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Abstract. With the increase of automatically sensed and generated
data in distributed software systems, the publish/subscribe paradigm
gains importance. Automatically generated notifications are pushed from
their publishers to interested subscribers. Interoperability is a core issue
in such federated networked distributed applications. However, the prob-
lems of heterogeneity must be reconsidered in the light of tougher condi-
tions than previously: low latency delivery in addition to expressiveness
and extensibility.
To aid in engineering federated distributed systems, this paper proposes
a framework for object transformations. Components can operate in in-
dividual, semantic contexts, which include local type declarations, fine-
grained transformation rules (t-rules), and type mappings that express
the programmer’s intent at a high level. Our generic approach supports
transformations at any granularity using clear priorities to select among
complementary t-rules.
We present empirical evidence of the efficiency of our approach and of
the benefits to the programmer in terms of code quality.

Keywords: Heterogeneity, Publish/Subscribe, Semantic Decoupling, Transfor-
mations, Events

1 Introduction

In today’s distributed software systems, vast amounts of data are generated and
processed automatically, such as the tracking of goods by continuous updates
called event notifications. Due to the high frequency of such data, distribution
to clients must happen automatically based on client interests. This makes im-
plicit invocations [32,39] (publish/subscribe – pub/sub [29]) the paradigm of
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choice. In these systems, subscribers express their interests in data in the form
of subscriptions. Broker nodes route matching notifications from publishers to
the appropriate subscribers. Communication thus happens in an n-to-m fashion
without direct references between communicating components. The federated
software systems supporting these communications are loosely-coupled, highly
heterogeneous and developed by many parties.

Heterogeneity is approaching. The need for such systems becomes apparent
in today’s economy, where large-scale software systems manage complex supply-
chain networks. Cooperation happens across the globe between companies of
different countries, cultures and structures. Software systems generate a huge
amount of information that has to be distributed in business real-time among
software components in a flexible way. For example, today’s complex supply
chains involve many companies world-wide; production strategies like just-in-
time production have strongly increased the need for continuous low-latency
flows of information between participants in a chain (e.g., monitoring transported
goods) [13].

The continuing globalization of the economy1, along with disruptive trends
like the Internet of Things or ubiquitous computing resources promoted by the
cloud paradigm and availability of event notification systems for clouds (e.g.,
Amazon Simple Notification Service [1]), will lead to more heterogeneous push-
based distributed systems [20]. Similarly, the proliferation of social networks
interconnecting people with different cultural backgrounds and the use of noti-
fication services for communication therein (e.g., LinkedIn’s Kafka [7]) further
supports the trend.

Integration is challenging. The problem that arises in such heterogeneous
environments are different data representations and data semantics of compo-
nents. Local interpretations – contexts – differ based on geographical, cultural,
legal, but also technical reasons. Programming languages differ in their notions of
types, and even within a language, two sets of modules developed independently
are not always easily integrated, e.g., due to single inheritance [12]. However,
without correct interpretation of data, proper matching of event objects to sub-
scriptions will fail as the anonymous n-to-m interaction between the components
does not reveal intended bindings. Integration of information flows between pub-
lishers and subscribers is challenging as it must fulfill a number of requirements:

Expressiveness. Mediating between different unit systems (e.g., Fahrenheit and
Celsius) requires value-based transformations. Many entities are encoded with
several attributes, without 1:1 correspondances between types (e.g., Carte-
sian and Polar coordinates), and certain integrations might involve adding
attributes (e.g., adding an attribute with a default or null value such as the
state for a European surface mail address in US format).

1 Our two ongoing research projects DynamoPLV(http://www.dynamo-plv.de) and
EMERGENT(http://www.software-cluster.org) investigate such scenarios
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Efficiency. Given the high rates at which event objects are published, mediation
must take place on the fly with low latency.

Adaptability. The considered systems need to be able to accomodate joining and
leaving of client components. Such changes can also engender new kinds of
integrated data. Given the size of these systems, stopping them to add new
components or also to modify existing integration rules is infeasible.

In addition, it should of course be easy for a programmer to express how
integration has to happen. Existing approaches do not address all of these re-
quirements to the full extent, as detailed in Section 7.

Transformation supports integration. In this paper we propose a frame-
work for programming federated distributed software centered on object trans-
formations. In our approach, we assume that each component (i.e., subscriber,
publisher or pub/sub broker) resides in its own semantic context that involves a
set of (abstract) parameters (e.g., country, programming language, development
team) which governs how the component interprets event objects. We advocate
a facility to define contexts including (1) local types, (2) fine-grained declarative
transformation rules (t-rules) to specify the desired transformations between
types, and (3) high-level type mappings expressing the programmer’s intent and
used to verify that the t-rule application yields consistent outcomes. Figure 1
shows an overview of our approach. Contexts can be extended at runtime and
reused across components.

Our intermediary model avoids defining every possible transformation from
any publisher to any subscriber, in a way similar to the Canonical Data Model
in Enterprise Application Integration [22]. Thus we avoid n ×m complexity of
the transformation set and keep the set maintainable. This does not sacrifice
adaptability however, since we do not require that the Canonical Data Model
is established a-priori. Instead, it can be extended and modified at runtime by
defining new contexts and compiling rule-sets on the fly. In fact, an interme-
diary model decouples publishers and subscribers further in that changes to a
publisher’s context (i.e. its transformation rules) do not affect its subscribers.
Our model does not make assumptions on the specification language and is thus
language-agnostic.

Contributions and roadmap. In this paper we

1. present an expressive and extensible model for federated software systems
targeting mainstream programming languages used for such applications
(e.g., C++, C#, Java) centered on transformation rules (t-rules);

2. introduce contexts as a reusable, higher-level abstractions of transformations,
providing easy maintainability;

3. describe the implementation of our model in the ACTReSS system [19] based
on the popular open-source ActiveMQ [37] event broker;
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Fig. 1. Architectural overview. Producers (prodi) send messages to consumers (consj)
through a pub/sub system. Each client supplies a set of mapping rules between the
global types and its local types (local types and rules omitted for some clients for
presentation purposes).

4. evaluate our implementation. We demonstrate how extracting and consoli-
dating transformation code improves efficiency compared to an equally adapt-
able and expressive approach without inherent support, i.e., based on reflec-
tion, and equal efficiency to manually coded transformations at client compo-
nents; we also show that code quality, in particular upon adaptation, is much
improved compared to manual coding or monolithic object transformations
based on existing frameworks.

In a companion report [17] we formalize a subset of our model supporting
only single subtyping and prove its soundness. An earlier implementation of
our ACTrESS prototype was presented in a previous publication [19] without
breaking down contexts into t-rules and type mappings – the main artifacts
that a system software engineer must deal with – and detailing their syntax and
semantics. Evaluation elided costs for extension or code quality improvements.

The remainder of this paper is organized as follows. Section 2 presents pre-
liminary information. Section 3 presents t-rules through intuitive examples. Sec-
tion 4 details contexts with particular focus on their relationships and type
mappings. Section 5 presents the implementation of our model in ACTrESS.
Section 6 evaluates its benefits. Section 7 discusses related work and Section 8
draws conclusions.

2 Preliminaries

We outline the notions of objects and transformations considered in this paper,
using Figure 2 for illustration. Please note that for presentation purposes, the
given example is small; our model allows for more complex transformations.



InvoiceLine
Money amountToPay

string currency
float amount

Money price
string currency
float amount

ItemSpecification spec
float height
float width
float depth

[ = "euro" ]
[ = 100 ]

[ = "euro" ]
[ = 100 ]

[ = "usd" ]
[ = 125 ]

[ = "euro"]
[ = 100 ]

r1: ItemSpecification  toUSItemSpecification

r2: InvoiceLine.Money toDollars

r3: InvoiceLine.price toIdentity

[ = 1 ]
[ = 0.5 ]
[ = 0.3 ]

[ = 39.37 ]
[ = 19.69 ]
[ = 11.81 ]

InvoiceLine USInvoiceLine

USInvoiceLine
Money amountToPay

string currency
float amount

Money price
string currency
float amount

USItemSpecification spec
float height
float width
float depth
float weight [ = 172.5 ]

!

Fig. 2. Sample transformation. InvoiceLine and USInvoiceLine are context-specific interpre-
tations of same objects. Note that currency is typically encoded explicitly, but units
for other values are almost never encoded. Simplified transformation rules (t-rules) and
type mappings are illustrated on the right.

2.1 Objects

We consider event objects in the general form of typed records of attributes.
More precisely, such an object is an instance of a (complex) type (z denotes a
sequence z1 ...zn):

Definition 1 (Type) A type T is either a primitive type or a complex type
declared as T extendsT 1,...,Tn [a1 :T ′

1, ..., aw :T ′
w ]. T are super-types (complex) of

T . T ’s attributes include those of all its super-types as well as a.

Thus, in a nested fashion, attributes of event objects can be objects. For ex-
ample, InvoiceLine [δ ] would represent an event object of type InvoiceLine defined
in Figure 2. The record [δ ] contains a sequence of objects corresponding to the
attributes of InvoiceLine (i.e., amountToPay, price , spec) which are of respective
types defined by InvoiceLine (Money, Money, and ItemSpecification ). We consider
all transferred objects to be values, and thus our considerations also apply to
other remote communication models with value semantics (references are usually
built atop [5]). Note that an event object is an object but not every object is an
event object.

We omit member functions/methods from types as our approach does not
require those to be defined as part of types. The function attrs (T) returns the
attributes a of type T with their respective types T. T � T ′ means that T is a
subtype of T ′, i.e., T has been explicitly declared as a subtype of T ′, or one of
the super-types of T is a subtype of T ′. Our approach does not depend on the
way in which attribute name clashes are handled.

2.2 Transformations: An Intuition

A very simple form of transformation of objects consists in modifying values of
attributes which are of specific primitive types such as floats. These attributes
can have a unit associated with them, e.g., meters or inches (cf. height, width and
depth of InvoiceLine .spec in Figure 2). A similar case are conversions of primitive
values between different architectures or platforms. On the other end of the spec-
trum of transformations, an object may be transformed in a way which affects



its internal structure, e.g., by merging multiple attributes, dropping attributes,
and instantiating new ones (cf. weight of USInvoiceLine.spec in Figure 2). Any
combination of these may be used to deal with versioning – by adding version
numbers to type names and describing corresponding transformations.

There are different dimensions along which one can divide the space of object
transformations. Section 7 further dissects this space in order to relate existing
work to our proposed approach. The goal in our present work is to support (a)
fine granularity – transformations on any attributes, at any nesting level, in
objects; (b) strong completeness – function-based stateful transformations. (a)
and (b) together yield the required expressiveness (see Section 1), while efficieny
is supported by a decentralized application of transformations. These features
as well as adaptability and ease of use are achieved by our design outlined in the
following sections.

3 Transformation Rules

We introduce our approach to contextualization by starting from transforma-
tions which currently are dealt with in a very explicit manner by programmers.
We follow the example of a logistics provider operating world-wide who has to
communicate with customers from different countries.

3.1 Overview

Our model is centered around declarative transformation rules (t-rules) which
minimize the necessary specifications and align well with programmers’ mental
models. These t-rules apply a given transformation function to attributes in
event objects. The application of these transformations proceeds in a top-down
fashion following the nested structure of event objects. Conceptually speaking,
in example from Figure 2, imagine an object of type InvoiceLine being traversed
attribute-wise, i.e., amountToPay, price , and finally spec, and any corresponding
resolved t-rules being applied. If Money is a composite type, then the attributes
of amountToPay are traversed recursively (depth) before proceeding with price

(width). At any point in the transformation process, we thus consider one path:

Definition 2 (Fully qualified path) A fully qualified path is a 2-tuple 〈T0 ·
... · Tn, a1 · ... · an〉 such that ∀i ∈ [0..n − 1], attrs (Ti)= 〈...ai+1..., ...T

′
i+1...〉 and

Ti+1 � T ′
i+1.

A (fully qualified) path thus unambiguously and correctly denotes a given
attribute within event objects. A prefix of a path (e.g., 〈T0 ·T1, a1〉 for 〈T0 ·T1 ·
T2, a1 ·a2〉) is a path itself. Next we elaborate on how to describe t-rules and how
they apply to paths.



3.2 Separating Patterns and Functions

The logistics provider from our example receives the specifications for the items
to be transported from its customers. However, specifications do not have a
standard format and even simple things like units vary between countries or
even individual customers.

Intuitively, we would like the ability to define “default” transformations for
certain types. Suppose a software service calculating the price for transporting
goods. As part of the calculation, it processes instances of ItemSpecification which
contain information in a specific combination of units (e.g. meters for height,
width, and depth). After the calculation, the logistics provider sends the price
along with these specifications to its customers. A US customer needs these
properties in Imperial units (e.g., inches) rather than the logistics provider’s
format. A t-rule to transform all such attributes in all event objects could be
simply expressed as (cf. r1 in Figure 2):

ItemSpecification B toUSSpecification;

t-rules are thus of the following form

Definition 3 (Transformation rule) A transformation rule (t-rule) is of the
form p B f where p is a pattern delineating a set of attributes in event type(s)
and f refers to a function.

Functions are used to transform at any path which the pattern applies to, and
are defined separately from t-rules. This separation between patterns and func-
tions is key to expressiveness and ease of use. In an object-oriented programming
language such as Java, functions are typically methods on transformed objects
(e.g., p B m with m an instance method in the type expected from p) or static

methods (e.g., p B C.m). In the example above toUSSpecification refers to a func-
tion which takes an instance of ItemSpecification as its argument and produces
an instance of an analogous type USItemSpecification, which is local to the present
context:

USItemSpecification toUSSpecification ( ItemSpecification is )
{ return new USItemSpecification (...); }

We will unveil the details of patterns as we move on and present a precise
definition after that.

3.3 Types and Nesting

For convenience we let a pattern like the above apply at any nesting level within
a type. Specifically, the pattern applies to any attribute of type ItemSpecification

at any depth in event objects of any type.
There are cases where we want to leave certain attributes in specific event

types unchanged (or apply a different transformation function). For example,
customs declaration papers require the same units as the logistics provider usu-
ally uses. In this case, the logistics provider does not want to transform the



item specification, but just use it as it is. To achieve this, we can qualify more
precisely where to apply this sort of transformation. The following t-rule

CustomsDeclaration.ItemSpecification B toIdentity;

would apply an identity function (omitted here for brevity) to attributes of type
ItemSpecification in CustomsDeclarations.

To overcome the cumbersome task of enumerating all event types which con-
tain attributes of type ItemSpecification , we introduce priorities among rules.
If we combine both t-rules above into one t-rule set, the second t-rule over-
rides the first one for CustomsDeclaration events. All other attributes of type
ItemSpecification are transformed according to t-rule r1 as depicted in Figure 2.
This conveys the first intuition underlying our design: rules with more specific
patterns override rules with less specific ones. In the above example,
CustomsDeclaration.ItemSpecification overrides ItemSpecification . Specificity here trans-
lates to length, or, in other terms, nesting level.

As mentioned we consider patterns ending in types to apply to all occurrences
of that type in deeper nesting levels. That is, one can picture InvoiceLine .Money

as representing InvoiceLine .∗Money where ∗ can match any (possibly empty) infix.
This seems natural when looking at the generic transformations specified in the
preceding examples. We apply this variable nesting level only at the last type in
a pattern though, prohibiting something like TopLevelType.∗LevelX.∗LevelY. More
expressive patterns could be envisioned by removing this constraint but this is
likely to come at a substantial cost in terms of simplicity for the programmer.

3.4 Attributes

Transforming by type only is sometimes too general. Consider the type InvoiceLine

of Figure 2, which represents a single line on an invoice and contains the item’s
specifications and the cost for delivery (with its own Money type). Assume that
the logistics provider needs this amount in its currency for internal bookkeeping.
However, customers want this amount in their respective local currencies. Thus
we cannot treat every attribute of type Money the same way.

We consequently support references to attributes as another element in pat-
terns for t-rule application. The t-rule

InvoiceLine .amountToPay B toDollars;

applies the following function

Money toDollars(Money m) {
if (m.getCurrency() == ”euro”) {

m.setCurrency(”usd”);
// getRate() might depend on the current time and other state
m.setAmount(m.getAmount() ∗ getRate(”euro’’,’’usd”));
} else if (m.getCurrency() == ”yen”) {...}
...

return m;
}



to only the amountToPay attribute of events of type InvoiceLine . Other attributes
of type Money in an InvoiceLine or any other type are left unchanged (cf. Figure
2). Even if succeeded by a less specific t-rule which mandates that all Money

attributes be transformed to include taxes, such as in the t-rule set

InvoiceLine .amountToPay B toDollars;
Money B addTaxToMoney;

attribute amountToPay would be transformed via toDollars and not addTaxToMoney.
We believe that this is a much more natural semantics than declaration order

alone. The reasoning behind this second form of precedence consists in prioritiz-
ing instances over types on otherwise comparable patterns, i.e., attribute-level
declarations over type-level declarations. The outcome above would be identi-
cal if the second t-rule used the pattern InvoiceLine .Money to define a default
translation of all money attributes in type InvoiceLine .

3.5 Subtyping

Subtyping is a fundamental concept in programming languages. With nominal
subtyping, in our model, any event object can at any nesting level have an
attribute a carrying an instance of a type T ′ which is a subtype of a’s declared
type T (T ′ �P T). With that in mind, it seems natural to allow the programmer
to define t-rules which are subtype-sensitive. For instance, we might define a
type WeightedItemSpec which extends ItemSpec by adding an attribute weight of
type float , and define a corresponding specific rule

InvoiceLine .spec(WeightedItemSpec) B ...;

Among a set of alternative patterns it seems natural to follow subtyping level,
i.e, pick the one which refers to the most derived type at a point of comparison.
For example we select the above rule over one with pattern InvoiceLine .spec(

ItemSpecification ),or InvoiceLine .spec for short, for an attribute weight of dynamic
type WeightedItemSpec in an InvoiceLine . Note though that, unlike in dynamic
method dispatching [10] this selection itself is not done dynamically; as we will
elaborate on in Section 5, relevant t-rules are resolved before actually being
applied.

In conclusion from the above, we can now proceed to more formally specifying
the shape of patterns:

Definition 4 (Pattern) A pattern p = T.q1.....qn consists in a type reference
T followed by a (possibly empty) sequence of qualifiers, and denotes attributes
in event objects. A qualifier refers either to all attributes with a given type ( type
qualifier T ) or to a given attribute “a” with a given type T ( attribute qualifier
a(T)).

We only consider valid patterns. That is, for any prefix T.q1.....qi.qi+1 in such
a pattern, let T i be the type of qi:

– if qi+1 is a type qualifier Ti+1 then T i contains at least one attribute of type
Ti+1;



– if qi+1 is an attribute qualifier ai+1(Ti+1) then T i contains an attribute ai+1

of a super-type T ′
i+1 of Ti+1.

As already alluded to, we allow attribute qualifiers to be declared without
type, e.g., T .q.a instead of T.q.a(T ′). In this case we adopt a’s type according
to its pattern prefix T .q.

3.6 T-Rule Resolution

The three ideas on precedence (nesting level, instances over types, subtyping
level) can conflict. For example a deeper nesting level of a type qualifier vs. an
attribute qualifier.

We use the following priorities for competing t-rules. While P1-P3 summarize
the precedences we introduced in Sections 3.3-3.5, P4-P6 specify how to resolve
conflicts between these.

P1 Nesting level: A natural choice consists in considering nesting level as priori-
tizing measure among patterns (see Section 3.3). Deeper nesting levels trans-
late to more detailed knowledge about data-structures and thus to more spe-
cific behavior. Thus a t-rule with the pattern T0.T1 will be chosen over one
with pattern T1 for attributes of type T1 at a path rooted at a type T0.

P2 Instances over types: Another intuitive choice (see Section 3.4) consists in
giving attribute qualifiers priority over type qualifiers. Thus T0.a1(T1) is cho-
sen over T0.T1 for attribute a1 in an event of type T 0.

P3 Subtyping level: A third intuitive choice (see Section 3.5) is to consider for
any otherwise equivalent patterns the ones which use qualifiers with the most
derived types: with T ′

1 a strict subtype of T 1, T0.a1(T ′
1) is chosen over T0.a1(T1).

P4 Subtyping order: In languages like C++, C#, or Java, in which many feder-
ated distributed systems are developed, a type can have multiple super-types.
This leads to tie-breaking issues similar to those encountered for multiple in-
heritance (e.g., selection from multiple methods with equivalent signatures).
For instance, there might be two patterns (a) T0.T

′
1 and (b) T0.T

′′
1 which both

apply to a path 〈T0 · T1, a1〉 where T 1 is a subtype of both T ′
1 and T ′′

1 . As-
suming that the subtyping level of T 1 is the same with respect to T ′

1 and T ′′
1

(otherwise P3) takes over, we consider the order of subtyping declarations for
breaking ties. For instance, with T1 extendsT ′

1, T
′′
1 ... (a) will be chosen.

P5 Instances over nesting level: We need to break ties between P1 and P2). As-
sume that we are transforming at a path 〈T0 · ... ·T3, a1 ·a2 ·a3〉. Now consider
two matching patterns (a) T0.a1(T1).T3 and (b) T0.T1.T2.T3. Clearly, (a) is
more specific than (b) according to P2, but (b) has a deeper nesting level than
(a) which thus far prevails according to P1. Even if there are no attributes of
type T 3 immediately in a1, T 3 is expressed for that prefix T 0.a1(T1) which is
more specific than the corresponding prefix T0.T1 in pattern (b), and thus (a)
is prioritized.

P6 Subtypes over instances: We also need to break ties between P3 and P1, and
between P3 and P2. Both ties are broken by favoring subtyping over instances



(P3 over P5): we consider first a qualifier’s type and then only whether it refers
to an attribute or a type. Thus when comparing a type qualifier T with an
attribute qualifier a(T ′) we prioritize the first if T is a strict subtype of T ′;
inversely the latter. If T = T ′ we follow P2, i.e., favor the latter.

A formal characterization of t-rule resolution semantics and arguments for
its type safety are the subject of [17].

4 Contexts

This section defines contexts and higher-level abstractions for transforma-
tions. Contexts allow for grouping a common set of t-rules and types together
providing better abstraction and adaptability.

4.1 Local Types and Type Mappings

Components in the targeted applications execute in given contexts. Formally,
such a context is defined as follows:

Definition 5 A context is a 3-tuple (t, u, r) where

– t is a set of type definitions (see Definition 1),
– u is a set of type mappings of form TVh T ′, where
h ∈ {?, !} indicate transformations of incoming/outgoing objects respectively

– r is a set of t-rules (see Definition 3).

The previous examples did not specify any signatures for the functions refer-
enced by t-rules. In instantiations of our model in object-oriented programming
languages, methods are used as such functions. In a language with overload-
ing/overriding, a (partial) signature can be used to distinguish between different
possibilities. In general, these functions need not return values of the same type
as their formal arguments, which allows for type conversions. Such conversions
are desired when different interacting components use different sets of types
which can not be linked via subtyping due to practical restrictions on type sys-
tems [12]. To capture this, a context c includes local type definitions. Such a
definition t introduces a new type T for c.

If the type of any attribute of a transformed event object changes, then the
type of the entire event has to change. A context thus includes a set of high-level
type mappings u, each of the form T Vh T ′ indicating that instances of event
type T are mapped to event type T ′. h denotes whether the transformation
takes place upon received (?) or sent (!) event objects. Type mappings make the
programmer’s intent explicit and are used for type checking t-rules as described
in the next section. The type mapping InvoiceLineV!USInvoiceLine in Figure 2
for instance represents the mapping for the logistics provider to a US context.
Contexts thus decouple which types have to be mapped to each other (mappings)
from how this happens (t-rules), increasing flexibility.



4.2 Context Specialization

Contexts are arranged in a hierarchy following a notion of specialization which
is similar to that of inheritance in common class-based programming languages.
We elaborate on the meaning of inheritance and its relation to transformation
of event objects in the following:

Inheritance. Inheritance of local types, mappings, and t-rules between a parent
context such as c0 in Figure 3 and its child context c1 obey the following rules:

– Local types are straighforwardly inherited by c1.
– Type mappings are inherited, but can be overridden by c1. That is, if c0

defines T Vh T ′ for some h, T , and T ′, then c1 can redefine a mapping
T Vh T ′′ which overrides that of c0. Overloading can also happen, even
within a same context, through the subtype-sensitivity of mappings – for
example, for two types T, T ′ such that T ′ is a subtype of T , a mapping
T ′ V? ... takes precedence over TV? ... for instances of T ′.

– t-rules are similarly inherited, unless overridden. Overriding here occurs
when two t-rules have identical patterns, otherwise the patterns co-exist
(with one taking precedence over the other based on the priorities listed in
Section 3.6).

The root context c0 in Figure 3 is considered to represent all reference types;
put differently, all types of the root context are inherited by all other contexts. In
a multi-language setup, this root context would typically include types defined
in an independent declaration language, with one child context per supported
programming language.

Transformation. Despite a possible “chain” of context specializations, trans-
formations in our current model are always to and from the root context as
shown in Figure 3. That is, events produced in a context (e.g., c3) are directly
transformed to the root context c0, if needed in any different context; events
in the root context are transformed directly to any other context (except the
original one, e.g., c3).

c0

c1 c2

c3

specialization

transformation

Fig. 3. Context specialization and transformation paths. Solid lines represent special-
ization. Dashed lines represent (optional) transformations

While in some cases the transformation could take place indirectly by follow-
ing the inheritance relation (e.g., from c0 to c1 to c3 in Figure 3), this would in



general raise many issues. For example, different paths could be possible (e.g.,
from c0 to c3 via c1 or c2), and one could expect that they produce consistent
outcomes which is hard to assert.

Contexts may not always define mappings from all types T in the root context
c0 to the specific context (e.g., c3), or from all types T ′ in the context c3 to the
root context. We however refrain from forcing the developer of such a context
c3 to define these mappings and transformations. After all, there may be no
semantically sensible transformation. The absence of a mapping will be however
noticed when compiling context c3 and signaled as an observation message. We
elaborate further on conformance as well as warning and error messages when
discussing implementation issues shortly in Section 5.

4.3 Declaring Contexts

To remain independent of a specific programming language, we support context
declarations in the widely-adopted XML (other languages are possible). Thus,
developers do not need to learn new specification languages. To illustrate this,
we give a brief intuition how a context for Java can be declared in XML:

<types>
com. logistics .us.USInvoiceLine
com. logistics .us. USItemSpecification

</types>
<mappings>
<mapping from=”com.logistics.eu. InvoiceLine ”

to=”com.logistics .us.USInvoiceLine”
dir =”!” />

</mappings>
<rules>
<rule pattern=”ItemSpecification” function=”toUSItemSpecification” />
<rule pattern=”InvoiceLine.Money” function=”toDollars” />
<rule pattern=”InvoiceLine. price ” function=”toIdentity” />

</rules>

As the listing shows, all three elements of the context-tuple can easily be
encoded in XML.

4.4 Practical Extensions

We provide several syntactic shortcuts for conveniently dealing with t-rules in
our model. Noteworthy here are

– t-rules can be explicitly disabled upon inheritance in a child context c′. To
that end, the developer can simply repeat the corresponding pattern, and
use ‘-’ in lieu of a function name. We are currently investigating labeling
schemes so patterns do not need to be repeated.



– As showcased in Section 3.3, the toIdentity function, it is quite convenient
to exclude certain attributes from a default transformation. In many cases,
this can be simpler to do than enumerating transformations individually for
all non-exempt attributes. For convenience we thus provide a polymorphic
toIdentity function which simply returns its argument. An instance of this
function in a given t-rule adopts its argument type as return type.

5 Implementation

This section presents our implementation of t-rules and contexts. We give details
on rule resolution, error handling in case of invalid rules and how we improve on
efficiency by generating static code.

5.1 ACTrESS

ACTrESS (“Automatic Context Transformation for Event-based Software Sys-
tems”) implements our approach for the Java programming language2. ACTrESS
is built on top of ActiveMQ [37], a fast, reliable JMS [8] broker. Our approach
is implemented as a plugin. It intercepts event notifications passing through
the broker and transforms them according to a t-rule set. Functions f used
by transformations are methods invoked on notifications or their attributes, or
static methods.

5.2 Rule Resolution and Validation

Our implementation uses a type system [17] to resolve relevant t-rules in a given
context with respect to produced and consumed event types. That is, the type
system performs the following tasks:

A. Type-checking of individual t-rules. For any t-rule p B f in a given context,
the type system first validates the pattern p (see Section 3.5), and then
ensures that the formal argument of the function f indeed is a super-type of
the expected type based on p (e.g., the expected type for a pattern T 0.a1(T1)

is T 1).
B. Resolving t-rules. Our type system identifies for any given event type T

mapped in or out by a process all transformations for all reachable paths
rooted at T , and retains these. This retained information is of the form
〈T0 ·...·Tn, a1 ·...·an, f〉, prompting the evaluation semantics to apply function
f at the path 〈T0 · ... · Tn, a1 · ... · an〉 in any event of type T 0. These t-rules
are resolved by starting from all subscribed and published types T 0, and
exploring their attribute spaces recursively by following breadth (e.g., ∀a1
s.t. a1 is declared by T 0) and depth (e.g., ∀ a2 s.t. a′1s type T 1 declares an

2 More on ACTrESS can be found at http://www.dvs.tu-darmstadt.de/research/events/
actress/

http://www.dvs.tu-darmstadt.de/research/events/actress/
http://www.dvs.tu-darmstadt.de/research/events/actress/


attribute a2). To deal with subtyping, for a given path (e.g., 〈T0·...·Ti, a1·...·ai〉)
the subtype space is explored similarly in a recursive manner (e.g., ∀T ′

i �
Ti). A reachable path implies that there is no transformation for any of
its prefixes; exploration does not proceed further when a transformation is
resolved, as the respective function is responsible for dealing with nested
attributes.

C. Type verification. For any t-rule involving a function f to be applied at
a given path, we verify whether the type returned by f abides to the type
stipulated by the mapping for the corresponding event type. Remember that
there is not necessarily a 1:1 relationship between mappings and t-rules; in
fact that would be undesirable in terms of expressiveness. A mapping can
involve the application of multiple t-rules, and inversely, a t-rule may be
applied by different mappings. Thus we do not mandate that every t-rule
in a context respects all mappings for event types with paths matching the
t-rule’s pattern. This allows for default t-rules which typically include type
qualifiers in their patterns to be overridden by more attribute-specific t-rules.
The latter ones produce the correct type at a given path but the former ones
– if applied there instead – would not necessarily do so.

This validation and resolution is performed at compilation, and extended at
need at runtime, i.e., upon encountering new (sub)types. (Cyclic) recursions in
types are handled in a way similar to iso-recursive types by unfolding upon reso-
lution and folding upon application. That is, we halt exploration upon encounter-
ing recursion, and at a given path apply t-rules identified for prefixes of the path
without the recursion. This implies that we do not support “recursion-sensitive”
patterns such as T0.T1.T1. We believe this would unnatural for programmers.

5.3 Errors and Safety

When t-rule resolution and compilation discovers invalid patterns (see Section 3.5),
or failed type checks (see A. and C. above), it quits with corresponding error
messages. Since resolution and compilation is done on a per-context basis, only
the affected context will be unavailable (or remain unchanged if it already ex-
isted). The system will continue operating with all other contexts. We believe
this is a better approach than permitting faulty t-rules and hoping that they
do not trigger an runtime, or simply ignoring corresponding errors. An error in
t-rule resolution is usually symptomatic of more profound inconsistencies.

Warnings are issued when a context contains several mappings with identical
source (mapped) type or several t-rules with identical patterns; the last such
mapping or t-rule is chosen respectively. Note that through the addition/dis-
covery of a new subtype T ′ of an (attribute or event) type T no errors can
be introduced, as the existing mappings and t-rules remain valid. That is, map-
pings remain trivially the same.There can not have been any “dormant” mapping
specifically referring to T ′, otherwise the resolution process would have known
that type (hence it’s not new) and would have considered all applying t-rules.
Similarly, a now active but previously disregarded t-rule must have referred to
T ′ in its pattern already, leading again to a contradiction.



5.4 Code Generation

Besides avoiding repetitive t-rule resolution, our compilation approach has the
advantage of being able to generate static code for performing transformations
rather than using reflection mechanisms to dynamically invoke such functions/
methods. That is, our prototype generates a class containing transformation
code after analyzing t-rules and notification types. This is also the reason why
we proactively explore all subtypes and retain corresponding transformations;
it avoids performing any kind of resolution at runtime. We will illustrate the
efficiency benefits of our approach shortly in Section 6.

5.5 Annotations

To allow for intuitive and in-code declaration, our Java prototype supports
various Java annotations. To define type mappings, the developer can use the
@MapsTo annotation, supplying the class name of the mapped class. To specify
that a class should be transformed with a specific function, developers may use
@TransformWith.

These annotations are just another form of expressing t-rules. To simplify
things for developers further, we allow annotating a class’s attributes with units
(e.g., @Unit (‘‘ USD’’)). By analyzing the units given by developers and those that
the notification service uses, our prototype is able to generate the appropriate
t-rules. Thus, developers can simply express their wish towards the data.

Our supplied annotations are not as expressive as the full t-rules but cover
many typical application scenarios. Developers can use annotations to quickly
generate the majority of t-rules and then fine-tune the rule set.

6 Evaluation

We evaluated our approach and implementation with regards to performance
and code quality. Our results illustrate that our approach is suited for pub/sub
systems by providing efficiency and extensibility while being expressive.

6.1 Performance

First we substantiate the claim made earlier that native support for transforma-
tions is beneficial for performance, by showing that (a) it is much faster than an
analogous library implementation based on reflection permitting equal expres-
siveness and extensibility, (b) it is much faster than Apache Camel, a popular
general-purpose Enterprise Application Integration (EAI) [22] framework, (b) it
is as effective as manually coded transformations in application components, and
(d) the application of transformations closer to producers, enabled by our model,
further improves performance. Furthermore, we show that the implementation
of our model scales with the number of types and t-rules in the system.



We ran the ACTrESS broker, the workload generators and data collectors
in a distributed environment. We compared five setups: in content-based, bro-
kers just access event content for content-based routing but do not perform any
transformations, assuming all parties agree upfront on types; model-tx trans-
forms event objects according to our approach, while reflect uses Java reflection
for transformation resolution and application. Setup camel uses Apache Camel
for transformations to investigate the impact of using EAI frameworks. EAI
frameworks share the idea of integration with our approach, but do not provide
implementation details. (see Section 7 for details). We use compiled transforma-
tion classes for this approach, like those that our approach generates. Finally, in
the baseline case brokers simply forward event objects without accessing their
content, illustrating the smallest latency possible.

The SPECjms2007 standard benchmark specifies a workload where distribu-
tion centers, headquarters, and suppliers form a complex supply chain and inter-
act via various inter-company event notifications [35]. We designed a workload
following SPECjms2007. Event types are taken directly from the specification.
Transformations include addresses, distances, and currency.

Figure 4a shows the latency for different notification rates. It is important to
note that the ordinate has a logarithmic scale. As the figure shows, reflect adds
significant latency overhead compared to our approach. This is an indicator
for the increased computational effort of the reflection-based approach. Due to
the increased effort, ActiveMQ cannot cope with higher event production rates;
events are stalled, accounting for the steep latency increase. Camel performs
even worse, because it is not integrated into the broker and thus additional
notification marshalling and unmarshalling has to occur. This shows that even
by requiring manual implementation of transformations, EAI frameworks also
suffer from poor efficiency.

Scenarios none and compile achieve more than double the throughput than
reflect and have no measurable difference, while base achieves even slightly more
events per second. Because there is no measurable difference between none and
compile and our setup already resembles the worst case where every event has
to be transformed, we do not provide more details like the effect of the number
of contexts.

Figure 4b illustrates the performance benefit of being able to transform closer
to the producer, compared to doing it at each individual consumer. With a
growing number of consumers per producer, the advantage grows. Thus, it is
beneficial to be able to transform close to the producer, which our model enables.

6.2 T-rule Resolution and Code Generation Overhead

Our implementation generates transformation code from the set of rules and
type mappings. While we believe that compared to the actual event notification
rates, changes to the rule set, the type set or the mappings are rare, we are
still interested in the overhead of this step. It is important that this step has
acceptable overhead so that deployment and testing can be done quickly and –
even more importantly – changes at runtime take as little time as possible.
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Figure 5 shows the time it takes to generate 1000 transformation classes for
different sizes of the t-rule set and different selectivity of the rules. Selectivity
means how many attributes of the type are actually affected by the rule. We
used 1000 iterations to keep the variance low. Our implementation scales linearly
with the number of t-rules and affected attributes. Every t-rule has to be checked
because there might always be a more specific one at the end, and thus this is
the optimal result. Similarly, for each affected attribute, we have to generate
some code. Thus, a generator must have at least linear complexity.
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Fig. 6. Recompilation overhead



6.3 Ease of Use

Next, we demonstrate efficiency for the programmer by showing that our con-
texts lead to a considerably lower implementation effort than manual coding of
transformations, and that existing transformations can be changed more easily.
We use five typical event-based applications to compare the required lines of
code and ease of changes.

Kemerer [23] analyzed over 30 software complexity metrics and concluded,
that “a number of the more complex metrics may be essentially measuring the
size of the program or other component under investigation, and therefore may
provide little additional information”. We thus see lines of code as a valid indica-
tor for code complexity and maintenance effort and used it for our comparison.

To give a brief comparison between the two approaches, consider the exam-
ple to transform attributes of type Address. Our approach needs just one rule to
transform every occurrence of an attribute of type Address. When coding trans-
formations manually, the developer has to write a dedicated if -else branch for
every event type with an address attribute (directly or indirectly). Inside, sev-
eral lines of code for attribute extraction, object creation and transformation are
needed.

For our comparison, we use the event types specified by various applica-
tions: The SPECjms2007 benchmark introduced in Section 6.1. Transformations
include address translations between different regional formats and changing
product descriptions (in orders, invoices, etc.) to conform to each site’s expec-
tations.

The marketcetera3 automated trading platform defines various event types
capturing stock ticker quotes and allows for elaborate automated trading. The
transformations on this platform perform currency conversions, timestamp for-
matting changes and renaming of some indicators, assuming differing terminol-
ogy on the consumers.

The HTM traffic management system handles data from sensors and cameras
along streets and highways, monitoring road, traffic and weather conditions [34].
Such systems are used by many large cities. Transformations include coordinate
translation, timestamp format changes and unit conversion.

DRADEL is an application environment for modeling and analyzing dis-
tributed architectures, including code generation [25]. Since it runs on top of a
message-oriented middleware, multi-user support is possible. In such a setting
however, path references and line numbers need to be adapted to each platform.
Thus, operational events of DRADEL need to be transformed accordingly.

The Emergency Response System (ERS) is a distributed application run-
ning on multiple mobile devices and helps organizing human resources during
natural disasters [31]. Its events often refer to geographical regions, which need
transformation between individual users to adapt to their specific format.

Table 1 compares the lines of code needed to specify transformations by man-
ual coding and by our approach, showing a clear benefit for the latter. The num-
bers indicate the effort necessary to specify the transformations of one client that

3 http://www.marketcetera.com

http://www.marketcetera.com


Table 1. Code complexity comparison

manual ACTrESS
specify change extend specify change extend

SPECjms2007 167 15 92 22 2 1
marketcetera 108 9 37 16 2 1
HTM 237 16 133 21 2 1
DRADEL 417 16 139 30 3 2
ERS 351 12 117 21 3 2

needs to transform events. We did not count lines of code that can be generated
by standard IDEs. For additional clients needing different transformations, the
effort has to be made again, multiplying our benefits. Furthermore, the change
columns show the number of individual places in the code that needed to be
changed when a certain type (e.g., Address) should be changed into a different
format.

Contrary to intuition, EAI frameworks like Apache Camel do not reduce com-
plexity at this step. Although supporting event transformations architecturally,
transformations still need to be coded manually, resulting in above depicted
effort.

6.4 Extensibility

Changes can roughly occur in two ways: transformation functions need to be
changed or new types are introduced. In case of changed transformation func-
tions, one can simply adapt them (e.g., change toUSAddress). Adding new types
is more complicated. Suppose we want to add a sensor to the traffic management
system to detect oil on the road (raising an Oil event). Every sensor event in the
system has an attribute SensorMetadata which has an attribute of type Location.
In the manual approach, it is thus not immediately apparent that adding the Oil

event requires a new piece of transformation code. A developer will have to ana-
lyze the existing transformation code and realize that locations are transformed
and then write the new code. With our approach, only the mapping has to be
defined. The extend column in Table 1 illustrates this by giving the required
number of lines of code for the necessary analysis.

In case of changes at runtime, ACTrESS dynamically recompiles the gener-
ated classes when changes occur. Figure 6 illustrates the impact on performance.
It shows that there is a brief increase in latency for the recompilation, after which
the system performs as before. This demonstrates that our implementation can
handle changes at runtime without significant impact on performance.



7 Related Work

In this section, we divide the space of object transformations along different
dimensions and relate existing work to our proposed approach along these di-
mensions.

7.1 Transformation Space

As mentioned there are different dimensions along which one can divide the space
of object transformations. Among these, without attempting to be exhaustive
but to cover the main related work, we can consider granularity, completeness
and topology. The possibilities for granularity for instance include

G1 Monolithic object transformations. Objects of given event types are trans-
formed as a whole.

G2 Attribute-wise transformations. Event objects are transformed attribute-wise,
with a 1-1 mapping of attributes.

G3 Nested attribute-wise transformation. With objects containing attributes that
are objects, one can allow attribute-wise transformation of such nested objects.

G4 Path-based transformation. Transformations can be expressed on any attributes,
at any nesting level, in objects.

In terms of the actual transformation, there are also different levels of computa-
tional completeness that one can imagine:

C1 Type or meta-data transformation. Objects retain their actual state, but they
are converted to other types. This includes also traditional subtype subsump-
tion, where simply a subset of the attributes are retained when accessing an
object via a super-type.

C2 Lookup-based transformation. An object is substituted by another one based
on a lookup in a static or dynamic data-structure. Such objects correspond to
discrete values.

C3 Function-based transformation. A function is invoked with an object and can
perform any computations to construct a substitute object.

C4 Function-based stateful transformation. Same as above, except that the func-
tion can also persist state in variables.

There are also different places in the topology of a distributed application for
transformation application, e.g.,

T1 Peer-based transformation. Every application component or process performs
its own transformations on incoming — maybe also outgoing — event objects.

T2 Distributed transformation. A distributed middleware system performs trans-
formations on conveyed event objects, through a dedicated server or compo-
nent.

T3 Decentralized transformation. Here a distributed middleware performs trans-
formations without relying on a centralized component.

Our solution presented supports the highest level for any of these criteria,
i.e., G4, C4, and T3.



7.2 Existing Work

In database integration, data from one database is transformed to adhere to the
schema of another database [9,30] (T2). Anonymity in a federated pub/sub-based
system prevents schema integration used by these approaches. A subscriber does
not know who produced an event it receives and thus not the schema it follows.

Chung [14] argues that it is infeasible to decide upon a database for a whole
organization, proposing DATAPLEX as a middleware layer implemented as cen-
tralized data mediation component (T2) to allow uniform access to databases.

Cluet et al. [16] address the issue of integrating heterogeneous data sources
by proposing a rule language for conversion between various data representa-
tions. The system is designed for request/reply communication while we focus
on data distributed via publish/subscribe, where subscribers may not know the
origin (communication endpoint) of data. Cilia et al. [15] propose a solution to
deal with heterogeneous data sources in pub/sub systems using a self-describing
model. Neither of the above however verifies typing of transformations. Dozer [3]
supports mapping of data objects between Java Beans. Dozer supports expres-
sive and complex mappings; conversion resolution and execution occur via Java
Reflection at runtime, limiting performance and safety.

Foster et al. [18] present a bi-directional tree transformation approach. Their
transformation functions allow to mediate between different views of same data
where updates are applied backwards to the original data (C3). In contrast, our
approach purposely supports uni-directional and non-deterministic transforma-
tions. Every subscriber gets its own copy of an event and thus events are not
meant to be shared like documents.

Several authors propose structural subtyping to decouple components (G3,
C1), which has been promoted by several research programming languages (e.g.,
Lingua Franca [27], Accute [36]). Whiteoak [21] extends Java with structural
conformance similarly to compound types [12].

HydroJ [24] extends Java with relaxed conformance on nested semi-structured
events exchanged between processes. Similarly, most publish/subscribe systems
follow the model described in [29] which promotes the use of hash maps to convey
events in the form of 〈key, value〉 pairs. This places all burden on programmers
as these need to manually inspect, marshal/unmarshal and transform event ob-
jects at generation and reception. With Hashtypes [36] type representations are
hashed, including “contents” of corresponding instances, function signatures in
modules, etc. Hashes are propagated with objects. Given the focus on point-
to-point and not implicit communication, transformations are applied at end
components (T1). None of these approaches support value-based transforma-
tions (C1).

Platforms like Sun RPC [38], OMG’s CORBA [28], or Web Services [11] only
mediate between encodings of values (e.g., little vs. big endian).

Java Internationalization (JI) [4] provides support for context-specific inter-
pretation of precise data types (e.g., strings in different character sets, times
in different zones). JI also supports automatic translation of character strings
between different natural languages based on dictionaries (C2). JI furthermore in-



cludes a framework which allows application-specific types (resource bundles) to
be interpreted differently across contexts (locales). In combination with Java Re-
mote Method Invocations (RMI) [5] or other remote communication paradigms,
JI can hence be used as a foundation to address similar problems as stud-
ied herein. However, the JI framework consists merely in an API, while the
present work aims at providing intuitive and safe mechanisms for implementing
such an API. .NET Internationalization [6] provides analogous functionalities
to JI for the .NET platform. Similarly, design and architectural patterns such
as adapters [26] provide a locus between application components to perform
transformations but do not provide support for actually implementing them.

Enterprise Application Integration (EAI) specifies message transformations [22]
to deal with heterogeneity. However, EAI just specifies a pattern (in fact, they
can be seen as a more detailed definition of adapters), without any suggestions
regarding its implementation. EAI Frameworks like Apache Camel [2] thus sup-
port message transformations, but provide merely an API with little support
for implementing it. Transformations take place on the entire message bodies
(G1) and there is no facility for a canonical data model, leaving its design to
the programmer. As demonstrated, efficiency is poor. Microsoft BizTalk [33]
provides support for transformation with XSLT and orchestrations. However,
mappings are static, take place on entire message bodies (G1) and new produc-
ers or consumers have to be added explicitly. Other EAI frameworks expose
similar limitations.

8 Conclusions

We have introduced a foundational model for interoperability in federated dis-
tributed software based on transformations. Our model is expressive in that it
supports the whole spectrum of transformations including enrichment of events
and allows other type conformance models to be implemented atop. As we have
demonstrated it is easy to use by supporting fine-grained expression of transfor-
mations as opposed to monolithic ones, and it allows for extensibility at runtime,
while at the same time showing being efficient, causing no measurable overhead
on an underlying content-based pub/sub system. Last but not least, our approach
is safe, by promoting clear semantics for transformations, whose application is
verified and determined first and enforced at runtime.

We are currently working on supporting clients in other languages, as well
as on an implementation of type versioning on top of our model. We are also
investigating extensions to our model including nested transformations. These
will allow functions used for transformations to explicitly re-invoke the transfor-
mation process in order to avoid invoking or repeating transformation functions
for nested attributes. Care must be taken here to not increase expressiveness at
the cost of simplicity. Last but not least, we are working on optimal placement
of transformation operations in decentralized publish/subscribe networks.
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