An Online Gaming Testbed for
Peer-to-Peer Architectures

Max Lehn Christof Leng

Databases and Distributed Systems

Robert Rehner

Technische Universitat Darmstadt, Germany

{mlehn,cleng,rehner,ouchmann}@dvs.tu-darmstadt.de

ABSTRACT

In this demo we present a testbed environment for Peer-
to-Peer (P2P) game architectures. It is based on Planet
PI4, an online multiplayer game whose gameplay provides
a standard workload for a set of gaming-specific network
interfaces. Its pluggable architecture allows for the evalu-
ation and comparison of existing and new P2P networking
approaches. Planet PI4 can run on a real network for pro-
totypical evaluation as well as in a discrete-event simulator
providing a reproducible environment.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications;
C.4 [Performance of Systems]: Design studies

General Terms

Experimentation, Performance, Measurement

1. INTRODUCTION

Massively multiplayer online games (MMOGs) have be-
come very popular in the recent years. Well-known exam-
ples are World of Warcraft and Eve Online, which support
up to several ten thousand players simultaneously online in
one virtual world. Today, these MMOG use server-based
network architectures for the synchronization of the game
content among the players. However, the permanent (inter-)
activity of the players puts a high demand on the servers’
resources, making the operation of an MMOG expensive.

This is why peer-to-peer architectures are an appealing
approach to saving server resources. P2P research has al-
ready brought up a plethora of P2P systems designed specifi-
cally for networked games or networked virtual environments
(NVE). But until now, only very few P2P systems have
made it to real games. (One example for the latter is Bad-
umna [6].) Many of the academic approaches are evaluated
using an oversimplified model of the game and the players’
behavior. Round-based simulation and random walk or ran-
dom waypoint mobility models are simple to use; however,
they cover only a small part of the issues of a real game on
a real network. Deploying a real game equipped with a new
P2P mechanism, on the other hand, is a hard piece of work.
Furthermore, measurements may be hardly reproducible in
real-world Internet setups.

Copyright is held by the author/owner(s).
SIGCOMM’11, August 15-19, 2011, Toronto, Ontario, Canada.
ACM 978-1-4503-0797-0/11/08.

474

Tonio Triebel Alejandro Buchmann

Praktische Informatik IV
Universitdt Mannheim, Germany
triebel@pi4.informatik.uni-mannheim.de

2. GOALS

We are developing the 3D real-time massively multiplayer
online game Planet PIj [10, 7], which serves as a benchmark
for various P2P networking components. For an effective
evaluation we have identified the following objectives:

e The gameplay must be complex enough to represent a
real game and cover all relevant aspects.

e It should be attractive to real players, which provide
the reference player behavior.

e At the same time it should be as simple as possible
to allow focusing on the important aspects and to be
successfully played by bots.

e It should be able to run in a real network as well as in
a deterministic emulated network environment.

e It should be resource-efficient for a good simulation
scalability.

e The networking components must have well-defined
and flexible interfaces to facilitate the replacement of
the network architecture.

We believe that with these features we can provide a
testbed for a realistic comparison of P2P network architec-
tures. Supporting execution on a real network ensures that
the tested systems do not use any shortcuts available only
in a simulation, while network emulation is the only way
to achieve a reproducible network environment. A realistic
user model for a game can only be obtained by analyzing
the behavior of human players, but again, a reproducible
workload has to be generated synthetically. Our approach
is to collect traces from human players, e.g., by running a
client-server game session, from which we derive an abstract
user model. This model will be fed in a bot implementation
to reproduce human behavior. Using player traces directly
as a game workload is infeasible, because the traces are not

parameterizable for scaling the workload. Moreover, traces
cannot reproduce the interactivity between players, which is
in turn influenced by the network environment.

3. GAMEPLAY

In Planet PI4 each player joins a team to play against
other teams. The game set is in an asteroid field, and each
player navigates his spaceship and shoots at other ships.
Once a ship is destroyed, the player respawns at the team’s
initial position. The goals are to destroy the other teams’
players and to capture bases. Bases are strategic points of in-
terest providing certain improvements (energy, points, etc.)
to the possessing team. To capture a base, it is necessary
to stay within the range of the base while keeping players of
other teams out. Figure 1 shows a screenshot of the game.

The asteroid field defines the three-dimensional gameplay
region. Bases particularly attract players, causing hotspots
in player density. To evaluate scalability, the game map size
and player density must be variable. Therefore, the map is
generated algorithmically, based on a common random seed.

4. ARCHITECTURE

The testbed architecture has been consequently designed
to fulfill the above defined requirements. Figure 2 shows
its high-level components. The interfaces allow for an ex-
changeability of the components on the different layers. Plan-
etPI4’s game core provides a player control interface which
can be used either by the GUI or by bot implementations.
The network interfaces connect the exchangeable network
parts, and the system interfaces abstract the run-time.

4.1 Network Components
Different networking issues are split into separate inter-
faces, allowing independent implementations for each.

Spatial Multicast The most important functional require-
ment for the networking component of a massively mul-
tiplayer online game is the dissemination of position up-
dates. In fact, position updates cause most traffic in
MMOG [3]. This is also why a large fraction of publica-
tions of P2P systems for games focus on this topic, e.g.,
VON [5], pSense [8], and Donnybrook [1].

Object Management Another important issue is the man-
agement of persistent game objects that can be manip-
ulated by players. Exemplary systems in this category
have been presented by Hu et al. [4] and Bharambe et
al. [2]. We define active objects as objects which have an
associated ‘think function’ for object-specific processing.

Channel-based publish/subscribe For team communi-
cation as well as object-specific updates we have defined
an interface for channel-based publish/subscribe.

Global statistics Player and team scores that are globally
available are stored using the global statistics interface.

At the present time we have an implementation of pSense
and an approach based on BubbleStorm [9] for position up-
dates. A client-server implementation, which serves as a ref-
erence, supports the full set of network interfaces, including
object management and publish/subscribe communication.

4.2 System Runtime

To be able run in a simulated network environment, the
whole game code uses an event-based design. All compo-
nents which have to regularly execute a certain task register
at the central task scheduler. The task scheduler imple-
mentation is exchanged for different runtime environments.

475

N - | -

Controller [

Planet Pi4 Game] [Mobility Model]

Network
Interfaces

___________ N

(
P2P Network Engine

1
-~

Simulation Engine l Native Network Runtime

Figure 2: High-level testbed architecture

1
System) <
Interfaces

To run in a discrete-event simulator, the scheduler creates
simulator events for each task, while the native-network im-
plementation runs a real-time event loop.

S. CONCLUSION AND OUTLOOK

Our modular testbed provides powerful means for a realis-
tic evaluation and comparison of P2P gaming architectures.
Evaluation in both a real environment and an emulated net-
work promotes valuable insights into the properties of the
tested systems. Being able to run a real game does not only
increase the confidence in the obtained results of a P2P sys-
tem, but also gives a feeling of its real-world applicability.

As next step we will conduct user studies to obtain player
behavior data. From these, we want to derive user models
and build bot implementations with a calibrated behavior.

This work was partially funded by the DFG research group
FOR 733 and the DFG research training group GRK 1343.

6. REFERENCES

[1] A. Bharambe, J. R. Douceur, J. R. Lorch,
T. Moscibroda, J. Pang, S. Seshan, and X. Zhuang.
Donnybrook: Enabling Large-Scale, High-Speed,
Peer-to-Peer Games. ACM SIGCOMM Computer
Communication Review, 38(4):389-400, 2008.
A. Bharambe, J. Pang, and S. Seshan. Colyseus: A
Distributed Architecture for Online Multiplayer
Games. In NSDI 06, Berkeley, CA, USA, 2006.
USENIX Association.
K. Chen, P. Huang, C. Huang, and C. Lei. Game
traffic analysis: an MMORPG perspective. In
NOSSDAV’05, pages 19-24. ACM, 2005.
S. Hu, S. Chang, and J. Jiang. Voronoi State
Management for Peer-to-Peer Massively Multiplayer
Online Games. In CCNC' 08, pages 1134-1138, 2008.
S.-Y. Hu and G.-M. Liao. Scalable Peer-to-Peer
Networked Virtual Environment. In NetGames 04,
pages 129-133, 2004.
S. Kulkarni, S. Douglas, and D. Churchill. Badumna: A
decentralised network engine for virtual environments.
Computer Networks, 54(12):1953-1967, 2010.
M. Lehn, T. Triebel, C. Leng, A. Buchmann, and
W. Effelsberg. Performance Evaluation of Peer-to-Peer
Gaming Overlays. In IEEE P2P °10, 2010.
A. Schmieg, M. Stieler, S. Jeckel, P. Kabus,
B. Kemme, and A. Buchmann. pSense - Maintaining a
Dynamic Localized Peer-to-Peer Structure for Position
Based Multicast in Games. In IEEE P2P 08, pages
247-256, 2008.
W. Terpstra, J. Kangasharju, C. Leng, and
A. Buchmann. BubbleStorm: Resilient, Probabilistic,
and Exhaustive Peer-to-Peer Search. In ACM
SIGCOMM 07, pages 49-60, 2007.
T. Triebel, B. Guthier, R. Siiselbeck, G. Schiele, and
W. Effelsberg. Peer-to-Peer Infrastructures for Games.
In NOSSDAV 08, pages 123-124, 2008.

2]

(4]

5]

(9]

(10]

