved t-rules and the lub of the types resulting from
the respective transformations.

3. If no t-rule has a pattern matching the path and we
are transforming a leaf (characterized by the absence
of attributes attrsP(τn)=〈∅, ∅〉) we leave the attribute
unchanged ([Val-Transf-T]). Treatment of subtypes of
τn occurs as before.

4. If no t-rule applies but we are transforming a nested
object ([Nested-Transf-T]) we proceed recursively by
resolving t-rules (yk) for any attribute a′k nested at the
current path, as well as recursing into any subtype τ ′′′′′s

of type τn (ys).

5. TRANSFORMATION APPLICATION
Now that we have described how t-rules are pre-resolved
(τ, a �hP 〈τ, y〉) and retained ( tapplyhP(τ, a) ), we proceed
to describing their application at runtime by characteriz-
ing program evaluation as a contextual operational seman-
tics [22].

5.1 Contextual Operational Semantics
E represent evaluation contexts with the following grammar:

E ::= [] | v E e | τ [E ] | f(E) | publish(E)

In Figure 12, which presents the evaluation rules, −→P is the
local evaluation relation defined on expressions e in a specific
context P (−→P defines redexes), while −→ is defined on
programs Π. As usual, a congruence links the two relations.
In this case ([Congruence]), the congruence applies to both
a process’ body as well as to its outgoing notifications.

[F-Call] reduces function calls to substitution v/ x of ac-
tual arguments v for formal ones x in the function’s body e
( {v/ x }e). Attribute access is described by [A-Acc]. [Ev-

Publ] handles the publication of an event e by reducing the
publication expression to ⊥[ ] (to model asynchrony of in-
teraction), and placing the published expression — resulting



patthP(τ, a, a(τ)) =
{b.a(τ ′) | τ �P τ ′ ∧ ττ ′, aa P b.a(τ ′) ∧ rulehP(b.a(τ ′)) 6= •}

[Patts-A]

patthP(τ, a, τ) = {b.τ ′ | τ �P τ ′ ∧ τ, a P b ∧ rulehP(b.τ ′) 6= •}
[Patts-T]

τ1...τw = {τ ′ | τ ′ ≺1
P τ ∧maphP(τ ′) = maphP(τ)} rulehP(τ) = f

∀j ∈ [1..w]τj , ∅ �hP 〈τ ′j , yj〉 ftypeP(f) = ...→ τ ′

τ, ∅ �hP 〈u τ′ τ ′, 〈τ, ∅, f〉∪
⋃
j∈[1..w] yj〉

[Ev-Transf-T]

b = patthP(τ0...τn−1, a1...an−1, an(τn)) b ∈ b′ | ∀b′ ∈ b′ b EP b′

b
′
= b∪

⋃
i∈[0..n] patt

h
P(τ0...τi−1, a1...ai−1, τn) b

′ 6= ∅
τ ′1...τ

′
w = {τ | τ ≺1

P τn} ftypeP(f) = ...→ τ ′′ rulehP(b) = f
n≥ 1 ∀j ∈ [1..w]τ0...τn−1τ

′
j , a1...an �

h
P 〈τ ′′j , yj〉

τ0...τn, a1...an �hP 〈u τ′′ τ ′′, 〈τ0...τn, a1...an, f〉∪
⋃
j∈[1..w] yj〉

[Attr-Transf-T]

patthP(τ0...τn−1, a1...an−1, an(τn)) = ∅ τ ′1...τ
′
w = {τ | τ ≺1

P τn}⋃
i∈[0..n] patt

h
P(τ0...τi−1, a1...ai−1, τn) = ∅ attrsP(τn) = 〈∅, ∅〉

n≥ 1 ∀j ∈ [1..w]τ0...τn−1τ
′
j , a1...an �

h
P 〈τ ′′j , yj〉

τ0...τn, a1...an �hP 〈u τ′′ τn,
⋃
j∈[1..w] yj〉

[Val-Transf-T]

patthP(τ0...τn−1, a1...an−1, an(τn)) = ∅ attrsP(τ ′′n ) = 〈a′, τ′′′〉⋃
i∈[0..n] patt

h
P(τ0...τi−1, a1...ai−1, τn) = ∅

∃τ ′′0 ...τ ′′n | ∀j ∈ [1..n] attrsP(τ ′′j−1) = 〈...aj ..., ...τ ′′j ...〉 ∧maphP(τ0) = τ ′′0
n≥ 1 attrsP(τn) = 〈a′1...a′z, τ′〉 τ ′′′′′1 ...τ ′′′′′w = {τ | τ ≺1

P τn}
∀k ∈ [1..z] τ0...τnτ

′
k, a1...ana

′
k �

h
P 〈τ ′′′′k , yk〉 ∧ τ ′′′′k �P τ ′′′k

∀s∈ [1..o]τ0...τn−1τ
′′′′′
s , a1...an �hP 〈τ ′′′′′′s , y′s〉 ∧ τ ′′′′′′s �P τ ′′n

τ0...τn, a1...an �hP 〈τ ′′n ,
⋃z
k=1 yk∪

⋃o
s=1 y′s〉

[Nested-Transf-T]

Figure 11: Determining t-rules

from applying the corresponding transformation (identified
earlier by �!

P) to it via T !
PJeK〈...〉 — in the queue of out-

going expressions. After transformation of the notification
completes, [Ev-Mcast] places it into the “environment” (the
network). Inversely, [Ev-Dlvr] takes a notification in the en-
vironment and, for all processes p′ interested in the respec-
tive event type, adds a corresponding reaction to the process
bodies ([Ev-Dlvr]). Such a reaction is obtained by looking
up the appropriate reaction expression of a considered pro-
cess P for the event type, and substituting the notification
m with transformation T ?

P JmK〈〉 applied to it for the formal
argument of the reaction expression.

5.2 T-Rule Application
Transformation T hP JmK〈τ,a〉 occurs following the nested struc-
ture of notifications m, i.e., from the top of a notification to
its leaves, analogously to t-rule resolution. At path 〈τ, a〉,
we apply the t-rules retained in tapplyhP(τ, a) , by follow-
ing the rules presented in Figure 13. [Ev&Attr-Transf] de-
scribes the transformation at a given path 〈τ, a〉 for which a
transformation function has been determined. [Val-Transf]

deals with the case where there is no such function and the
currently considered value is a primitive one. (In practice we
can recognize such branches earlier and avoid even getting
here.) Finally, [Nested-Transf] describes the case of nested
transformation, which leads to exploring every derived path

P〈...,m e〉 || m || ... −→ P〈..., e〉 || mm || ... [Ev-Mcast]

P〈E[publish(τ [v ])], e〉 || ... −→ P〈E[⊥ [ ]], e T !
PJτ [v ]K〈τ,∅〉〉 || ...

[Ev-Publ]

p′ = {P〈..., ...〉 ∈ p | ∃γ′ γ �P γ′ ∧ γ′ ∈ subsP}
∀P〈..., ...〉 ∈ p′ τp = map?

P(γ) ∧ reactP(τP) = 〈xP , eP〉
p′′ = {P〈e {T

?
P Jγ [v ]K〈γ,∅〉/ xP}eP , ...〉 | P〈e, ...〉 ∈ p

′}
g || p || γ [v ]m −→ g || p′′ || p\p′ || m

[Ev-Dlvr]

fbodyP(f) = 〈x, e〉
f(v) −→P {v/ x}e

[F-Call]
τ [e1...en ].ai −→P ei [A-Acc]

e −→P e′

P〈...E[e]...〉 || ... −→ P〈...E[e′]...〉 || ...
[Congr]

Figure 12: Core evaluation semantics

recursively in the order of declaration of the attributes. To
respect the high-level type mapping, a type change (to τ ′′n )
might be performed when returning back up based on the
mapping of the notification type τ0.

tapplyhP(τ, a) = •
T hP Jτ [ ]K〈τ,a〉 = τ [ ]

[Val-Transf]

tapplyhP(τ, a) = f

T hP JvK〈τ,a〉 = f(v)
[Ev&Attr-Transf]

w> 1 maphP(τ0) = τ ′′0
attrsP(τn) = {a′1...a′w, τ ′1...τ ′w} tapplyhP(τ0...τn, a) = •
τ ′′1 ...τ

′′
n | ∀j ∈ [0..n−1] attrsP(τ ′′j ) = (...aj+1..., ...τ

′′
j+1...)

T hP Jτn [v1...vw ]K〈τ0...τn,a〉 =
τ ′′n [T hP Jv1K〈τ0...τnτ ′1,aa′1〉, ..., T

h
P JvwK〈τ0...τnτ ′w,aa′w〉 ]

[Nested-Transf]

Figure 13: Transformation application

5.3 Type Safety
Now we can proceed to stating type safety for our lan-
guage based on the type system and evaluation semantics
presented.

Theorem 2 (Progress). Suppose e is a closed well-
formed normal form. Then e is a value.

Theorem 3 (Preservation). If P is a well-typed pro-
cess, Γ`p e:τ , and Π||P〈...E[e]...〉−→Π||P〈...E[e′]...〉 then Γ `p
e′ : τ ′ such that τ ′ �P τ.

Theorem 3 follows the common form of preservation theo-
rems, which may seem surprising at first glance in the pres-
ence of transformations including type adaptations. How-
ever, transformations on any given process P are applied to
both incoming and outgoing notifications through function
TPJ...K〈...〉 in an atomic manner regarding their types, and only
when/before they are added to the sequence of expressions
representing P ’s body or outgoing publications respectively.
Thus any expression in any of the two “threads” of a process
maintains its type.

Note though that while types are transformed atomically
(when returning recursively from the nested transformation



– see [Nested-Transf]) the resulting object may still con-
tain expressions that are not fully evaluated, as values of
attributes are replaced by calls to the respective transfor-
mation functions (e.g., f(e)).

Theorem 4 (Global Progress). Suppose two well-typed
processes P and P ′ s.t. map!

P(τ) = γ, map?
P ′(γ) = τ ′,

reactP(τ ′) = 〈x, e〉, and Π =P〈E[publish(τ [... ])], ...〉 || P ′〈...〉 |
| ..., then

Π −→∗ P ′〈...{τ ′′ [ ... ]/ x}e, ...〉 || ... s.t. τ ′′ �P τ ′ with −→∗ the
transitive closure of −→.

As we keep applying the rules of Figure 12, an expression
published by P and “out-mapped” to a type which is “in-
mapped” by P ′ will eventually be delivered in an appro-
priately transformed manner to P ′. The choice to model
in-transit multicast messages as a sequence as in unicast
scenarios [12] despite the increased implementation hard-
ness here is only in support of this theorem; otherwise we
could modify [Ev-Dlvr] to deliver messsages in arbitrary or-
der without affecting our semantics.

6. RECURSIVE TYPES
This section describes simple extensions to the previously
presented model in order to deal with (mutually) recursive
types. Figure 14 summarizes all necessary extensions. Def-
initions or rules named Xrec replace previous definitions or
rules X.

6.1 Design and Syntax
We adopt an approach where transformations are insensitive
to the depth of recursion. For example, we prohibit patterns
like τ0.τ1.τ1 with τ1 a recursive type containing one or more
attributes of τ1. While such t-rules could provide additional
flexibility they jeopardize simplicity: typically programming
languages do not assign special semantics to the actual level
of recursion.

The only syntactic extension necessary for dealing with re-
cursive types aims at being able to limit recursion in expres-
sions. To that end, we simply introduce a null value:

valuerec v ::= m | null

Such a value can be used as a value of any type ([Null-T]

in Figure 14). This seemingly small extension also explains
why we introduce recursive types separately: our previous
theorems for progress will trivially be violated.

6.2 T-rule Resolution and Application
When identifying applicable transformations for a path end-
ing in a recursion we can make the same simplifying obser-
vation as earlier: if there was a t-rule applying to the same
path modulo the recursive part then that t-rule would have
been identified already for that prefix and the correspond-
ing transformation would have been applied, preventing us
from reaching this point. As a consequence, when discov-
ering a recursion in a fully qualified path, we can simply
assume that the same t-rules (if any) will apply to the indi-
vidual attributes recursively and we can halt the resolution
at this point. This corresponds to the unfolding of recursion

∃i recur (τ0...τn, a1...an, i, n)

τ0...τn, a1...an �hP 〈>, ∅〉
[Rec-Transf-T]

∃irecur (τ0...τn, a1...an, i, n)

tapplyhP(τ0...τn, a1...an) =
tapplyhP(τ0τi−1τn, a1...ai−1an)

[Rec-Transf]

i < j τi �P τj
recur (τ0...τn, a1...an, i, j)

[Cycle]

Γ`P null :τ [Null-T]

tapplyhP(τ, a) = •
T hP JnullK〈τ,a〉 = null

[Null-Transf]

A

C [R-Transf-T] R∈ {Attr,Nested,Val}

A @i recur (τ, a, i, n)

C [R-Transf-Trec]

[Rec-Meta-Transf-T]

Figure 14: Extended syntax and rules for dealing with re-
cursive types. Definitions of the form Defrec replace the re-
spective definitions Def. Rule [Rec-Meta-Transf-T] shows
how to simply extend the respective rules from Figure 11

with iso-recursive types. [Rec-Transf-T] captures this. The
rule makes use of the definition of a cycle of types (recur (),
[Cycle]) of which each has an attribute of a super-type of
the next type in the cycle, which represents the general case
leading to recursion here.

Note that we introduce a “top” type > which is a subtype of
any type, thus turning any type hierarchy in our language
into a lattice. > is not actually used to ever type anything,
but only to represent the absence of a t-rule and thus a target
type for the transformation. Whenever taking the lub of >
any other type τ (u τ>), we trivially obtain τ . If no other
t-rule is identified then > will allow us to correctly pass the
conformance check with any mapped type ([Map-OK]). At
runtime, this case means that no transformation is taking
place so no type conversion to > will be attempted.

Several rules from Figure 11 have to be augmented to avoid
conflicts with [Rec-Transf-T]. The extension is however sim-
ple and always the same, consisting simply in verifying the
absence of a recursion in the current path. To save space,
rather than repeating the respective rules with the small
change, we represent the changes through a“meta-rule”([Rec-

Meta-Transf-T]) that describes substitute rules [...-Transf-

Trec] for the respective [...-Transf-T] rules: the same premise
@i recur (τ, a, i, n) for testing absence of cycles is added to
the respective existing preconditions A while leaving the cor-
responding conclusion C unchanged.

Based on the above observation, when applying t-rules at
a given path exhibiting a recursion ([Rec-Transf]), we only
need to consider t-rules for the same path without the re-
cursive part (folding). Finally, [Null-Transf] is necessary
to deal with null values at runtime to avoid further nested
transformation attempts.

6.3 Type Safety
The following progress theorem is adapted from Theorem 2
to account for null values introduced to support recursive
types.

Theorem 5 (Recursion Progress). Suppose e is a
closed well-formed normal form. Then e is a value or ∃E |



e = E[null .a].

This theorem does not distinguish between (a) any null .a ex-
pressions being generated — by mistake — by the transfor-
mation evaluation rules or (b) those generated by programs
(e.g., by absence of non-null checks in process and reaction
bodies, or from transformation functions f returning such
values). The only new evaluation rules introduced to sup-
port recursive types are [Rec-Transf] and [Null-Transf].
Since it is easy to see that these rules do not introduce ex-
pressions of the form null .v themselves, and inherited rules
are used in fewer cases ([Rec-Meta-Transf-T]), the only
cause for such expressions are (b).

7. IMPLEMENTATION AND PERFORMANCE
In this section we show that the native implementation of
our approach is (a) much faster than an analogous library
implementation based on reflection and (b) as effective as a
manually coded transformations in application components.
We also show that (c) the application of transformations
closer to producers, enabled by our eager resolution, fur-
ther improves performance. We use a micro-benchmark, the
SPECjms2007 [3] benchmark, and a benchmark with a typ-
ical workload from our motivating applications.

7.1 ACTrESS
ACTrESS (“Automatic Context Transformation for Event-
based Software Systems”) implements our approach for the
Java programming language. ACTrESS is built on top of Ac-
tiveMQ [21], a fast, reliable JMS [4] broker. Our approach
is implemented as a plugin for easy adaptation to other sys-
tems or languages. It intercepts event notifications passing
through the broker and transforms them according to a t-
rule set. Functions f used by transformations are methods
invoked on notifications or their attributes, or static meth-
ods. Our prototype generates a class containing transforma-
tion code after analyzing t-rules and notification types.

7.2 Evaluation Setup
We compare our approach in the following against a library-
based approach in which each incoming notification is an-
alyzed with Java reflection, via which transformations are
applied accordingly. This is how a library implementation
would work, as it has to process notifications of (yet) un-
known types. On the upside, this allows new types to be
straightforwardly added at runtime. However, our experi-
ence shows that new or changed notification types are rare
compared to the number of notifications that are processed.
In addition, upon encountering a new notification type in a
given process, the corresponding class has to be downloaded
regardless before a corresponding instance can be used, and
this gives time to recompile and dynamically load the plugin
in our case.

To better analyze sources of overhead we ran experiments
in a distributed setup as well as in a local one. For the
distributed setup, we ran the ACTrESS broker (cf. commu-
nication substrate, Figure 1) on a server with two Intel Xeon
Quad-Core with 2.33GHz each and 16GB RAM. Workload
producers (prodi) and several data collectors (consi) were
run on a server with four Intel Xeon Dual-Core with 3.4GHz
each and 16GB RAM. Using the more powerful machine for

workload production ensures that performance results are
not influenced by a weak client. In the local setting, broker
and clients ran on the same machine. We use this setting to
see beyond network contention and latency.

We compared four setups: in none, brokers just access no-
tification content (as in current content-based notification
systems) but do not perform any transformations, assum-
ing all parties agree upfront on types; compile transforms
notifications according to our approach, while reflect uses
reflection for transformation resolution and application. Fi-
nally, in the baseline case brokers simply forward notifica-
tions without accessing their content.

Table 1: Maximum throughput (in 1000 notifications/s)

Generated SPECjms2007 Logistics

base 22.5 (100%) 16.8 (100%) 63.7 (100%)
none 20.8 (92%) 14.1 (84%) 55.4 (87%)
compile 20.7 (92%) 13.4 (80%) 53.6 (84%)
reflect 11.2 (50%) 5.4 (32%) 23.1 (36%)

7.3 Micro-Benchmark
The micro-benchmark uses a generated workload to see the
influence of various parameters on the performance and push
the system to its limits. We let our experience from the
projects mentioned in Section 1 guide the benchmark design
to get a well-grounded workload: we assume up to ten con-
sumers per producer that need to have events transformed
to correctly interpret them. This is a realistic value for a
logistics provider operating world-wide. If there are more
consumers for a given producer, intermediate nodes (e.g.,
brokers) are typically used as relays.

Native support vs. reflection.. The maximum throughput
for none and compile is nearly the same, with differences
within measurement error. The maximum throughput for
reflect is about half as much across all configurations. base
achieves about 8% more throughput than none or compile
(see Table 1 for details). Figure 15a shows the latencies of
the different scenarios with varying numbers of consumers.
Again, there is no observable difference between none and
compile. reflect however introduces additional latency which
grows in relation to the other two approaches, reducing its
scalability with respect to our approach. base has only half
the latency of none and compile, as it need not access noti-
fication content. All three approaches scale similarly.

To better dissect the results, we ran the same experiment in
a local setting (see Figure 15b) with notification system and
producers/consumers on the same machine. As expected,
the maximum throughput is generally a little lower than in
a distributed environment because now one machine has to
do the whole work, leading to local contention. The relative
throughput performance between the scenarios is the same
as above. The latency analysis however shows that the dif-
ference between reflect and the other two scenarios is much
higher now, with reflect being ≈10 times slower. Major
parts of this overhead are thus masked by network latency
but as illustrated in the distributed setup the difference is
still clearly measurable. This analysis also shows that our
approach is as effective as manual transformations in appli-
cation components or an a priori agreement on types, since
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Figure 15: Performance results. Confidence intervals are omitted for readability. 90% percentiles were all within 5% of the
values reported

we do not add any measurable overhead with respect to no
transformations taking place (none).

Complexity of events.. We also evaluated the influence of
the complexity of event notifications. To that end we added
ten attributes to the five attributes which the events already
had. We added these attributes both in a “flat” manner and
by increasing nesting levels. Figures 15c and 15d show the
latency under the respective modifications (throughput is
only marginally affected). More attributes generally increase
the latency, accounting for the greater (de)serialization effort
(base is much less effected). However, a flat event hierarchy
affects reflect much more than the deep hierarchy (note the
different scale on the ordinate). In fact, none and compile
perform better with a flat hierarchy than with a deep one,
while reflect performs better in a deep hierarchy compared
to a flat one in the same approach (the steep increase at
the right side of the graph does not continue for a higher
consumer count). Our experience shows that events do not
exhibit deep nesting levels, accentuating the advantages of
our approach.

Transforming closer to the producer.. Our approach of
explicitly denoting transformations allows transformations
to be pushed closer to producer, which is desirable in dis-
tributed publish/subscribe systems. We thus compared the
transforming of notifications close to the producer with the
same transformations happening at each consumer consi.
As the results show, being able to push the transformation
close to the producer leads to huge gains in throughput (Fig-
ure 15e) and latency (Figure 15f).

7.4 SPECjms2007 Workload
The SPECjms2007 [3] standard benchmark specifies a work-
load where distribution centers, headquarters, and suppliers
form a complex supply chain and interact via various inter-
company notifications. A distribution center starts an in-

teraction by sending a notification that asks for offers for a
specific product; this notification triggers a number of addi-
tional notifications sent between different participants. We
designed a workload following SPECjms2007. Notification
types are taken directly from the specification. Transforma-
tions include addresses, distances, and currency.

Figure 15g shows the latency for different publishing rates.
Please note that the ordinate has a logarithmic scale. As the
figure shows, reflect adds significant latency overhead com-
pared to our approach. This is an indicator for the increased
computational effort of the reflection-based approach. Ac-
tiveMQ cannot cope with higher notification rates due to
this additional effort; notifications are stalled as they can-
not be processed right away, accounting for the steep latency
increase. The start of the steep increase also indicates the
throughput limit. A higher notification production rate will
just cause more notifications to become stalled, resulting in
exponential increase of latencies.

Scenarios none and compile achieve more than double the
throughput, while base achieves even slightly more notifica-
tions per second (see Table 1 for details).

7.5 Traffic Information
The third benchmark is a traffic information scenario with
many participants and lightweight notifications [17]. The
key idea in this scenario is to monitor traffic and pass that
information to interested consumers: emergency cars, police,
and (for a fee) taxis or logistics providers. The logistics
provider from our example thus needs to understand traffic
information formats for all serviced cities.

Traffic sensors report traffic densities to a traffic information
center. This center aggregates the information and sends
update events to information boards distributed throughout
the city. The aggregated information is also passed to cars
which need up-to-date traffic information. Transformations
include string conversions and translation of latitude/longi-



tude coordinates and addresses.

The results of running this workload at different notifica-
tion rates (see Figure 15h) are consistent with the previous
results: our approach does not add any measurable over-
head compared to the approach that does not perform any
transformations. reflect however adds overhead which fur-
ther increases with the notification rate. This results in a
reduced maximum throughput.

In summary, our approach achieves the same flexibility as
a reflection-based approach, but with much better perfor-
mance and with better guarantees. In all investigated sce-
narios, analyzing the t-rule set and generating the trans-
formations class took less than 100ms. The performance
decrease of our approach with respect to the baseline can
be explained almost completely by the overhead of access-
ing event notification content, which a more expressive (i.e.,
content-based) broker would have to do anyway. The dif-
ference decreases with more complex workloads, while the
difference to a reflection-based approach increases.

8. RELATED WORK
Cluet et al. [9] address the issue of integrating heteroge-
neous data sources by proposing a rule language for con-
version between various data representations. The system
is designed for request/reply communication while we focus
on data distributed via publish/subscribe, i.e., following a
multicast model. In publish/subscribe systems subscribers
may not know the origin of data, thus one cannot simply
compare two communication endpoints. Cilia et al. [8] pro-
pose a solution to deal with heterogeneous data sources in
publish/subscribe systems. The model does not guarantee
soundness.

Foster et al. [11] present a bi-directional tree transformation
approach. Their transformations allow to mediate between
different views of same data where updates are applied back-
wards to the original data. In contrast, our system purposely
supports one-directional transformations. Every subscriber
gets its own copy of a notification and transformed notifica-
tions are not meant to be shared unlike documents. Thus
there is no requirement to propagate changes backwards to
source objects.

HydroJ [13] extends Java with relaxed conformance on nested
semi-structured events exchanged between processes. Hy-
droJ focuses on unicast communication and extends the host
language syntax and type system. In contrast, our approach
can be employed without modifying the syntax of a host lan-
guage. Due to the semantics of references and 1-1 messages
in HydroJ there’s a clear binding between caller and callee
sites, enabling simple verification of conformance. An ar-
chitecture for structural subtyping in distributed multicast-
based systems is described in [16]. The approach refrains
specifically from extending any programming language and
to that end promotes the use of hash maps to convey events
in the form of 〈key, value〉 pairs. This simplifies the design
of the multicast infrastructure but puts all the burden on ap-
plication developers as these need to manually inspect and
marshal/unmarshal events at generation and reception. As
with other structural typing models, semantic transforma-
tions (e.g., enrichment) are not supported.

In Hashtypes [14] type representations are hashed, includ-
ing “contents” of instances, function signatures in modules,
etc. These hashes are propagated at runtime together with
corresponding objects. Flexibility is increased by allowing
programmers to indicate which constituents are relevant for
comparison (e.g., equality on module names). Hashtypes
are refined in [10] with a notion of subtyping to accom-
modate also unidirectional transformations. The approach
supports partially abstract types in the form of bounded ex-
istentials. Subtyping in this model hinges on a notion of
subhashes, which are computed and disseminated at run-
time. Hashtypes do not support value transformations (e.g.,
unit conversions) or enrichment.

Distributed extensible type encoding [6] is orthogonal to our
work and can be used to extend the global type set g in
practice.

Monsanto et al. [15] present a language for programming
routing infrastructures supporting the paradigm of software-
defined networking. The language is used to express packet
forwarding policies, and a compiler generates code for ef-
ficient execution on switches. This approach is similar in
spirit to ours yet targets a different problem domain. Packet
forwarding rules are typically not able to capture transfor-
mations; inversely, our language does not aim at express-
ing algorithms for efficiently matching notifications to a set
of different subscriptions. This is the responsibility of the
application-level routing protocols in ACTrESS which are
fixed.

Our process model bears superficial similarities with Ac-
tors [5]. It serves mostly as a vehicle for the introduced
transformation semantics that constitute our main contri-
bution. Similarly, we have refrained from expressing our
transformation semantics through the notion of cells of the
m-Calculus [20]. While its membranes could be used to cap-
ture transformations, our model is simpler yet sufficient and
matches much closer the targeted object languages.

9. CONCLUSIONS
We have introduced a foundational model for networked
distributed applications in which types are federated. Our
model is generic in that it supports the whole spectrum of
transformations including enrichment of events and allows
other type conformance models to be implemented atop; it
is flexible by supporting fine-grained expression of transfor-
mations as opposed to monolithic ones. Last but not least,
our approach is safe, by promoting clear semantics for trans-
formations, whose application is validated, and enforced.

We are currently investigating extensions to our model in-
cluding multiple subtyping, or facilitating nested transfor-
mations by allowing the transformation process to be ex-
plicitly (re-)invoked from within transformation functions.
Our implementation includes an identity function (cf. Sec-
tion 2.3) which is polymorphic in that its return type is the
same as that of its argument.
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A. Buchmann. Dealing with Heterogeneous Data in
Pub/Sub Systems: The Concept-Based Approach. In
DEBS 2004.

[9] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your
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