
Designing a Testbed for Large-scale Distributed Systems

Christof Leng Max Lehn
∗

Robert Rehner
†

Alejandro Buchmann
Databases and Distributed Systems

TU Darmstadt, Germany
{cleng,mlehn,rehner,buchmann}@dvs.tu-darmstadt.de

ABSTRACT
Different evaluation methods for distributed systems like
prototyping, simulation and emulation have different trade-
offs. We present a testbed for Internet applications that sup-
ports real-network prototypes and multiple simulators with
unchanged application code. To ensure maximum portabil-
ity between runtimes, a compact but flexible system inter-
face is defined.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
I.6.8 [Simulation and Modeling]: Discrete Event

General Terms
Design, Experimentation, Performance

1. MOTIVATION
Evaluation of prototypes for distributed systems is chal-

lenging. A few hundred nodes can be deployed on the Inter-
net with PlanetLab [9], but it is not easy to get repeatable
results when using a shared and public infrastructure like the
Internet. Emulation testbeds like Emulab [4] are more con-
trollable, but are expensive to acquire and maintain. Packet
simulators like ns-3 [3] can run hundreds of nodes on com-
modity hardware and still give a good approximation of real
networks, but become slow if scaled up to larger networks.

In research areas that deal with extremely large networks
like peer-to-peer systems or massively multiplayer online
games (MMOG) overlay simulators like PlanetSim [2] or
ProtoPeer [1] have become very popular. By providing high-
level APIs and a rather abstract network model they scale to
many thousands of nodes. The downside is that the abstrac-
tion leads to reduced realism and the specialization makes
it hard or impossible to implement anything beyond peer-
to-peer systems. Additionally, most overlay simulators are
implemented in Java, rendering them practically useless for
applications written in native code (e.g. typical computer
games).

∗Supported by the DFG Research Group 733, Quality in
Peer-to-Peer Systems (QuaP2P).
†Supported by the DFG Research Training Group 1343,
Topology of Technology.

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15–19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

Figure 1: Testbed overview

It seems desirable to combine the advantages of several of
the described approaches. On the other hand maintaining
several independent implementations of a research proto-
type would be wasteful. ProtoPeer can be used to generate
stand-alone applications for real networks, but only provides
an overlay simulator. In our approach we define a system
interface that can be used for real networks, low-level, and
high-level simulators.

The identification of a common interface that works for
all of these scenarios is a useful insight by itself, but our
custom high-level simulator provides useful techniques for
debugging complex large-scale systems. The system (Fig-
ure 1) consists of multiple runtimes which implement the
system interface and applications which build on the system
interface and (optionally) the CUSP transport protocol [11].
A workload module is used to generate application load. In
a simulation the workload and scenario definitions are read
from a central database and simulator output is written to
the same database.

We have already used the testbed to implement CUSP
demo applications [11], BubbleStorm [10], pSense [8], Kadem-
lia [7], and the Planet PI4 online game [6]. The system is
implemented in StandardML and provides language bind-
ings to Java and C/C++.

In order to use the testbed environment an application de-
veloper must follow a few simple rules. Firstly, the system
interface must be used exclusively for the offered function-
ality and most not be circumvented (e.g. by using the na-
tive network socket interface). This ensures that all relevant
calls can be redirected to the current runtime engine. Sec-
ondly, the application must be written in an event-driven,
asynchronous fashion. This enables the simulator engines
to run many nodes in parallel without timing conflicts. Al-

400



though such restrictions have to be considered when porting
an existing application to the testbed, porting the non-trivial
Planet PI4 game was surprisingly easy.

2. SYSTEM INTERFACE
The system interface consists of four modules: scheduling

of events, networking, entropy, and output. An application
using the interface must be written in an event-driven fash-
ion in order to be executed by the simulator.

Event scheduling is responsible for scheduling new events
and executing them on time. The interface also supports
UNIX signals which can be used to trigger application han-
dlers for workload or simulator events (e.g. node shutdown)
without breaking the abstraction.

The networking interface is an asynchronous UDP net-
working interface. It also includes an opaque network ad-
dress structure. This allows for a relatively smooth transi-
tion path from IPv4 to IPv6 addresses.

The entropy interface provides random numbers to the
application for cryptographic or stochastic operations. In
the real-network it is implemented using operation system
means such as /dev/random. In a simulation it provides
pseudo random numbers from the simulator’s random num-
ber generator and thus ensures repeatability of the experi-
ments.

The output interface is used for logging and statistics.
The log interface can write short messages to a logging facil-
ity. The statistics interface can monitor performance met-
rics and system parameters measured by the application.
In a simulation the output data is written to the scenario
database whereas in the real network log files or standard
output can be used.

Not strictly a part of the system interface, but being a
module shared between many applications, is the CUSP
transport protocol. It provides reliable in-order message
streams for applications that require more than UDP. Mov-
ing the transport protocol implementation out of the run-
time has made the system interface much easier to port,
since it reduces not only the interface complexity but also
the implementation complexity of the runtime (i.e. simula-
tor) itself.

This collection of interfaces has proven to be sufficient
for the networking applications we have worked with so far.
Nonetheless we consider adding a data storage interface to
improve the support for applications that store persistent
data between sessions.

3. RUNTIME ENGINES
We currently support three runtime engines: real network,

ns-3 [3], and our own overlay simulator. The real-network
mode connects the application more or less directly with
the operating system. With ns-3 we support a sophisticated
and widespread packet-level simulator which can be used to
validate results from our custom runtime engines. In day-
to-day use we prefer our lightweight overlay simulator which
is not as precise but more scalable and easier to configure.

4. OVERLAY SIMULATOR
Our custom simulator is completely event-based and builds

on a lightweight end-to-end delay model [5]. It receives the
node configuration, session times, and simulation workload
from an SQLite database. The output of nodes is written to

the same database. This ensures that simulation results are
always kept together with the scenario setup that produced
the results. Gnuplot scripts can generate statistics plots di-
rectly from the database. The log table in the database can
be used to track bugs not only between nodes but also for-
ward and backward in time, a feature that step debuggers
do not provide. This is especially useful if the conditions
that lead to a bug have built up through time.

5. CONCLUSION
The testbed has proven to be a very useful tool for dis-

tributed system development and is in day-to-day use in our
lab. Being constrained to an interface that also supports
the real-network runtime helps to avoid unrealistic short-
cuts in the application code that might have happened in a
less strict simulation environment. The post-mortem debug-
ging with the log database makes bug-hunting in distributed
systems much easier.

6. REFERENCES
[1] W. Galuba, K. Aberer, Z. Despotovic, and

W. Kellerer. ProtoPeer: a P2P toolkit bridging the
gap between simulation and live deployement. In
Procs. of Simutools, 2009.

[2] P. Garćıa, C. Pairot, R. Mondéjar, J. Pujol,
H. Tejedor, and R. Rallo. Planetsim: A new overlay
network simulation framework. In Software
Engineering and Middleware, LNCS. Springer, 2005.

[3] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley.
ns-3 project goals. In Procs. of WNS2, 2006.

[4] M. Hibler, R. Ricci, L. Stoller, J. Duerig,
S. Guruprasad, T. Stack, K. Webb, and J. Lepreau.
Large-scale virtualization in the Emulab network
testbed. In Procs. of USENIX, 2008.

[5] S. Kaune, K. Pussep, A. Kovacevic, C. Leng,
G. Tyson, and R. Steinmetz. Modelling the Internet
Delay Space Based on Geographic Locations. In Procs.
of PDP, 2009.

[6] M. Lehn, T. Triebel, C. Leng, A. Buchmann, and
W. Effelsberg. Performance Evaluation of Peer-to-Peer
Gaming Overlays. In Procs. of P2P, 2010.

[7] P. Maymounkov and D. Mazières. Kademlia: A
Peer-to-Peer Information System Based on the XOR
Metric. In Procs. of IPTPS, 2001.

[8] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus,
B. Kemme, and A. Buchmann. pSense - Maintaining a
Dynamic Localized Peer-to-Peer Structure for Position
Based Multicast in Games. In Procs. of P2P, 2008.

[9] N. Spring, L. Peterson, A. Bavier, and V. S. Pai. Using
PlanetLab for network research: Myths, realities, and
best practices. Operating Systems Review, 40(1), 2006.

[10] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P.
Buchmann. BubbleStorm: Resilient, Probabilistic, and
Exhaustive Peer-to-Peer Search. In Procs. of
SIGCOMM, 2007.

[11] W. W. Terpstra, C. Leng, M. Lehn, and A. P.
Buchmann. Channel-based Unidirectional Stream
Protocol (CUSP). In Procs. of INFOCOM, 2010.

401




