
Towards Multi-Purpose Wireless Sensor Networks

Jan Steffan Ludger Fiege Mariano Cilia Alejandro Buchmann
Darmstadt University of Technology

D-64289 Darmstadt, Germany
steffan@ito.tu-darmstadt.de

{fiege,cilia,buchmann}@dvs1.informatik.tu-darmstadt.de

Abstract

Current wireless sensor network (WSN) architectures are
based on the assumption that all sensor nodes are partici-
pating in a single global task. In many scenarios, however,
it will be desirable to use a single sensor network for multi-
ple concurrent applications. In order to enable such multi-
purpose WSNs efficiently, delimiting each application to its
specific set of relevant nodes is one of the key issues that
needs to be solved.

We present scoping as a general concept for the cre-
ation and maintenance of network-wide node subsets and
describe a flexible and modular architecture that meets the
requirements of multi-purpose WSNs.

1. Introduction

Wireless sensor networks (WSNs) consist of hundreds
or thousands of low-power nodes that form dynamic ad-hoc
multi-hop networks. The desired behavior of WSNs have
to be achieved by local algorithms running on each sen-
sor node with very limited knowledge about the whole sen-
sor network. A central theme of past and current research is
the improvement of the robustness and resource utilization
of such algorithms. Both robustness and efficiency are im-
portant and often conflicting optimization goals under the
dynamic behavior and resource constraints of the proposed
WSNs.

In this paper we look at WSNs from a slightly different
angle. In many commercial deployments of WSNs the en-
ergy consumption and thus the unattended lifetime of sen-
sor nodes may not be the dominating cost, but only one as-
pect contributing to the total cost of a WSN. Other cost fac-
tors include the development of WSN applications, main-
tenance and the return-of-investment (ROI). ROI does not
only depends on the lifetime of sensor nodes, but also on
the “usefulness” of a WSN. Considering this, the focus
shifts from energy efficient special-purpose WSN solutions

towards cost efficient flexible and modular multi-purpose
WSN infrastructures. A similar transition can be found in
the area of wired sensor and actuator networks such as field
busses in cars, buildings or plants, where multiple indepen-
dent applications are using the same infrastructure today.

An important building block for the implementation of
multi-purpose WSNs is the separation of different tasks
both at node and networking level [19]. There are multiple
solutions for multitasking-like functionality at node level,
e.g., query engines capable of executing multiple concur-
rent queries, the Maté virtual machine developed at Berke-
ley [9], or the SOS operating system [13].

In order to avoid resource conflicts between concurrent
applications and to use large scale WSN installations effi-
ciently [3] it is necessary to delimit the scope of each ap-
plication to the subset of relevant nodes. Mechanisms are
required for the selection and discovery of these groups of
nodes. Changes of group membership and connectivity due
to various changes in the WSN have to be handled. In [15]
we have introducedscopingas a middleware building block
and abstraction layer for these tasks. This builds on ear-
lier work on scoping in large scale publish/subscribe sys-
tems [5] where similar problems arise. Here we describe a
modular architecture that utilizes scoping in order to meet
the requirements of multi-purpose WSNs.

The remainder of the paper is structured as follows: The
following section gives a practical example of an applica-
tion scenario for multi-purpose WSN and illustrates poten-
tial uses of scoping. Section 2 discusses related work on
grouping and node selection in WSNs. An outline of our
scoping architecture for multi-purpose WSNs is presented
in Section 3. Section 4 describes access control as an ex-
ample of binding additional services to scopes. Section 5
closes with a summary and directions for future work.

1.1. Motivating scenario

We consider a freight container monitoring sce-
nario as an example for a multi-purpose WSN. We will use



it throughout this paper to illustrate various cases of struc-
turing through groups of nodes.

Sensors deployed inside containers can monitor environ-
mental conditions for perishable goods; detect tampering
or leakage of dangerous goods; or provide an RFID-based
real-time inventory [2, 6, 10]. Nodes that are capable of
communicating with the outside of a container connect the
sensors to data-sinks by forming an inter-container ad-hoc
network. The layout of this network is regular, forming a
grid-like two- or three dimensional matrix.

This inter-container network can be used for additional
purposes such as tracking containers during their journey,
detecting containers that went over-board or were forgotten
somewhere, or determining the position of a specific con-
tainer.

Obviously all of these applications make use of the WSN
in a distinct way. Environmental condition monitoring, for
instance, makes use of temperature and humidity sensors
which are not relevant for the tracking application. More-
over, there are various aspects that require further differen-
tiation (see also figure 2):

• for monitoring environmental conditions, differ-
ent sensor types, sampling rates and thresholds are
appropriate for different goods.

• a higher temperature sampling rate might be necessary
for containers at positions which are exposed to sun-
shine. In containers at inaccessible inner positions the
sensors for tampering detection can be deactivated to
save energy.

• multiple parties are involved, such as the owners of the
containers, the goods providers, or official authorities.
Much of the collected information such as inventory or
condition of goods is business-critical and should not
be available to competitors.

While technically each application is feasible with cur-
rent systems, the efficient and economical integration of
several of these applications within the same WSN infras-
tructure is only possible if the following properties can be
offered:

• application-specific grouping of sensor nodes based
on various conditions such as position, capabilities or
other meta-data

• a high-level abstraction of node groups in order to en-
able the economical development of multiple applica-
tions

• modular and extensible functionality in order to sup-
port different group formation schemes and other
application-specific requirements

• means of restricting sensor access or the visibility of
sensor data to authorized parties

2. Node selection and grouping in WSNs

Early work about attribute based addressing of nodes in
WSNs was published in [7]. This is a general approach to-
wards attribute based matching of queries and data provided
by sensor nodes. Considered attributes include the type of
data, its accuracy and the geographic location of the origi-
nating node. Most other query languages for WSNs also in-
clude some mechanism for selecting nodes as data sources
based on their properties such as the geographic location.
Node selection here usually is an integral part of the query
execution. The group of nodes matching a condition is not
considered as a logical structure of its own. This prevents
the reuse of node groups for multiple queries and the asso-
ciation of abstractions and services such as data sharing or
access control with node groups.

Recently a number of approaches proposed dynamically
selected groups of nodes as an abstraction in order to sim-
plify the programming of WSNs. For instance, Hood [18]
and Abstract Regions [17] are motivated by the observation
that many data-collection algorithms for WSNs are based
on the creation of local node-clusters. They allow the selec-
tion of a node subset amongst the neighbors of a node by
means of a declarative condition. Both provide abstractions
for data sharing between selected nodes. Hood and Ab-
stract Regions require group specifications and algorithms
to be fixed at compile time. Moreover, all sensor nodes must
share the same code base. A differentiation of nodes hap-
pens at run-time based on the local evaluation of node se-
lection conditions. RegionsVM was mentioned in [9] as a
more flexible implementation of Abstract Regions based on
the Maté virtual machine.

While Hood and Abstract Regions are restricted to
neighboring nodes for group formation, the role based ap-
proach presented in [14] allows the network-wide selec-
tion of nodes. Nodes are preprogrammed for a number
of roles with associated tasks. Nodes select their cur-
rent roles based on some conditions at runtime. However,
there is no structure that would connect nodes shar-
ing a common role to an abstract group.

Regiment [11] is a conceptual approach that operates on
the set of all sensor nodes as a whole. All sensor read-
ings originating from any node are viewed as a single so
called region stream. This region stream can be transformed
and narrowed down to data originating from a partial set of
nodes through filters and mappings.

There is more work that implicitly uses groups of nodes
in order to implement efficient data collection algorithms
based on aggregation and clustering. A list of algorithms
based on neighborhood groups can be found in [18].

Multicast algorithms for mobile ad-hoc networks [1, 8]
are related, too. These approaches, however, focus on trans-
ferring the multicast paradigm of wired networks to mobile



ad-hoc network environments. It is assumed that nodes de-
cide upon their group membership themselves by subscrib-
ing to the appropriate multicast id. This is contrary to the ap-
propriate model for WSNs where nodes are selected based
on their properties.

None of the approaches mentioned above facili-
tates network-wide selection of nodes to establish struc-
tures that can be used to delimit applications and per-
form the actual tasks. Moreover, it is not possible to
instantiate new groups of nodes at run-time, which is in-
evitable for multi-purpose WSNs where applications are
added and changed after node deployment.

3. Scoping architecture for multi-purpose
WSNs

This section gives an overview of the scope-based archi-
tecture we have developed to meet the previously mentioned
requirements. Scoping as a means of structuring distributed
event-oriented systems was first developed in the context
of publish/subscribe systems [4, 5]. Ascopeis basically a
group of nodes that is specified through a membership con-
dition. Considering scopes as first class objects provides an
orthogonal means for structuring distributed systems and al-
lows additional services such as access control or different
communication semantics to be bound to scopes. Orthogo-
nality is important in order to achieve the required degree
of modularity and flexibility. Once created, a scope can be
reused multiple times for different queries or tasks.

This is reflected in our modular architecture which is
roughly divided into four layers as depicted in figure 1. The
bottom layer comprises all low level hardware abstractions
for network and sensor access as they are provided by WSN
operating systems such as TinyOS. The top layer is respon-
sible for node level multitasking capabilities, i.e., the life-
cycle and memory-management necessary to execute and
instantiate multiple concurrent tasks at runtime. This layer
can be implemented, for instance, as a query-engine or vir-
tual machine and is relatively independent of the scoping
functionality. Scoping is provided in the two middle layers:
a) the scope-state layer for handling the scope membership
status of each node;b) the routing layer for the dissemina-
tion of scope creation requests and intra scope communi-
cation. These are described in more detail in the following
subsections.

3.1. Scope specification language

A fundamental difference between WSNs and most other
networks is that at application level nodes are not addressed
individually by some address, but by their properties or con-
text. A scope therefore is defined as the group of nodes that
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Figure 1. Layered architecture of scoping imple-
mentation for WSNs

match a given condition. A central part of a scope specifi-
cation language for WSNs is therefore the specification of
scope membership conditions.

3.1.1. Node propertiesMembership conditions are based
on node-properties, which can be static or dynamic. A typ-
ical static property is “node has a temperature sensor”. Dy-
namic properties are “node is in geographic regionX” or
“node has no more than three neighbors”. Node properties
are obviously in part scenario specific. In the container ex-
ample it makes sense to have properties reflecting the pres-
ence of a container at each of the six possible neighbor-
ing positions. Properties are therefore implemented as ex-
changeable modules. Dynamic properties are of particular
interest as their alteration has to trigger a reevaluation of the
scope membership condition. They are implemented as spe-
cialized modules that trigger an event when the property has
changed.

3.1.2. NamespaceIn order to enable a conflict-free ad-
dition of scenario-specific properties and to make prop-
erty implementations distinguishable, we use hierarchical
namespaces for naming properties. The top-level part of a
property name identifies the module that implements the
property. A partial list of top-level identifiers might be
sensor for sensor related properties,geo for geographic
location, neighb for neighborhood properties andmeta
for meta-information. A static boolean property reflect-
ing the existence of a temperature sensor could be named
sensor.type.temperature. For the container scenario a
specific property could bemeta.container.owner for the
owner of container the sensor node was placed in.

In order to comply with the resource restrictions of
WSNs, property identifiers and all other aspects of the scope



specification language are mapped to a more compact byte-
code at compile time.

3.1.3. ExpressivenessAn important question is the ex-
pressiveness of a specification language for scope member-
ship conditions based on node properties. There are three
major levels of expressiveness to be considered:

• Expressions that can be evaluated locally are based
only on constants and locally available current node
properties. Expressions can be formed from func-
tions over properties and constants (e.g.+, -, log()),
predicates and comparison operators (e.g.==, <) and
boolean expressions over these.

• Expressions over historic values require local memory.
Examples are derivations of properties over time such
as velocity or acceleration and aggregations over time
windows such as average or variance.

• Aggregations over non-local properties require the
synchronization of properties with multiple nodes.
Conditions like these are useful to select the most suit-
able from a set of candidate nodes. This is feasi-
ble when the set of candidate nodes is restricted to
a neighborhood. Whether aggregations over candi-
date nodes can be handled efficiently in general is an
open question. An alternative solution would be to im-
plement certain aggregated values as local properties
which are handled by special modules. Those mod-
ules can handle the data synchronization in the most
appropriate and efficient way for the given prop-
erty.

We chose the first option as it results in a simple archi-
tecture and interface without serious restrictions of expres-
siveness. If aggregations over time or space are required in
certain cases, these should be implemented within a prop-
erty module.

3.1.4. Nested scopesIn many applications it makes sense
to use an existing scope as the candidate set for a second
scope. In the container scenario for instance there are many
potential uses of nested scopes. For example there could be
a scopeA over all nodes that are placed inside containers
belonging a company. Within this scope the company could
create its own sub-scopeB. Figure 2 shows an example of
nested scopes. Moreover, nested scopes can be used to en-
force security policies as we will show later in section 4.

The main benefit of nested scopes is the increased effi-
ciency of message propagation and group maintenance due
to the delimited candidate set. Each scope specification in-
cludes the definition of abasescope. The default base-scope
is world which includes all available nodes. Scope propaga-
tion is limited to the basescope.

3.1.5. Life-cycle In the approaches discussed in section 2
the specification of node groups remains valid during the
whole deployment time of the WSN. When multiple con-
current applications are considered, this is not feasible as
the life-cycle of all of the applications is not likely to coin-
cide with the life-cycle of the WSN.

We provide therefore mechanisms for the creation and
destruction of scopes at run-time. Scope creation can be ini-
tiated by the gateway node or by any other node within the
network. Issues of propagating a request for the creation of
a new scope towards the potential member nodes are dis-
cussed in section 3.2 below.

The lifetime of scopes is delimited through predefined
leases that may be extended. This way member nodes can
decide locally when a scope should be removed by dropping
all information about it. Local decision avoids communica-
tion overhead and prevents stale scope instantiations in dis-
connected areas. The lifetime of a scope can be adjusted ac-
cording to its usage pattern such as single-shot queries or
long term applications.

3.2. Scope propagation and maintenance

Scope creation can be requested through a gateway node
or by sensor nodes within the network. We are calling this
node the scope’sroot. Inner sensor nodes in most cases will
create local neighborhood scopes for tasks such as data ag-
gregation. Scopes created by gateway nodes will typically
have global character. As mentioned previously a scope re-
quest consists of a membership condition, a basescope and
the time-to-live of the scope.

During scope propagation a routing tree is constructed
from the root node to each node within the basescope that
matches the membership condition. During the lifetime of
the scope both the connectivity of the routing tree and scope
membership has to be maintained. The main task of the
routing tree is the dissemination of queries or mobile code
to the members of a scope and the transmission of query re-
sults or events from the scope members back to the scope
root. An example of such a routing tree is shown in figure 2.

A new scope creation request is disseminated through
the routing tree of an already instantiated basescope. The
basescopeworld refers to a special global scope that cov-
ers all nodes of the WSN. The world scope is persistent and
provides connectivity between all sensor nodes. Scenario
specific parameters such as the frequency of neighbor up-
dates are encapsulated within the mesh routing algorithms
of the world scope.

Scope propagation can be optimized by exploiting mem-
bership conditions that are related to some globally known
structure. This is the case for properties such as the ge-
ographic location of the hop count from the scope root.
Membership conditions are therefore not only used for lo-
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cal membership decisions, but also to estimate the chance
of finding matching nodes in a certain direction. To this end
the scoping layer provides an interface to aid the routing
layer at route selection based on the scope membership con-
dition.

When a scope request reaches a node that meets the
membership condition, the scope’s ID and specification is
recorded in a local table. The node will then handle mes-
sages that are disseminated through this scope as long as
the scope is valid and the node still meets the membership
condition.

Candidate nodes that currently do not meet the mem-
bership condition store the scope specification during the
scope’s lifetime if membership depends on dynamic prop-
erties that might change at a later point of time. Changes on
nodes’ properties that may affect their membership are eval-
uated against the scope’s membership condition.

Nodes which are not member of a scope themselves but
lie on a routing path between scope root and a scope mem-
ber store an appropriate entry in their routing table.

If a node gets a new neighbor due to, for instance,
node mobility, it first exchanges all scope requests with this
neighbor that are within the global basescope. This is re-
peated recursively for all matching nested sub-scopes.

4. Access control

There are many potential configurations and services that
might be bound to scopes. We present here access control as
one example. More examples have been published in [15].

There are many potential security threats against
WSNs [12]. Most work on security measures for WSNs
so far has focused on the protection of the sensor network

as a whole. New security issues arise when multi-purpose
WSNs are considered. If multiple applications are ac-
tive concurrently, they have to be protected from each
other—especially if these applications are run by dif-
ferent parties. Data and sensor-nodes belonging to or
associated with one party should not be accessible by an-
other. This can be achieved easily with the help of scopes
and a public key authentication scheme:

Before scope creation the root node of a scope gener-
ates a public/private key pair. The secret private key stays
at the root node. The public key is distributed together with
the scope creation request to all member nodes of the scope.

All following messages such as queries or requests for
nested scopes that are sent from the root node are signed
with its private key. Scope members can then verify that
messages really originate from the same node that cre-
ated the scope. Other nodes cannot request the execution
of queries or code within the scope neither request the cre-
ation of a nested sub-scope. In the opposite direction the
root node’s public key can be used by the scope members to
encrypt data such as query results before it is sent back to
the root node.

Although this scheme does not cover mutual authenti-
cation between any pair of sensor nodes it covers the two
most important security aspects of multi-purpose sensor
networks: differentiated access control for sensor nodes that
are grouped within a scope and encryption of sensitive data
originating within the scope.

If keys are maintained at a gateway node, a finer grained
access control could be realized outside of the WSN. Par-
ties that wish to send some request within a certain scope
would first have to acquire a signature from the owner of
this scope.

As only a single key per root node or scope is required
the usual key distribution problems within WSNs do not
arise. Member nodes of scopes have to perform only rel-
atively lightweight public-key operations which has been
shown to be feasible with current WSN hardware [16].

5. Conclusion and future work

Today WSNs focus on dealing with a single global task.
We argue in favor of a single WSN for multiple concur-
rent applications and we present a scenario in this sense.
For this purpose a modular multi-purpose WSN infrastruc-
ture is required, helping to reduce development and mainte-
nance costs.

Multi-application support requires means of separating
applications both at node and network level. Application
deployment must be possible dynamically at run-time. In
order to achieve the desired efficiency and scalability it is
necessary to delimit the scope of applications to a subset
of relevant nodes. A multi-purpose WSN architecture like



this also needs a high degree of adaptability and modular-
ity in order to satisfy the requirements of different applica-
tions and scenarios.

We presented a modular architecture based on the con-
cept of scoping that meets these requirements. Scopes are
both an abstraction layer for global and local groups of
nodes and a middleware building block. They may serve
as an extension point that allows to integrate other solutions
like access control or quality of service mechanisms.

We are currently working on a prototype implementa-
tion based on the SOS operating system [13] for the Mica
mote platform. One goal of this implementation is to as-
sess the influence of multiple applications on the routing
overhead. On the one hand deployment and maintenance of
scopes causes the transmission of additional messages. On
the other hand the relation of routing overhead versus pay-
load is improved by sharing a routing tree between multiple
scopes and using scopes for multiple purposes.

Future work includes the improvement of routing effi-
ciency by exploiting properties of scope membership con-
ditions and by sharing routing information between scopes.
The extension of scopes with services like access control
also provides an interesting field for future research.
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