
pSense - Maintaining a dynamic localized peer-to-peer structure for position
based multicast in games∗

Arne Schmieg
Techn. Univ. Darmstadt

Germany
a.schmieg@dvs.tu-

darmstadt.de

Michael Stieler
Techn. Univ. Darmstadt

Germany
m.stieler@dvs.tu-

darmstadt.de

Sebastian Jeckel
Techn. Univ. Darmstadt

Germany
s.jeckel@dvs.tu-

darmstadt.de

Patric Kabus
Techn. Univ. Darmstadt

Germany
pkabus@dvs.tu-darmstadt.de

Bettina Kemme†

McGill Univ., Montreal
Canada

kemme@cs.mcgill.ca

Alejandro Buchmann
Techn. Univ. Darmstadt

Germany
buchmann@dvs.tu-darmstadt.de

Abstract

This paper presents an algorithm for creating and main-
taining a dynamic localized peer-to-peer overlay network
with its main application to massively multiplayer games.
In these games, players reside in a large game world with
many thousands of players but each player has typically a
limited vision range. In our solution, players join the net-
work as peers and mainly connect to neighbor peers that
are close to them in the virtual game world. As players
move in the game they change their neighbors dynamically
with very little overhead. Peers can multicast messages that
are received by peers in their locality very fast (often faster
than in client-server solutions) while players that are fur-
ther away receive them later or not at all. Not receiving
messages from remote players is important in order to not
cause the load on each peer to grow with the number of
players in the game. Our performance analysis confirms
that our solution allows for dynamic game worlds of prac-
tically unlimited size, only limited in scale by the number of
players within the vision range.

1. Introduction

Massively multiplayer online games (MMOG) allow
thousands of concurrent users to play together in a persis-
tent game world. They are typically run in a client/server
architecture. The client software renders the game world.

∗This research was partially funded by Deutsche Forschungsgemein-
schaft through the Research Training Group ”Enabling Technologies for
e- Commerce”, the Research Group ”QuaP2P”, and Activator.

Each client is typically able to control one player. Players
can perform actions such as updating their position in the
game world, interacting with objects (e.g., picking up an
object), or interacting with other players. Each player sends
its actions to the server. The server serializes them and then
sends each valid action to those players that are interested in
this action. Typically, each player has only a limited vision
range seeing only the part of the world around its current
position. While this is typically part of the game semantics,
it is also often a technical requirement. The relatively weak
machines on which the client software runs are sometimes
not able to receive and process actions of all players in the
game. Therefore, the server has an interest management
module [19, 4] which determines for each player and ac-
tion, whether the action is relevant for the player, and only
information about those actions is transferred to the player.

But the sever side also faces scalability problems. First,
the server can only connect to a limited amount of clients
and propagate a limited amount of information across these
links. Second, the server has only limited processing ca-
pacity. For each action, the interest management module
must determine the interested players. Several action types
require some serialization and conflict detection (e.g., not
two players may pick up the same object). Thus, a stan-
dard server can typically only support a few thousand play-
ers. Beyond that, the most common approach by commer-
cial providers is to use a multi-machine server cluster which
adds a lot of complexity in order to achieve load-balancing
and borderless player experience [6, 1].

As an alternative, proposals have been made to run
MMOGs over a Peer-to-Peer (P2P) infrastructure (e.g.,
[16, 2, 13, 11]). A major issue is the implementation of in-

terest management without having global knowledge. Cur-
rent approaches typically split the game world into small
zones. A master node (peer) is the server for players in
this zone controlling actions that require serialization [16].
For the dissemination of position updates to all players of a
zone, direct multicast can be used [16] or the master node
is also in charge of disseminating position updates [13].
Having predefined zones as units of distribution has sev-
eral problems. First, mobility is not well supported. When a
player moves from between zones, an expensive hand-shake
has to connect a player to a new server. If master nodes
leave the game, an expensive reconfiguration is necessary.
Second, zones build visibility boundaries. Players cannot
see players of other zones even if they are close to these
zones. This might be acceptable in game worlds where
buildings and rooms build natural area boundaries but not
in larger game spaces. Finally, load-balancing is difficult if
the number of players in a zone changes dynamically. How-
ever, only few allow for dynamically changing the size of
zones, and if they do, it is cumbersome [12, 10].

In this paper, we present a P2P solution that is specifi-
cally designed to handle interest management and support
dynamic behavior. Our focus currently is on the efficient
multicast of position updates as they make up by far the
largest part of all actions, thus have the biggest effect on
performance and scalability. We consider serialization of
potentially conflicting actions as an orthogonal topic. It
could be handled, e.g. by a central server, because these
types of events are much less frequent then position updates.
The separation of these two concerns has been very useful,
as it allows for a much better optimization of the problem
at hand. Our solution is completely decentralized where
each node has exactly the same responsibilities. It fulfills
three fundamental requirements: (i) Players in the neigh-
borhood get updates very soon (as good or even better than
in a client/server approach). (ii) Each node only needs a
limited amount of bandwidth; this automatically means that
remote players should not get too many irrelevant messages
since they would overflow their machines. (iii) Players can
move freely in the game world with the set of players that
are visible to them changing in a continuous manner.

The main ideas are as follows. We maintain an overlay in
which each node keeps information about neighbor players,
i.e., players in the vision range of the local player, as accu-
rate as possible. In order to be able to update its neighbor
view fast if movements occur, and also to avoid network
partitions, each node keeps track of some remote players.
We call our approach pSense as nodes continuously sense
the positions of players and detect whether new players en-
ter or leave the vision range. A localized mulitcast sends
position updates only to nodes with neighboring players,
and this with very little delay (often only one or two hops).
We exploit the fact that position updates don’t really need

to be delivered reliably. If a player has not received a spe-
cific position update after one or two rounds, there is no use
to deliver it but to deliver the next update as soon as pos-
sible. Position update messages are not only used by the
application to update the game world but also used to main-
tain the peer overlay. Overall, each node only maintains a
limited amount of information, and sends a limited number
of messages per time unit, as individual nodes have storage,
bandwidth and processing constraints.

pSense has been developed with MMOGs in mind. Nev-
ertheless, we believe that it can be used by other applica-
tions. For example when rescue teams are deployed in large
disaster areas and each member is equipped with a hand-
held communication device it helps individuals to keep
track of nearby team members, and thus, help to coordinate
the rescue effort. In this situation, the vision range would
not reflect the proximity in a virtual but in the real world.

In summary, our P2P architecture
• provides a straightforward, localized multicast that is

sent only to nodes in the neighborhood;

• maintains an overlay using probabilistic measures in or-
der to handle the dynamism of the system.

The rest of the paper is structured as follows. Section 2
presents related work. Section 3 describes the pSense algo-
rithm. Section 4 presents our implementation and our met-
ric for the “goodness” of a localized multicast. Section 5
discusses our performance results. Finally,Section 6 con-
cludes and discusses future work.

2. Related Work

Probably the most well known P2P MMOG approach is
SimMud [16]. Peers are member of a Pastry [23] DHT over-
lay. The game world is distributed in zones and a peer is
server (master) node of those zones and objects whose iden-
tifiers are closest to the peer’s own identifier. Game state
is disseminated using the Scribe multicast [5]. As Scribe
is tree-based, this leads to delays of several hops. An im-
provement over SimMud was proposed in [13] where most
of the traffic is handled via the master node leading to an
average latency of two hops. In MOPAR [24], the master
node of a zone maintains for each player p a neighborhood
list with all the players in p’s vision range. As MOPAR al-
lows the vision range to overlap with several zones, masters
of neighboring zones have to exchange player information.
Players communicate directly with each other based on the
neighborhood lists allowing for fast multicast of position
updates. However, the maintenance of neighborhood lists,
and the movement of players from one zone to another is
complex. In Mercury [2], concepts of DTH-based content
publish/subscribe are used to enable delivery of events to
only a subset of players. As mentioned before, zone-based

approaches have many disadvantages. Our approach has no
predefined zones but uses one single continuous space.

Most similar to our work are [12, 14, 15]. All three
propose a decentralized P2P approach where players keep
track of other players in their continuously changing neigh-
borhood. However, connectivity of the entire network can
easily be lost [14] or requires the maintenance of complex
and process intensive structures such as Voronoi diagrams
[12] or convex hulls [15]. In [14, 15] only overlay main-
tenance is considered, while [12] is similar to us in that
it exploits multicast for overlay maintenance. In [14], the
neighborhood always consists of a fixed number of players
determined by the bandwidth capacity. [15] handles pro-
cessing limitations by decreasing the vision range. In con-
trast, our approach supports all neighbors in the vision range
as defined by the application. If bandwidth is limited, per-
formance will become worse, but as our experiments show,
only to an acceptable degree. None of the three approaches
provides overhead or performance evaluations.

Commercial systems rely heavily on the client-server ar-
chitecture. P2P systems are only provided in very small
scale, e.g., Z-Net supports up to 32 players [22]. All play-
ers interact directly with each other. The number of play-
ers reflects the bandwidth limitations of current machines
connected to the Internet. In our approach, we can sup-
port a similar number of players within the vision range
with nearly optimal performance. Additionally, we allow
the players in the vision range to continuously change, we
support more than 32 players in the vision range with only
slightly decreased performance, and we support an unlim-
ited total number of players in the entire game world.

Many P2P multicast solutions build a dissemination tree
[17, 5] in order to distribute the message propagation across
all nodes. This makes only sense if not all nodes are
senders. If some nodes in the tree are not interested in a
message themselves, they receive it unnecessarily. In gen-
eral, tree-based multicast has been developed for applica-
tions with a large receiver base. However, in MMOGs a
message is typically only of interest for few players. Group
communication systems (GCS) [7] offer primitives to mul-
ticast messages within a group of sites. However, joining or
leaving a group are typically expensive operations. If GCS
would be used in MMOG there would be still the task to
determine when players have to join which groups.

There exist many proposals for probabilistic multicast. A
message could be first multicast via a tree, while gossiping
among neighbor nodes is used to recover lost messages [3].
Another option is to directly multicast a message via gossip-
ing [9]. This resembles the combined flooding/random walk
searches in unstructured P2P systems [18]. Each message is
multicast to a subset of neighbors which in turn forward it to
a subset of their neighbors until a certain depth is reached.
Such approaches are not suited for several reasons. Firstly,

gossiping aims at achieving high reliability by introducing
a lot of redundancy. Nodes will often receive a message
several times. Given the amount of messages in a MMOG,
nodes are likely to be too overloaded with such an approach.
In fact, our approach goes into the opposite direction. If the
bandwidth is too small, a node will actually not receive all
messages of a neighbor player but only enough to have a
good game experience. Secondly, these gossip based pro-
tocols aim at propagating messages of all nodes to all other
nodes in the system. In contrast, in a MMOG, each message
should only reach a small number of players.

3. Algorithm

In this section we describe the algorithm behind pSense.
For the discussion we take the view of an arbitrary node
in the network which we identify as the local node. Every
node hosts a player in the game. In the following, we use the
words peer, player and node interchangeably. Every time
we talk about the position of a node and its distance to other
nodes, this refers to the position of the player within the
game world and its distance to other players.

3.1. Main Concepts

pSense has to handle two main tasks. Firstly, when the
local player moves, a position update should be sent to
those players that are interested in the movement. Inter-
est is determined by a player’s limited vision range. The
vision range delimits the area in which a player can per-
ceive changes of the game world1. Changes outside this
area are not of interest to the player. Players in the vision
range of the local player are called the neighbors of the local
player. We assume the neighbor relation to be symmetric.
Thus, in order to achieve a good game performance, the lo-
cal node needs to send as fast as possible position updates
to its neighbor players since they are the ones that have the
local node in their vision range. Other players should not
receive the update in order to not overburden them.

The second task is to keep the player network connected.
Restricting message exchange to only the neighbor nodes
in the vision range bears a high risk for generating network
partitions. Often players tend to gather in certain locations.
If these locations are far apart from each other, the nodes
of one location could completely lose contact to the nodes
of other locations. Since we do not have any superpeers
with global knowledge, these partitions cannot be joined
again. Last but not least, noder are not static. Each node
constantly changes its position whenever the player walks
around. Thus, a node has to detect fast when other players

1In this paper we are talking about player objects but in principle we
could address any changes of objects within the game world.

enter or leave its vision range. This means, pSense has to
function in a highly dynamic environment.

Overlay Maintenance In order to restrict updates mainly
to nodes in the vicinity while at the same time avoiding net-
work partitions, every node of a pSense network maintains
two lists: a list of near nodes and a list of sensor nodes.

The near node list contains only neighbor nodes, that
is, peers that are within the vision range of the local node
and that need position updates very fast. The local node at-
tempts to keep its list as accurate as possible. As the local
node detects new neighbors it adds them to its near node list.
Nodes that have left are removed. But of course, changes
in the neighbor configuration cannot be detected instanta-
neously, and thus, the list might miss some neighbor nodes
while containing some nodes that are not in the vision range.
We refer to nodes in the near node list as near nodes.

The sensor node list contains nodes that are just a bit
outside the vision range and stick out like antennas in every
direction. The purpose of the sensor node list is to avoid
network partitions by keeping contact to more distant nodes
and to detect nodes that move closer to the local node. If a
sensor node detects an approaching new node it can intro-
duce this node to the local node. Sensor nodes should be
distributed as evenly as possible around the local node to
provide the best chances of keeping connections to the rest
of the network and to detect new approaching nodes.

Figure 1(a) shows an example of how the network is
seen by a local node. All nodes that are known to the lo-
cal node and within the vision range are marked as near
node. The sensor nodes are peers just outside the vision
range distributed around the local node as evenly as possi-
ble. Typically, the local node knows most of its neighbors.

Localized Multicast In pSense, when the local node
changes its position it sends a position update message di-
rectly to its near nodes and sensor nodes. If the number of
nodes in these two sets exceeds the outbound (upload) band-
width capacity of the local node, a random subset is chosen
as destination. Each near node that receives this message
has the accurate position of the local node within one hop.
As this original message might not have reached all neigh-
bor nodes, some forwarding is performed. When a neigh-
bor or sensor node of the local node receives the update, it
forwards it to those nodes it knows that reside in the vision
range of the local node. A sensor node might not know such
node. In this case, it simply tries to forward the message
closer to the local node. While forwarding position updates
we try to avoid sending duplicates to keep bandwidth con-
sumption low. Messages are also discarded after few for-
wards. Forwards are mainly needed to detect new neighbor
nodes fast. They also provide reliability. However, one has
to be aware that receiving a relatively old position update
has no benefit if a fresher update has already arrived.

Adjusting Sensor Nodes Additionally to position updates,
the local node sends sensor node request messages to its
current sensor nodes. A sensor nodes answers with a sensor
node suggestion message that contains the identifier and the
position of the node it thinks is the most appropriate sensor
node. This could be itself or another node.

3.2. Implementation

We now give a step-by-step description of the pSense
algorithm. The local node performs the following steps.

1. Receive Messages This step is performed whenever the
local node receives a new message. Such messages can ar-
rive at any time. A message could be a position update mes-
sage, or a sensor related message. First the hash of the mes-
sage is compared to a list of seen hashes to avoid processing
duplicates. Any duplicates are immediately discarded. Ad-
ditionally, if the message is a position update and older than
a previously received position update of the same origina-
tor it is discarded. For that purpose, position updates are
tagged with node specific sequence numbers. A current po-
sition update is then delivered to the gaming application.
Finally, all received messages that are not discarded are put
into an incoming message queue. This incoming message
queue is then further processed in Step 2.

2. Round-based Overlay Maintenance and Mulitcast
The main actions at the local node are performed periodi-
cally. This resembles current games where the server for-
wards game state changes in rounds to the players. Each
round performs the following steps:

a. Update Lists In this step, the local node updates the near
node and sensor node lists. In order to do so, all position
updates and sensor suggestion messages that have been en-
queued in the incoming message queue are checked whether
they contain updated positions for already known nodes or
positions of previously unknown nodes. All nodes that are
within the vision range are put into the near node list. From
the remaining nodes, the best candidates are chosen as sen-
sor nodes (see Section 3.3 for details). Nodes that are nei-
ther a near node nor a sensor node are discarded.

b. Determine Outgoing Messages In this step, we deter-
mine messages that the local node wants to send. In the
following, when we talk about sending a message, we actu-
ally mean putting it into an outgoing message queue.
(i) First, the current position of the local player is deter-
mined. A position update message is sent to each node in
the near node list and the sensor node list. Each of these
position update messages also contains a list with the iden-
tifiers of all nodes in the near node list. The list of these
receiving nodes is called the receiver list. This helps to re-
duce the number of duplicate messages as discussed below.

N

N

N

N

N

N

N

N

S

S

S

S

S

S

N

S

Local Node

Near Node

Sensor Node

Unknown Node

S

S

Vision Range

(a) Local View of the Network

S

S

S

S

S

S

S

Uneligible Node

S Sensor Node

Local Node

SVision Range

(b) Sensor Node Selection

S
1.sensor node request

2.knows better sensor

3.sensor node suggestion

4.next round the better
 sensor node will
 replace the old one

S sensor node
node

(c) Sensor Node Maintenance

Figure 1. pSense Algorithm

(ii) To each sensor node a sensor request message is sent in
order to detect the most accurate sensor nodes.
(iii) Then, the messages in the incoming message queue are
processed: First, for every sensor request in the incoming
message queue a sensor node suggestion is created (see Sec-
tion 3.3) and sent back to the originator. Then, each position
update message in the queue is potentially forwarded if it
has not yet reached its life-time limit. Life-time is measured
in the number of hops it has travelled so far (i.e., one plus
the number of forwards). For each non-expired update mes-
sage, the local node checks which of the nodes in its near
node and sensor node lists are neighbors of the originator
of the message but are not contained in the receiver list of
the message. To all of these nodes the update is forwarded
directly because they have potentially not yet received the
message. The receiver list is adjusted accordingly to also
include these new receivers. If the local node has received
this position update because it is the sensor node of the orig-
inator of the message, it might not know any neighbor node
of the originator. In this case, the message gets forwarded
to the node which is closest to the originator.

c. Send Messages Before sending any message, if the
amount of messages in the outgoing message queue ex-
ceeds the upload bandwidth of the local node, the local
node deletes random position updates from the queue until
the amount of traffic fits. The receiver list of the remaining
updates is shrunk appropriately. Sensor node requests and
suggestions are never deleted from the queue. Finally, the
local node sends the remaining messages to its recipients
and purges both queues.

3.3. Selecting Sensor Nodes

As described above, the sensor nodes are just outside of
the vision range of the local node and should be evenly dis-

tributed around it. In our solution for a 2-dimensional game
world, we draw a circle around the local node and parti-
tion it into sectors of equal size. For each sector, the clos-
est node that is outside the vision range is chosen as sensor
node. Figure 1(b) shows an example of this selection. While
other solutions are possible, our solution has the advantage
of being simple and at the same time our experiments with
both highly and very sparsely populated game worlds have
shown that nodes are always detected very fast.

Of course a sensor node can only be selected among the
nodes that are known to the local node. Since the local
node usually doesn’t receive updates from outside its vision
range, it can hardly find better sensor nodes on its own. For
this reason, the local node asks each of its current sensor
nodes periodically whether they know a better candidate for
this sector. If there is no sensor node for a certain sector, the
local node sends the sensor request message to a node from
the near node list which is part of this sector or any other
node it knows that is close to this sector. This sensor re-
quest contains the current position of the local node and the
sector identifier. The sensor node has a good knowledge of
its vicinity and checks whether there is a node that is better
suited than itself. It then sends the identifier and the posi-
tion of the node it has chosen (it could be itself). The local
node then replaces the old sensor node with the new one.
This process is shown in Figure 1(c).

3.4. Joining and Leaving the Network

As players usually may start and stop playing a game at
any time, pSense must be able to handle arbitrary joining
and leaving of nodes. In order to join the network, a new
node must only know a single random node which is already
part of the network. If there is a central server, for example
for authenticated login, the central server could provide the
address of such a node, which we refer to as old node.

N

N N

N=q
S2

S1

Position Update

Forward

p

(a) Localized Multicast

N

N N

S1

q

N

S2

Position Update

Forward

p

(b) Indirect Forwarding

N

N N

N

S1

S2

Sensor Request

Sensor Suggestion

Movement

p

(c) Sensor Node Adjustment

Figure 2. Examples

If the old node is within vision range, the new node sends
directly updates to it. The old node adds the new node to
its near node list and starts forwarding position updates to
the new node. Thus, the new node soon gets to know other
nodes in its vision range. If the old node is not within vision
range, the new node will send it a sensor node request. From
the nodes it knows, the old node suggests a better sensor
node than itself to the new node. The process repeats, and
the new node will successively find better sensor nodes. Ad-
ditionally, the new node sends position updates to its current
sensor nodes. They try to forward them to nodes which are
closer to the new node. Eventually the updates will reach
a node within the vision range of the new node. From then
on, the new node soon receives updates from nearby nodes
and populates its own near node list.

When joining, a node might also need to receive the map
of the game world, information about non-player objects,
etc. How this is handled is orthogonal to this paper.

When a node leaves the network, it does not need to per-
form special operations. The remaining nodes may lose at
most either a sensor node or a near node. In case they lose
a near node, they simply stop sending messages to it. If
they lose a sensor node, they choose a new one as described
in Section 3.3. If nodes leave, there are very few situa-
tions where the network could become disconnected. For
instance, when all players are in one straight line. In our
experiments, however, such situation never occurred. This
problem could be solved with backup sensor nodes.

The system automatically bootstrap when the first node
joins the network. If this is done, as described above, over
a server, this server can tell the node that it is the first.

3.5. Examples

We present now several examples that provide some in-
tuitive reasoning for the individual steps of the pSense algo-

rithm. In Figure 2(a), we see the local node, its vision range
and nodes in its surrounding. We only show two sectors
outside the vision range with its sensor nodes. Let’s assume
that the local node and peer node p, although in each others
vision range, don’t know each other because p only moved
recently into this area. When the local node multicasts its
next position update it sends it to all nodes in the vision
range except of p. However, as node q is close to p it is
likely that q already knows p. Thus, it forwards the posi-
tion update to p. Peer node p registers the local node in its
near node list. When p sends its next position update, the
local node will receive it, put p in its own near node list and
have accurate information about p. If no node q exists in
the vision range of the local node that knows p, then there
is still the possibility that the sensor node s1 knows about
p. As it also receives the position update of the local node,
it forwards it to p and the two nodes get to know each other.

Figure 2(b) shows how position updates are forwarded
via sensor nodes. In the example, no sensor or near node
knows p but a node q close to p outside the vision range is
known by sensor node s1. When s1 receives the position
update of the local node, it forwards it to q as q is closer to
the local node. Node q, in turn, forwards the update to p.

Finally, Figure 2(c) shows an example of how a new sen-
sor node could be determined. In the example, p has moved
very recently into the sector for which s1 is the sensor node.
At this time point p is now the preferred sensor node for this
sector. As p is in the vision range of s1, s1 knows p or will
soon get to know it. When the local node sends its peri-
odic sensor node request message to s1, s1 determines that
p is now a better sensor node and responds to the local node
with a sensor suggestion message containing p and its posi-
tion. Note that before the move of p to the different sector,
p was of no interest to the local node, because in its original
sector, the sensor node s2 was closer than p.

4. Simulation Environment

We implemented the algorithm using the PeerSim sim-
ulator [20]. PeerSim provides a round-based modus where
in each round a node can send messages to other nodes,
receive messages, and do some local processing. In our im-
plementation, a message is received one round after it has
been sent, and this counts as one message hop. The software
running on each node is split into two modules. The first is
the overlay network implementing the algorithm described
in the previous section. The second is an application that
represents one player and the corresponding game client.

4.1. Simulated Game

In each round of the simulation, the game application on
a peer moves its player and then multicasts the new position
via the overlay network. Furthermore, it processes all posi-
tion updates delivered by the overlay network. As discussed
before, the position of a peer and its player are conceptually
the same so that we denote the player on peer p also with p.

Initially, player p does not know the position of any other
player. The first position update it receives for a player q de-
termines the initial position of q in the game world seen by
p. This position of q is updated whenever a newer position
update from q arrives.

Our simulator has two modes for player movement. In
random mode, each player moves with discrete steps into a
random direction. Each round the direction can change with
a certain probability. This mode spreads players equally
across the game world. Using the hot spot mode, the game
world has a certain number of places where players tend to
gather. They first move to a hotspot they are attracted to.
Then they perform random moves within a certain range of
the hot spot. After a random time interval they choose a
different hotspot and move to it. Thus, there are many play-
ers in each hot spot area and on the paths connecting two
hotspots while the rest of the game world is mainly empty.
This mode resembles the distribution of players in certain
games more closely than the random mode.

4.2. Measuring quality

We consider as the protocol quality the freshness of the
information each player has about other players in the sys-
tem. For players p and q we express p’s knowledge of q
with the age of the last position update p received from q.
We calculate PositionAge(p, q) as the difference between
the current round in the simulation and the round at which
q initiated this position update. In perfect circumstances, p
receives the update one round after q sent it, in which case
PositionAge(p, q) = 1. If p has not yet received any posi-
tion update from q, then PositionAge is set to a fixed max-

imum value. In our experiments, we used a maximum of
20. In general this will be an application dependent value.

Our metric of freshness does not directly take
PositionAge. Instead, it distinguishes two areas within the
vision range. Around a player p there is a small interaction
range containing players with whom p can potentially di-
rectly interact (e.g., talk or fight). The information about a
player q in this interaction range needs to be fresh. Thus,
for player q in the interaction range of p we take

PQ(p, q) = PositionAge(p, q)

For a player q in the vision range that is not in the in-
teraction range, the importance of the accuracy of the infor-
mation decreases with increasing distance between p and q.
That means, the further q is from p the less should a large
value for the position age have a negative impact on the pro-
tocol quality. Let IR denote the radius of the interaction
range, V R the radius of the vision range, and dist(p, q) the
distance between p and q. Then

PQ(p, q) = PositionAge(p, q)
(
1− dist(p,q)−IR

V R−IR

)

For instance, given PositionAge(p, q) = 3, IR = 2,
V R = 5 and dist(p, q) = 3, then PQ(p, q) = 2.08.

Finally, players that are outside p’s vision range have no
influence on the protocol quality. With this, given a round in
the simulation, the protocol quality for player p with players
q1, q2, ...qm in its interaction and vision range is

PQ(p) =
1
m

m∑

i=1

PQ(p, qi)

The overall protocol quality PQ for a given simulation
round is the average over all PQ(pi), pi being a player in
the game. Finally, PQ is the average over the PQ values
of all rounds within a simulation run. PQ = PQ = 1 if all
players send all position updates directly to their neighbors.

5. Evaluation

We have conducted a wide set of experiments. Table 5
describes the main parameters and the standard settings if
not indicated otherwise. We have chosen a relatively large
vision range given the overall game size. The reason is that
network size was restricted by the runtime of the simula-
tion and we tested only up to 600 nodes. However, as we
have mentioned before, performance mainly depends on the
number of players in the vision range which we chose large.
For the bandwidth capacity, we found information on the
Web indicating that around 20% of Internet sites have an
upstream (outbound) bandwidth capacity of 128 KBit/s, an-
other 20% have 256 KBit/s and the rest have larger capacity.
Downstream (inbound) capacity is usually larger. One can

Parameter Value
Standard Game Size 1000 × 1000
Vision Radius 200
Interaction Radius 50
Outbound Bandwidth Cap per Round 5KByte
Simulation Rounds 500

expect that these bandwidth limits will increase fast in the
near future. For a good game experience, each peer should
run at least 3 multicast rounds per second. Thus, our stan-
dard bandwidth cap is at 5 KByte per round (43 KBit) so
that even the weakest nodes are able to multicast 3x per
second. All tests were run over 500 simulation rounds.

5.1. Scalability

We claimed that performance does not depend on the
overall number of players but only on the number of players
in the vision range. We first want to confirm this claim.

Fig. 3(a) shows the PQ for each of the first 500 rounds
using the Random game type. One run has 100 players and
the standard game size of 1000x1000. A second has 300
players with the same game size. The third run has 300
players on 3-times the standard game size. We observe that
the quality shows very little variation throughout the exper-
iment except. The PQ with 100 players and standard game
size, and 300 players with 3x the game size are identical
as the number of players in the vision range are the same
(around 8). In both cases, the PQ is very close to 1, the
optimal value. This means, most players in the vision range
are informed in one hop. With 300 players and standard
game size, the PQ value is slightly worse. There are too
many players in the vision range (around 25) and not all
receive each position update in one hop. Instead, some re-
ceive it in two or more hops or might not receive it at all as
a more current one is already in circulation. Nevertheless,
the PQ is still at a very low 1.15.

We also looked at the 90-percentile PQ value meaning
that 90% of players perceived a performance equal or better
to this value. This provides a good indicator of the variance
seen in performance. Only for 300 players on the standard
game size did the 90-percentile value differ significantly
from the average and is shown in the figure. It is at around
1.3, 10% worse than the average. This shows that there is
little variation and players get informed very quickly about
new players in their vision range.

Our second scalability test analyzes the performance for
both the Random game type and the Hotspot game type with
10 hotspots. It also compares against a client/server system.
For a client/server system, we assume that each round each
player p sends its position update to the server which for-
wards it the next round to the players in p’s vision range.

Thus, the position age for players in the vision range is al-
ways 2. However, PQ is smaller than 2 as the formula for
PQ weights the position age with the distance to the player
and if PositionAge(p, q) = 2, then PQ(p, q) < 2 for a
player q outside p’s interaction radius. We assume no band-
width limitation at the server.

Figure 3(b) compares PQ of pSense with the
client/server solution for the game types Random (indicated
with R in the figure) and Hotspot (HS in the figure). Each
block of bars shows first the results for pSense and Ran-
dom, then for client/server and Random, then for pSense
and Hotspot, and finally for client/server and Hotspot. In
each block, the total number of players was selected, so that
independently of the game type around the same number of
players are in the vision range. The x-axis shows the num-
ber of players in the vision range, the y-axis the PQ value.

Our first observation is that pSense always has signifi-
cant better performance than the client/server architecture.
As most messages are sent with one hop latency, PQ is very
close to 1 as long as the bandwidth is not the limiting fac-
tor. But even with nearly 50 players in the vision range, it
has much better performance than the client/server solution,
although forwarding and message drops occur. In contrast,
the client/server architecture has a PQ of around 1.4-1.5.

The PQ of the client/server system depends on the game
type and not the number of players in the vision range. As
we do not consider any processing or bandwidth limitations
at the server, the PQ value is only determined by the 2-
hop latency for all messages. Hotspot has a worse PQ than
Random. This could be caused by Hotspot having more
players in the interaction range than Random. The latency
of these players has a large influence on the PQ value.

For pSense, performance decreases with increasing num-
ber of players in the vision range. When the capacity limit
kicks in, some players receive messages only through re-
laying or not at all. In this figure one can nicely see that a
low-bandwidth node is able to directly broadcast to approx-
imately 30 nodes – the number that is supported by com-
mercial P2P gaming infrastructures [22]. While the neigh-
borhood of a player continuously changes, the player learns
quickly about new players in its vicinity through its near and
sensor nodes. Although the changes can be very extreme in
the case of Hotspot, performance remains excellent.

5.2. Bandwidth vs. Performance Trade-offs

If a player could always send all position updates directly
to all its neighbors, then PQ would always be 1. However,
due to bandwidth limitations this might not always be pos-
sible, and only a subset is selected. Thus, nodes receive a
position update only after 2 or more hops or not at all, neg-
atively affecting PQ. In this section, we analyze how the
bandwidth capacity influences the PQ value.

(a) Number of Players vs. Player Density (b) Comparison with Client/Server (c) Bandwidth vs. Performance

(d) Bandwidth Requirement (e) Outbound Bandwidth over Time (f) Input Bandwidth over Time

Figure 3. Performance Results

We run the Random game type with 200, 400 and 600
players (respectively leading to approximately 16, 35 and
65 players in the vision range). Figure 3(c) shows the PQ
when we increase the outbound bandwidth capacity from 5
KByte to 25 KByte per round. We estimate that currently
around 20% of nodes can support 25 KBytes per round.

We can observe that a game with 200 players has al-
ready excellent performance at a bandwidth of 5 KByte per
round while the performance considerably suffers for more
players. With 600 players, the performance at 5 KByte is
worse than in a client/server system. However, as more
bandwidth is available, performance quickly improves and
already with 10 KBytes, the PQ is below 1.4 for 600 play-
ers. After that, adding more bandwidth capacity further im-
proves the performance until in reaches 1.

Our second experiment shows how much bandwidth is
actually needed to achieve PQ = 1. Fig. 3(d) shows for the
Random game type for different number of players in the vi-
sion range how much bandwidth was used on average when
no bandwidth cap was used. We can see that bandwidth re-
quirement increases linearly with the number of neighbors.

In our current implementation, node ids take up 4 Bytes
and no compression is used. We believe that performance
could be further improved if more engineering work would
be put into marshalling position messages.

5.3. Traffic over Time

Finally, we have a closer look at the traffic behavior. Fig-
ure 3(e) shows the average and maximum outbound traffic
in each of the first 500 rounds for a random game with 100
players and 5 KByte bandwidth cap. In this experiment the
average PQ is close to 1. We can see that on average, the
network traffic is well below the maximum. However, in
each round there are some nodes who have reached the max-
imum value and putting a cap is important to not temporar-
ily overload these nodes. Figure 3(f) shows the inbound
traffic. Here, the averages are similar to the outbound The
maximum values are well controlled by putting a cap on the
maximum value for outbound messages.

5.4. Summary

Our approach provides excellent performance for large
multiplayer games with continuous game worlds, outper-
forming the client/server architecture as long as each player
has only a limited number of neighbors.

6. Conclusion and Future Work

pSense is a P2P solution that combines overlay mainte-
nance with a localized multicast that only sends messages

to peers in the neighborhood. Peers can change their loca-
tion in the overlay dynamically so that they are close to their
neighbors from an application point of view. Dynamism is
handled by keeping track of some remote nodes which al-
low for a fast detection of approaching nodes. The localized
multicast then sends messages to the closest nodes very effi-
ciently while most remote nodes don’t receive the messages
at all. The multicast is indirectly used to determine the rel-
ative distance of peers and thus, rearrange the overlay dy-
namically. pSense is completely decentralized and allows
to freely scale in terms of network size.

pSense was developed in the context of massively multi-
player games. It presents a novel P2P gaming infrastructure
which allows for a very fast dissemination of position up-
dates. Position updates are the most frequent action type
players perform in the game world. Thus, their efficient
propagation to interested parties is very important.

There is plenty of interesting work that is left to be done.
Tests on real game traces could give further insight into the
performance of the system. Furthermore, the effect of het-
erogeneous peer setup has not yet been well analyzed. An
initial experiment, where 50% of nodes had a low band-
width capacity and 50% had a high capacity, achieved a PQ
that was exactly between the PQ values for all low-capacity
nodes resp. all high-capacity nodes. The protocol could be
adjusted to better exploit capacities in a heterogeneous en-
vironment. The choice of sensor nodes has shown to work
well. But we are not quite sure about the appropriate num-
ber of sensor nodes and their distance. We have also not
yet considered cheating. One would have to understand the
possibilities of cheating [8, 21] in this context and then see,
how cheating could be addressed so that it does not have
an affect on the performance. Finally, position updates are
only one type of action performed in games. Other action
types, if they should also be handled in a peer-to-peer fash-
ion, will need some serialization and conflict detection, and
thus, require a more sophisticated multicast.

References

[1] R. K. Balan, M. Ebling, P. Castro, and A. Misra. Matrix:
Adaptive middleware for distributed multiplayer games. In
Int. Middleware Conf., pages 390–400, 2005.

[2] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
supporting scalable multi-attribute range queries. In SIG-
COMM, pages 353–366, 2004.

[3] K. P. Birman, M. Hayden, Ö. Özkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Trans. Comput.
Syst., 17(2):41–88, 1999.

[4] J.-S. Boulanger, J. Kienzle, and C. Verbrugge. Comparing
interest management algorithms for massively multiplayer
games. In Int. ACM Workshop on Network and System Sup-
port for Games (NETGAMES), 2006.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A large-scale and decentralized application-level

multicast infrastructure. IEEE Journal on Selected Areas
in Communication (JSAC), 20(8), Oct. 2002.

[6] J. Chen, B. Wu, M. DeLap, B. Knutsson, H. Lu, and
C. Amza. Locality aware dynamic load management for
massively multiplayer games. In ACM Symp. on Principles
and Practice of Parallel Programming (PPOPP), 2005.

[7] G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: a comprehensive study. ACM Comput.
Surv., 33(4):427–469, 2001.

[8] S. B. Davis. Why cheating matters - cheating, game security,
and the future of global on-line gaming business. In Game
Developers Conference, 2003.

[9] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight proba-
bilistic broadcast. ACM Trans. Comput. Syst., 21(4):341–
374, 2003.

[10] C. GauthierDickey, V. M. Lo, and D. Zappala. Using n-trees
for scalable event ordering in peer-to-peer games. In Int.
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), 2005.

[11] C. GauthierDickey, D. Zappala, V. M. Lo, and J. Marr.
Low latency and cheat-proof event ordering for peer-to-peer
games. In NOSSDAV, pages 134–139, 2004.

[12] S.-Y. Hu and G.-M. Liao. Scalable peer-to-peer networked
virtual environment. In NETGAMES, 2004.

[13] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned fed-
eration of game servers: a peer-to-peer approach to scalable
multi-player online games. In NETGAMES, 2004.

[14] Y. Kawahara, T. Aoyama, and H. Morikawa. A peer-to-peer
message exchange scheme for large-scale networked virtual
environments. Telecommun. Systems, 25(3):353–370, 2004.

[15] J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. In Int. Conf. on Parallel and Dis-
tributed Process. Techn. and Applications, (PDPTA), 2003.

[16] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. In INFOCOM,
2004.

[17] J. C.-H. Lin and S. Paul. Rmtp: A reliable multicast trans-
port protocol. In INFOCOM, pages 1414–1424, 1996.

[18] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In ICS,
pages 84–95, 2002.

[19] G. Morgan, F. Lu, and K. Storey. Interest management mid-
dleware for networked games. In Int. Symposium on Inter-
active 3D Graphics (SI3D), pages 57–64, 2005.

[20] PeerSim. peersim.sourceforge.net.
[21] M. Pritchard. How to hurt the hackers: The scoop on internet

cheating and how you can combat it. Gamasutra, 2000.
[22] Quazal. www.quazal.com.
[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-
tems. In Int. Middleware Conf., pages 329–350, Nov. 2001.

[24] A. P. Yu and S. T. Vuong. Mopar: a mobile peer-to-peer
overlay architecture for interest management of massively
multiplayer online games. In NOSSDAV, 2005.

