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ABSTRACT
Implicit invocations are a popular mechanism for exchang-
ing information between software components without bind-
ing these strongly. This decoupling is particularly impor-
tant in distributed systems when interacting components are
not known until runtime. In most realistic distributed sys-
tems though, components require some information about
each other, be it only about their presence or their num-
ber. Runtime systems for implicit invocations—so-called
publish/subscribe systems—are thus often combined with
other systems providing such information.

Given the variety of requirements for information about
interacting components across applications, this paper pro-
poses a generic augmentation of implicit invocations: rather
than extending a given publish/subscribe API and system
in order to convey a particular type of information across
interacting components, we describe domain-specific join-
points that can be used to advise application-level invoca-
tion routers—so-called brokers—used by publish/subscribe
systems. This enables aggregation of application-specific in-
formation to and from components in a scalable manner.

After presenting our domain-specific joinpoint model, we
describe its implementation inside the REDS publish/sub-
scribe middleware. The empirical evaluation of our approach
shows that: (a) it outperforms external aggregation systems,
by collecting and distributing information with a limited
overhead; (b) the deployment of new functionalities has vir-
tually no overhead, even if it occurs while the publish/sub-
scribe system is running.
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1. INTRODUCTION
Many distributed software systems are designed accord-

ing to the paradigm of implicit invocations [39, 43]: soft-
ware components announce events which are conveyed to
target components that registered interest in such events,
instead of invoking the target components directly. By shift-
ing communication away from direct invocations via com-
ponent references to asynchronous consumption of events of
interest produced anonymously by components, application
components can be added (and removed) at runtime. This
increases flexibility through decoupling—event sources need
not manage their targets explicitly—and supports scalability
by allowing for asynchronous, streamlined communication.

1.1 Publish/Subscribe Systems
Publish/subscribe systems [35] provide the communica-

tion backbone for software systems based on implicit invo-
cations. They transmit events produced, potentially at high
rates, by many publishing components to many subscribed
components. For years, research on publish/subscribe sys-
tems has focused on scalable and flexible architectures [4, 9]
that support fine-grained content-based addressing models,
in which published events are routed as messages based on
the subscribers’ interests in the content of messages. Such
architectures commonly use so-called brokers to form decen-
tralized overlay networks of application-level routers that
interconnect publishers and subscribers. Brokers perform
efficient en-route filtering and selective forwarding of mes-
sages based on their content. While extremely scalable and
flexible, these systems have only seen limited adoption in
practice. In particular, they have not dethroned simpler
systems based on centralized brokers and ones that route
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messages directly based on namespaces, i.e., by associating
messages with single topic (or subject) names.

One reason for the poor adoption of content-based sys-
tems, particularly decentralized publish/subscribe systems,
is that simpler systems assigning topics to individual single
brokers can more easily provide additional information on
the usage of these topics. Many applications that utilize
implicit invocations for scalable communication, however,
require such information, such as the number of publishers
and subscribers connected to a given topic or the the set
of subscribers that might have received published events.
Concrete scenarios are presented in the remainder of this
section.

Currently, these applications must use less scalable, cen-
tralized, publish/subscribe systems or group communication
systems that can provide membership information albeit at
high overhead. This reduces the performance benefits of
implicit invocations. Moreover, these systems do not pro-
vide broader feedback information efficiently, such as the
relevance of a message based on the number of potentially
interested subscribers, unless using out-of-band communica-
tion which can hamper scalability.

We present two scenarios that motivate the need for addi-
tional information exchange in a publish/subscribe system,
without sacrificing scalability, when implementing implicit
invocations. In the first scenario—systems monitoring—
subscribers seek additional information about publishers,
while in the second scenario—online advertising—publishers
receive information about subscriptions.

1.2 Example Scenarios
The monitoring of networked systems is a common appli-

cation of publish/subscribe-style communication. Publish-
ers may be servers in a data center that are monitored for
load spikes and failures. The subscribers may be monitor-
ing systems that determine the “health” of the data center,
and assist with root-cause analysis of failures. The overall
rate of monitoring data from servers can become high [30]:
for example, probes may provide measurement data about
utilization of server resources with sample rates of many
times a second. When a client subscribes to all events that
may be of interest, it can become easily overwhelmed. Simi-
larly, by subscribing only to very specific events, a client may
miss relevant ones, which are causal antecedents of observed
symptoms. This prevents root cause discovery, thus making
the diagnosis of failures difficult. Fig. 1 sketches the imple-
mentation of a monitor client based on the Java Message
Service (JMS) [36] API. The API provides no way before or
after the publish call to know the number of potential or
actual receivers for the event. There may be no correspond-
ing subscribers at all, in which case the client might want to
use another communication band or raise an alarm.

Thus it would be desirable to aggregate performance char-
acteristics, for example, by summarizing key metrics as sta-
tistical distributions. If aggregation happens in the broker
network, clients can receive information about the general
health of a large number of data center components without
being overloaded by low-level events. As specific problems
in the data center develop, subscriptions can be refined to
focus on more detailed events for root cause analysis.

In online advertising on the web [20], advertising agents
act as publishers of advertising messages (ads), and users
are subscribers to particular ads. Subscriptions reflect user

public class JMSMonitoringClient {
...
TopicSession t = ...;
TopicPublisher tp = t.createPublisher(...);
ObjectMessage om = t.createObjectMessage();
Long loadLevel = ...;
... // how many interested subscribers?
om.setObject(loadLevel);
tp.publish(om);
... // how many receivers?

}

Figure 1: Example of system monitoring client
based on JMS [36] pushing load level readings re-
gardless of subscribers. The client has no indication
of the number of potential or actual event receivers.

interests, potentially inferred from browsing activities. For
targeted online advertising to be most successful, however,
advertisers want to have information about potential con-
sumers who subscribe to their advertisements. This goes
beyond a basic publish/subscribe model, in which publish-
ers and subscribers remain anonymous—in that case, sub-
scribers cannot gauge the number of potentially matching
publishers and vice-versa.

An aggregation mechanism provided within the broker
network would satisfy the requirements of both parties in
this scenario. An aggregation function can ensure that the
feedback sent to the publishers only includes statistical dis-
tributions of subscribers’ interests, and thus would preserve
anonymity. Subscribers can safely use fine-grained subscrip-
tions, and thus ensure that they receive only ads that might
be of interest to them.

1.3 Application-Specific Integrated Aggrega-
tion

In order to support the above scenarios, we propose to
augment publish/subscribe systems with application-specific
integrated aggregation (ASIA), which offers the ability to
convey additional information, besides published messages,
as required by communicating components in an application.

Compared to the use of an external aggregation system,
the integration of aggregation with the publish/subscribe
system has benefits in terms of efficiency (e.g., combining
network communication for aggregation with actual mes-
sages) and expressiveness (giving access to broker internals).

However, it raises an immediate question: how to express
aggregation logic in a generic manner that is suitable for de-
centralized evaluation? In particular, the precise nature of
aggregation remains application-specific. In the above moni-
toring scenario, for example, monitoring clients should have
the flexibility to provide their own aggregation functions,
potentially at runtime.

The core idea behind ASIA is inspired by aspect-oriented
programming (AOP) [29]: we define a set of joinpoints that
are specific to the filtering and routing of messages in de-
centralized publish/subscribe systems. These joinpoints can
be advised in order to perform aggregation of relevant infor-
mation by altering and augmenting the default broker code.
Our joinpoints can also be used to support more general
behavior change in brokers, such as protocol extensions.
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1.4 Contributions
This paper reports on our experience with the design and

implementation of a “reflective” publish/subscribe system
according to the ASIA model. More specifically, we:

• present domain-specific joinpoints for decentralized im-
plicit invocation (publish/subscribe) messaging systems;

• describe an implementation of this model within the Java-
based REDS publish/subscribe system [10];

• demonstrate the benefits of the ASIA model by showing
the performance improvements of integrated aggregation
over the use of a separate aggregation system; and

• evaluate a mechanism for deploying new aggregation func-
tions to be attached to joinpoints in brokers. We also
discuss the supported flexibility in terms of the differ-
ent forms of aggregation that are implementable in ASIA
without changes to the main broker code.

2. BACKGROUND
After outlining the generic publish/subscribe model that

we assume in this paper, we derive the requirements of a
mechanism for additional information flow.

2.1 Publish/Subscribe Model
Several publish/subscribe models have been proposed in

the literature [15] (cf. §6). We adopt a mixed topic/content-
based publish/subscribe model, which provides a good com-
promise between performance and expressiveness in prac-
tice. It enables ASIA to be applied both to pure topic-based
and pure content-based publish/subscribe systems.

Subscribers issue subscriptions to express interest in a
topic, and may additionally use a predicate filter to fur-
ther narrow their subscriptions to specific content. Publish-
ers send advertisements to indicate that they will publish
messages to a specific topic. Publication messages are then
routed from publishers to interested subscribers.

We consider clients and brokers to be interlinked to form
an overlay network, as shown in Figure 2(a). For ease of pre-
sentation, we assume the overlay network to be free of cycles.
The brokers (b1 to b5) provide the publish/subscribe service
to clients. Brokers directly connected to clients (b{1,3,5}) are
termed edge brokers. We further assume each client to be
connected to one and only one broker. Each broker state in-
cludes information (i.e., advertisements and subscriptions)
on directly connected clients. Furthermore, the broker state
stores information on neighboring broker nodes and their
respective (transitive) advertisements and subscriptions.

Broker nodes propagate events—each of which pertains
to a topic τ—from publishing nodes (i.e., publishers of τ
events) to client nodes that have expressed interest in re-
ceiving τ events (i.e., subscribers to τ with content-based fil-
ters). A broker bi propagates events for each topic τ along its
neighbor links to other brokers or clients via lower-level pro-
tocol messages (event messages); analogously a broker prop-
agates advertisements (advertisement messages) and sub-
scriptions (subscription messages).

To illustrate the routing of messages in the broker net-
work, Figure 2(a) shows a sample sequence, in which client c1
first advertises publications for a topic (step 1); clients c3
and c4 subscribe to the advertised topic (steps 2 and 3); and
finally client c1 publishes an event of that topic (step 4).
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Figure 2: Distributed publish/subscribe system
with messages

Algorithm 1 A basic publish/subscribe client algorithm.
The client is instantiated with an edge broker

Publish/subscribe client algorithm. Executed by client ci
1: init
2: b {Edge broker}
3: for all published topics τ do
4: send(ad,τ ) to b

5: to publish(e) on topic τ do {Publish new event}
6: send(pub,τ ,e) to b

7: to subscribe(φ) to topic τ do {Subscribe}
8: send(sub,τ , φ) to b

9: to unsubscribe(φ) from topic τ do {Unsubscribe}
10: send(unsub,τ , φ) to b

11: upon recv(pub, τ , e) do {Receive event}
12: deliver(e)

2.2 Broker Routing Algorithms
The routing of messages in a broker network is conducted

according to routing algorithms. We now briefly introduce
how these algorithms work before presenting our correspond-
ing integrated aggregation mechanisms in the following sec-
tions.

Algorithm 1 shows the API utilized by clients and the
corresponding broker routing algorithm is shown in Algo-
rithm 2. The to . . . do clauses describe how to achieve a
desired function (e.g., publish a message) using lower layers
in the network stack. In contrast, the upon . . . do clauses
indicate the operations that occur when lower layers in the
network stack react to messages they have received. In both
algorithms, we assume that nodes communicate by pair-wise
reliable channels offering primitives send and recv. For
simplicity, a node p acts either as a client c or as broker b,
and advertisements are only on topics and do not include
value ranges. Unadvertisements are elided for brevity.

In our algorithm listings operations such as insertion of a
predicate filter (insert()), removal (delete()) or matching
(match()) on partially ordered sets—which store subscrip-
tions using subsumption [4]—are just shown as procedure
calls. Subscribers (subs), subscriptions (partially ordered
set P), and publishers (pubs) are stored by topic τ ; links is
the array of neighbor brokers.

We assume that brokers act as publishers and subscribers
towards their respective downstream and upstream neigh-
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Algorithm 2 Algorithm for publish/subscribe event pro-
cessing with subscription summarization. P[τ] is the pred-
icate poset ordered by �Φ. pubs[τ] stores the advertis-
ing peers. subs[τ][φ] stores peers that subscribe with φ.
subs[τ][φ] avoids the need to duplicate φ in P[τ], if more
than one peer subscribes with φ.

Publish/subscribe broker algorithm. Executed by broker bi
1: init
2: pubs[] {Process sets indexed by topic τ }
3: P[] {Posets indexed by topic τ }
4: subs[][] {Process sets indexed by τ&φ}
5: links {Neighbor brokers pj}

6: upon recv(ad, τ) from pj do {Receiving advertisement}
7: if pj /∈ pubs[τ] then
8: for all bk ∈ links\{pj} do
9: send(ad, τ) to all bk

10: send(sub, τ, lub(P[τ])) to pj
11: pubs[τ]← pubs[τ] ∪ {pj}

12: upon recv(sub, τ, φ) from pj do {Receiving subscription}
13: subs[τ][φ]← subs[τ][φ] ∪ {pj}
14: φold ← lub(P[τ])
15: if |subs[τ][φ]| = 1 then
16: insert(P[τ], φ)

17: upd(τ, φold , lub(P[τ]), pj )

18: upon recv(pub, τ, e) from pj do {Receiving event}
19: matches ← match(P[τ], e)
20: for all φ ∈ matches do
21: for all pk ∈ subs[τ][φ]\{pj} do
22: send(pub, τ, e) to pk

23: upon recv(unsub, τ, φ) from pj do {Receiving unsubscription}
24: subs[τ][φ]← subs[τ][φ] \ {pj}
25: φold ← lub(P[τ])
26: if |subs[τ][φ]| = 0 then
27: delete(P[τ], φ)

28: upd(τ, φold , lub(P[τ]), pj )

29: procedure upd(τ, φold , φnew , pj ) {Update poset and neighbors}
30: if φold 6= φnew then
31: for all bk ∈ pubs[τ]\{pj} do
32: send(sub, τ, φnew ) to bk
33: send(unsub, τ, φold ) to bk

bors. Since subscriptions involve predicates φ and several
subscribers can have the same predicate, subscribers are also
indexed by their predicate φ. Advertisements (and unadver-
tisements) are handled by adding or removing corresponding
publishers.

If a broker receives an advertisement for a new topic (line 6
in Algorithm 2), updates need to be performed recursively.
When evaluated for a given event e, match() returns the set
of matching subscriptions; the corresponding subscribers are
resolved via subs (line 21). Procedure upd (line 29) factors
out common parts of reactions to addition and removal of
subscriptions: in case the poset’s least upper bound (LUB;
the predicate covering all subscription predicates accord-
ing to subsumption) was changed by either of these oper-
ations, the broker needs to replace its subscription towards
upstream brokers by canceling its previous one and issuing
a new one (line 30).

3. AN ASPECT-ORIENTED PUBLISH/SUB-
SCRIBE BROKER

In this section we present an aspect-oriented event bro-
ker algorithm for publish/subscribe systems that supports
reflection by exposing joinpoints.

3.1 Overview
Algorithm 3 outlines a reflective broker algorithm expos-

ing joinpoints as an evolution of that of Algorithm 2. The
joinpoints refer to points in the execution, at which we
may want to customize the algorithm’s behavior. Execu-
tion “jumps” from a given joinpoint X-Y to a corresponding
advice advsX-Y, which is said to advise joinpoint X-Y.

In ASIA, this advice is used to invoke code that effects
the computation of an aggregation function within a given
broker—a simple example would be a function that main-
tains a count of subscribers to a particular topic—down a
subtree reachable from this broker. We discuss the aggre-
gation computations in more detail in §3.3 shortly. Every
joinpoint involves a specific set of arguments passed to its
advice, which represent volatile computational state of the
broker for the current action being performed.

3.2 Joinpoints
Table 1 summarizes the joinpoints used in ASIA and their

arguments. Besides arguments, code for advice advsX-Y is
constrained by a type of value that must be returned. Cor-
responding advice are thus able to substitute some of the
volatile current computational broker state. For every join-
point/advice, there is a default behavior, which corresponds
to the logic of the basic, non-reflective, broker algorithm.
In a custom advice advsX-Y, this code can be optionally
invoked explicitly via procdX-Y. The primitive procdX-Y

has the same formal argument and return types as the corre-
sponding advice advsX-Y. In ASIA, if no advice is specified
for a given joinpoint X-Y, a call to procdX-Y is automati-
cally performed (advsX-Y(args) = procdX-Y(args)). Thus
in the absence of custom advice, Algorithm 3 has the same
semantics as Algorithm 2.

In addition to joinpoints, ASIA uses subtype polymorphism
(subtyping) for easy expression of code for aggregation. At-
tributes of broker protocol messages can be augmented by
appending to them (denoted ⊕ v to append a value v) for
piggybacking information. This operation refers to an im-
plicit subtype of the original attribute type, augmenting its
super-type with an attribute of the type of v. We also al-
low aggregation features to add their own specific reactions
(upon clauses) or even tasks, as well as custom message
types issued and consumed via send and recv, respectively.
Due to space limitations, we elide the presentation of aggre-
gated information to clients.

3.3 ASIA Model
While joinpoints and advice capture which code to inject

into brokers for the sake of aggregation and where, they do
not exactly say what such code should perform. This section
thus provides an overview of the ASIA aggregation model,
before presenting a concrete example in §3.4.

An aggregation function f is evaluated by aggregators that
operate at each broker in the distributed publish/subscribe
system. Aggregators are pieces of code that are installed
using advice. They can access the state at each broker, for
example to include current aggregation computations, or to
store their own state. By adding some restrictions on the
type of aggregation function that can be computed, we can
ensure that the results of the aggregation computations at
each broker can be combined. Thus we can compute a global
aggregation result by repeatedly combining the partial re-
sults generated within each broker.
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Joinpoint description (X-Y ) Arguments Return value

Advertiser addition (ad-add) τ , new advertiser pj -

Subscriber addition (sub-add) τ , new subscription φ, new subscriber pj old LUB φold

Advertiser removal (ad-del) τ , old advertiser pj -

Subscriber removal (sub-del) τ , old subscription φ, old subscriber pj old LUB φold

Publication matching (pub-match) τ , publication e matching subscrs.

Publication sending (pub-send) τ , publication e, upstream publisher pj -

Subscription sending (sub-send) τ , new own subscr. φ, new subscriber pj -

Unsubscr. sending (unsub-send) τ , old own subscr. φ, old subscriber pj -

Advertisement sending (ad-send) τ , new own advertisement pj -

Unadvert. sending (unad-send) τ , new own advertisement pj -

Table 1: Joinpoints X-Y.

In this paper we focus on aggregators using additive func-
tions f , including counting and rate measurements. How-
ever, any associative and commutative function can be used
within an aggregator, including multiplication, set opera-
tions such as union and intersection, bitwise operations,
maximum, minimum, and composite functions using other
functions on this list, such as the arithmetic mean.

A key feature for scalability is that we include a notion of
adjustable imprecision into the aggregation functions: a dis-
tance d sets the maximum imprecision that will be tolerated
by the aggregator at a particular broker. The imprecision
factor d allows for a tradeoff between the number of mes-
sages flowing through the distributed system (ideally low),
and the precision of the aggregation computations (ideally
high).

We illustrate the ASIA aggregation model using the on-
line advertising scenario presented in §1.1. Consider the
broker b1 in Figure 2(a), and its directly connected sub-
scriber c2. Now assume an online advertiser, c1, wants to
discover the number of subscribers to messages within a
topic τ that c1 publishes to. Broker b1 is able to determine
the number of subscribers to topic τ , because b1 maintains
the state necessary to deliver messages to subscribers that
have subscribed to topic τ .

Using an ASIA API, advertiser c1 indicates its interest in
an aggregation, providing a callback function that is invoked
when the result of f changes—e.g., if c2 were to unsubscribe.

3.3.1 Distributed Aggregation
In a distributed broker network, a client that registers in-

terest in an aggregation function at a broker br causes the
formation of a spanning tree rooted at br. The tree, which
we call the aggregation tree, contains all of the other bro-
kers bi that can contribute relevant aggregation results. To
maintain aggregation of data, brokers exchange messages
along the aggregation tree. For efficiency, these messages
may be piggybacked onto existing publish/subscribe mes-
sages rather than being sent separately. Brokers that pro-
vide a broker bi with data to aggregate are considered below
bi. A broker that receives more aggregated data is consid-
ered to be above bi, and is closer to the root of the tree.

Consider our online advertising scenario from before. Fig-
ure 2(b) shows the aggregation tree formed when c1 requests
the count of subscribers from b1. From the perspective of b4,
the subscriber count is 2—i.e., b4’s descendants c3 and c4.
b4 can determine this value by learning the counts from its
immediate children, b3 and b2, namely one each, and then
applying f to these counts. The contents of the messages

indicating updates to the aggregation value are shown on
Figure 2(b) as sets propagating up the aggregation tree.

As a consequence, computing an overall f result can be
broken down into computations of f at individual brokers bi
within the distributed publish/subscribe system. To enable
this distributed computation in our model, every broker bi
stores the most recent evaluation of f so as to track the f
that will be passed to its parent in the aggregation tree: we
denote this cached value vi. In addition, every broker stores
the value of vk for its direct children in the aggregation tree.
All of these v values are part of the broker state.

When vi changes, a message is sent by broker bi to the
broker above it in the tree, triggering an update of its v
value. So in Figure 2(b), if client c3 were to unsubscribe from
τ , then b3 would recompute v3, and would need to inform
b4 in order for v4 to be recomputed. This would continue
up the tree to the root broker b1, which would invoke client
c1’s registered aggregation callback. c1 would thus learn the
number of subscribers as requested—and in particular that
this number had recently changed.

3.3.2 Precision of Distributed Aggregation
In this above approach, every change in the aggregation

value vi at any broker causes aggregation value update mes-
sages to be sent up to the root of the aggregation tree, which
limits scalability. Therefore, similar to other scalable ag-
gregation models [26], we relax the precision of vi that is
propagated upwards in the aggregation tree by having each
broker bi maintain vi privately, which we term vi. Updates
to vi are sent upwards in the tree only if the previous values
of vi sent up the tree would otherwise be more than some
bound away from bi’s most recent vi. The bound on the
precision with which vi approximates the true evaluation of
f (i.e., vi) is denoted by v̂i∈ R. If R is the range of an
aggregation function f , we require d : R × R → R to be a
distance metric on R. For our example scenario, d is simply
the positive integer difference between any two numbers of
subscribers.

Clients control the quality (i.e., precision) of the aggre-
gation data, by setting the v̂ parameter when they register
interest in an aggregation function. When a broker br first
constructs an aggregation tree, it divides the v̂r that it has
been given between itself and the subtrees, at which its im-
mediate children are roots. For a broker with n children,
a simple heuristic is to set v̂r = fn+1(v̂k). For aggregators
that perform summation, this means setting v̂k= v̂r

n+1
for

each child k, and using the same bound over its directly
connected clients.

To illustrate this approach using our running example,
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Algorithm 3 A reflective broker algorithm. Advice
advsX-Y abstract core broker functionalities. When not im-
plemented by an aggregation feature, advsX-Y(args) is im-
plemented by a direct call to procdX-Y(args). When in-
stalling a custom advsX-Y the corresponding default behav-
ior in procdX-Y can be invoked explicitly.

Reflective publish/subscribe broker algorithm. Executed by broker bi
1: init
2: pubs[] {Process sets indexed by topic τ }
3: P[] {Posets indexed by topic τ }
4: subs[][] {Process sets indexed by τ&φ}
5: links {Neighbor brokers pj}

6: upon recv(ad, τ) from pj do {Receiving advertisement}
7: if pj /∈ pubs[τ] then
8: advsad-send(τ, pj )
9: advssub-send(τ, lub(P[τ]), pj)

10: advsad-add(τ, pj )

11: upon recv(pub, τ, e) from pj do {Receiving event}
12: match ← advspub-match(τ, e)
13: for all φ ∈ match do
14: advspub-send(τ, e, pj )

15: upon recv(sub, τ, φ) from pj do {Receiving subscription}
16: φold ← advssub-add(τ, φ, pj )

17: upd(τ, φold , lub(P[τ]), pj )

18: upon recv(unsub, τ, φ) from pj do {Receiving unsubscription}
19: φold ← advssub-del(τ, φ, pj )

20: upd(τ, φold , lub(P[τ]), pj )

21: procedure upd(τ, φold , φnew , pj ) {Update poset and neighbors}
22: if φold 6= φnew then
23: advssub-send(τ, φnew , pj )

24: advsunsub-send(τ, φold , pj )

25: procedure procdad-add(τ, pj ) {Default advice for new ad}
26: pubs[τ]← pubs[τ] ∪ {pj}

27: function procdsub-add(τ, φ, pj ) {Def. adv. for new subscript.}
28: subs[τ][φ]← subs[τ][φ] ∪ {pj}
29: φold ← lub(P[τ])
30: if |subs[τ][φ]| = 1 then
31: insert(P[τ], φ)

32: return φold

33: function procdsub-del(τ, φ, pj ) {Def. adv. for unsubscription}
34: subs[τ][φ]← subs[τ][φ]\{pj}
35: φold ← lub(P[τ])
36: if |subs[τ][φ]| = 0 then
37: delete(P[τ], φ)

38: return φold

39: function procdpub-match(τ, e) {Def. adv. for event forwarding}
40: return match(P[τ], e)

41: procedure procdpub-send(τ, e, pj ) {Def. advice for new event}
42: for all pk ∈

⋃
φ subs[τ][φ]\{pj} do

43: send(pub, τ, e) to pk

44: procedure procdX−send(τ, φ, pj ) |X ∈ {sub, unsub} {Def.}
45: for all pk ∈ pubs[τ]\{pj} do {adv. for (un)subscription}
46: send(X, τ, φ) to pk {forwarding}

47: procedure procdX−send(τ, pj ) | X ∈ {ad, unad} {Def. adv.}
48: for all bk ∈ links\{pj} do {for (un)advertisement}
49: send(X, τ) to bk {forwarding}

consider v̂1= 2 and broker b4 having set v̂2= 1 and v̂3= 1.
Because of subscriber c3, v3 = 1. If c3 unsubscribes, now
v3 = 0. Broker b3 knows that b4 has previously stored v3= 1.
However, v̂3 is 1, so b3 does not need to send an aggrega-
tion value update message, as b4’s v3 is still within the v̂3

bound of the true value of v3. This mechanism avoids send-
ing updates for small changes in the aggregation value. As
an example, assume a new client c5 subscribes to broker b3,
v3 returns to 1. c1 still has an estimate of the number of

subscribers to within 2 (i.e., v̂1), and the system has avoided
sending two aggregation value update messages.

3.4 Illustration: Subscriber Counts
Algorithm 4 illustrates a simple subscriber count aggrega-

tor implemented in ASIA. When a client registers interest
in an aggregation function, the advice shown will need to be
integrated into the brokers.

Algorithm 4 Example of advice instantiation for imple-
menting subscriber counts. Advice not listed are directly
implemented by the respective default procdX-Y semantics
as mentioned. We abbreviate UpdateAggregateValue
to UAV. Summation operates over tuples as 〈a, b〉+ 〈c, d〉 =
〈a+ c, b+ d〉, and � indicates containment of ranges.

Subscriber count advice for reflective publish/subscribe broker algo-
rithm. Executed by pi

1: init
2: cr [][] {Sub. count ranges, by τ & nghbr}

3: function advssub-add(τ, φ ⊕ 〈cmin , cmax 〉, pj ) {Advice for new}
4: cr [τ][pj ]← 〈cmin , cmax 〉 {subscription}
5: φold ← procdsub-add(τ, φ, pj )

6: if φold = lub(P[τ]) then
7: 〈c′min , c

′
max 〉 ← Σpk∈subs[τ][φ]cr [τ][pk ]

8: if ∃pk 6= pj |〈c′min , c
′
max 〉 � cr [τ ][pk] then

9: send(UAV, τ, 〈c′min , c
′
max 〉) to pk

10: return φold

11: procedure advssub-send(τ, φ, pj ) {Advice for neighbor update}
12: 〈c′min , c

′
max 〉 ← Σpk∈subs[τ][φ]cr [τ][pk ]

13: procdsub-send(τ, φ ⊕ 〈c′min , c
′
max 〉)

14: function advssub-del(τ, φ, pj ) {Advice for unsubscription}
15: cr [τ][pj ]← 〈0, 0〉
16: φold ← procdsub-del(τ, φ, pj )

17: if φold = lub(P[τ]) then
18: 〈c′min , c

′
max 〉 ← Σpk∈subs[τ][φ]cr [τ][pk ]

19: if ∃pk 6= pj |〈c′min , c
′
max 〉 � cr [τ ][pk]

then
20: send(UAV, τ, 〈c′min , c

′
max 〉) to pk

21: return φold

22: upon recv(UAV, τ, 〈cmin , cmax 〉) from pj do {Handler for}
23: cr [τ][pj ]← 〈cmin , cmax 〉 {aggregation updates}
24: 〈c′min , c

′
max 〉 ← Σpk∈subs[τ][φ]cr [τ][pk ]

25: if ∃pk 6= pj |〈c′min , c
′
max 〉 � cr [τ ][pk] then

26: send(UAV, τ, 〈c′min , c
′
max 〉) to pk

For our advertising scenario, we require maintenance of
a subscriber count—an internal variable cr (line 2), which
stores subscription count ranges for subscribers (i.e., v̂j for
each broker bj).

Subscriptions are augmented (⊕) with count ranges when
new subscriptions are issued. Upon reception of a subscrip-
tion, the call to advssub-add (line 16 in Algorithm 3) triggers
the code at line 3 in Algorithm 4. Thereafter, the default
behaviour is invoked via procdsub-add at line 5. Subtype
polymorphism allows us to append an actual count tuple
(representing v) to any such subscription. The appending of
this value is illustrated on line 13 in Algorithm 4.

Now, if the LUB has not changed, but the subscriber
count—which necessarily changed—has moved outside the
count range held by the broker pk (as calculated by the im-
plementation of f at line 7), we send to appropriate neigh-
boring brokers a message to update the aggregate value (ab-
breviated here as UAV) at line 9 before returning the result
of procdsub-add. In case the LUB has changed, the advice
for subscriptions invoked in upd propagates the new count
range along with the new subscription. Advising of un-
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subscription message reception proceeds analogously, except
that unsubscriptions need not be augmented with counts as
the information is present at respective brokers.

If a broker receives a message requesting it to update an
aggregate value (line 22), it updates the local count ranges
and recursively updates the neighbor brokers’ count informa-
tion, if their current count ranges do not cover the new count
information. As mentioned, we must also advise the sending
of new subscriptions in the context of upds, as subscriptions
must be augmented with respective counts (line 13).

3.5 Dynamic Aggregation Function Changes
The capability to change broker behaviour at runtime is

powerful, but potentially unsafe, if the change of broker be-
haviour leads to inconsistent processing of events that are
in transit.

While we assume the correctness of the implementation of
the new behaviour and do not explore generic mechanisms
for ensuring safe modification of broker behaviour, we pro-
vide an intuition of how the problem can be tackled for the
specific case of distributed evaluation of aggregation func-
tions. As already described, given a function f evaluated
over an aggregation tree t, each broker bi receives aggregate
updates from its children in t and forwards updates towards
the root of t. By propagating a new aggregation function
fnew from the root of an aggregation tree, down to the leaves,
we ensure that a generic broker bi has obtained fnew before
it starts to receive updates for fnew from brokers below it.
Indeed, bi can receive updates only from its children in the
tree, which obtain fnew from (and, thus, after) bi.

While this ensures safe deployment of new, independent
functions, the generic case in which functionalities are sub-
stituted or modified is more complex. It potentially requires
every broker b to (i) modify its internal state and adapt it
to new functionalities, and (ii) support transition phases in
which b receives updates from its children that are generated
by an old version of the communication protocol. We leave
this for future work.

4. IMPLEMENTATION
This section describes our prototype implementation of

ASIA in the REDS publish/subscribe system [10]. REDS
was chosen due to its modularity, which gives us the flexi-
bility needed to implement our joinpoint model.

4.1 Overview of REDS
REDS provides a framework of Java classes and defines

the architecture of a generic broker through a set of com-
ponents with well-defined interfaces. The current release of
REDS offers concrete implementations for each component,
thus limiting our implementation effort to a small number
of classes. Fig. 3 shows the REDS architecture. REDS
is composed of two layers: an overlay layer and a routing
layer. The former manages the connections with other bro-
kers and has mechanisms for sending and receiving packets.
The latter defines the routing strategy. The routing layer
communicates with the overlay layer through the Overlay

component, which relies on a TopologyManager component
to establish and monitor connections with other brokers, and
on a Transport component to receive and send packets.

REDS packets are composed of a Subject and a Payload

(any Serializable object). Developers can register differ-
ent traffic classes on the Overlay: for each traffic class, the
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Figure 3: Overview of REDS architecture

Overlay creates a separate queue for storing incoming pack-
ets coming from the Transport. Developers can specify the
maximum size of each queue, and how packets are associated
with traffic classes based on their subjects.

The Overlay delivers packets to the Router, using the
method notifyDataArrived. Based on the packet’s sub-
ject, the Router selects the PacketForwarder in charge of
processing it (if any). The actual routing strategy is im-
plemented within the various PacketForwarder components
installed on top of the Router. In processing an incom-
ing packet, a PacketForwarder can: (i) modify its payload;
(ii) forward it to one or more brokers; or (iii) generate and
send new packets.

4.2 Implementing ASIA in REDS
Our implementation of ASIA in REDS requires fewer than

9,000 new lines of code, and no changes to existing code.
We exploit the standard REDS Overlay layer, which adopts
TCP for communication between brokers. In the routing
layer, we use the standard Router component, limiting the
scope of our implementation to the definition of two new
PacketForwarder components: a TreeBuilder, as well as
an ASIAPacketForwarder.

The TreeBuilder creates one forwarding tree on top of the
existing overlay network. ASIA assumes an acyclic topol-
ogy: the TreeBuilder creates it by electing a leader node n`

and then running a protocol that creates the shortest path
spanning tree rooted at n`. The ASIAPacketForwarder is
responsible for processing both packets for event propaga-
tion, and packets for aggregation. With reference to §3, the
ASIAPacketForwarder implements both the protocols for of-
fering a publish/subscribe service (e.g., protocols for adver-
tisements, subscriptions, and publications forwarding), and
the aggregators for evaluating aggregation functions.

Besides implementing a new PacketForwarder, we define
new types of packets for propagating aggregation requests
and updates, and modify the packets used for publish/sub-
scribe communication so that they can piggyback aggrega-
tion data, using subtype polymorphism (see §3.2).

4.2.1 Aggregation Mechanisms
For each aggregation function f (see §3.3), an aggregator

in each broker needs to perform the following steps:

• it creates a data structure to store (i) the local view of the
value of the aggregation function v ; (ii) the last value sent
to each neighbor k (vk); (iii) the maximum imprecision
tolerated by each neighbor k (v̂k);
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• it starts monitoring the information that may change its
local view of v (e.g., a new subscription);

• every time v changes, it checks, if it needs to send updates
to its neighbors by applying f and determining if the
result falls beyond the boundary value for imprecision—
i.e., a range check for additive aggregators;

• it determines if the updates can be piggybacked using
existing messages.

Within this approach, defining and deploying a new aggre-
gator is straightforward. Developers need to specify (i) what
triggers an update in the value of the aggregation function,
i.e., which specific data has to be monitored; and (ii) how
to compute the value of the aggregation function. Functions
currently accept and return simple Java Objects.

To evaluate ASIA, we implemented several aggregators,
including subscriber and publisher counts, rate of subscrip-
tions and publications (over a time-based sliding window),
and active publishers (in a time-based window). We present
some of the results based on these aggregators in the follow-
ing section.

4.2.2 Runtime Distribution of Aggregation Functions
To allow for maximum flexibility, we support distribut-

ing new aggregation functions at runtime through clients
supplying additional advice. Clients that want to supply
a new, custom aggregation function write a corresponding
class (implementing the common interface for all aggregation
functions) and compile it locally. They then disseminate the
compiled bytecode over the broker network. We make use
of the existing publish/subscribe system for dissemination
of code across all brokers.

Once a broker receives a message with a new aggregation
function, it takes the bytecode from that message and uses a
custom classloader to load that class at runtime. Classes are
then instantiated using reflection, adding the new aggrega-
tion function to the respective joinpoints. While there is a
risk of naming conflicts—two clients could use the same class
name—this is no different to potential name collisions when
using multiple libraries of any sorts, and is easily avoided by
following Java naming conventions.

Weaving is simplified by assuming that different advice
(represented by different classes) are independent. If this
does not hold, programmers need to deal with the inter-
action explicitly knowing that different advice for a same
joinpoint are executed in a non-deterministic order. Pig-
gybacked information is unambiguously assigned to advice
by conveying all such information inside a hashmap indexed
by advice name rather than performing nested wrapping of
messages and (possibly inconsistent) unwrapping.

5. EVALUATION
Our experimental evaluation has two goals:

1. We investigate the costs and benefits of introducing
the ASIA model within a publish/subscribe middle-
ware. For this purpose, we (i) compare ASIA with
the REDS publish/subscribe system and measure the
overhead introduced by the aggregation mechanism;
(ii) compare ASIA with REDS and an external aggre-
gation system running side by side.

2. We measure the cost of dynamically deploying new
aggregate functions in the broker network at run-time.

Parameter Value

Number of brokers 16

Average subscriptions per client 5

Number of connections 3

Number of different topics 500

Average link latency 0.2ms

Subscription/unsubscription ratio 50% / 50%

Average publication rate (per client) 1 ev/s

Average subscription rate (per client) 0.1 subsc./s

Number of clients per broker 100

Number of clients (delay tests) 8

Average aggregation requests per client 3

Maximum imprecision 0

Table 2: Parameters used in the reference scenario

We monitor the behavior of brokers while injecting new
functions supplied by the clients.

5.1 Experiment Setup
For our experiments, we define a reference scenario with

the parameters shown in Table 2. We consider a network
of 16 brokers, each connected to 3 other brokers and serv-
ing 100 clients. Each client publishes 1 event per second
on average and is subscribed to 5 topics out of 500. Since
subscriptions select events based on their topics only, each
client receives 1% of the published events on average. Topics
of publications and subscriptions are normally distributed,
and each client issues one subscription (or unsubscription)
every 10 seconds.

We use 32 Intel Core i7 nodes, each with 8 cores at 3.4 GHz
and 8 GiB of RAM, running Linux version 3.0.3. Each bro-
ker is deployed on a separate node. An additional 16 nodes
host the clients that produce network traffic; all clients con-
nected to a given broker are hosted on the same node. When
measuring the delay of packets, we deploy all the clients on
a single physical node, but connected to different brokers.
This allows us to measure time in a precise way, based on
the unique clock of the host machine. We also reduce the
overall number of clients running concurrently to 8 to have
sufficient resources to run them in parallel.

Depending on the specific test, we adopt the subscriber
count or the publisher count functions. Each client requests
subscriber (publisher) count for three event topics. When
stressing the system, we configure it towards a maximum ag-
gregation imprecision of zero, i.e., updates are always propa-
gated. In §5.2.2 we explore the effect of increasing the impre-
cision. We use REDS with two different traffic classes, one
for delivering events and one other to distribute subscrip-
tions, aggregate updates, and new functionalities in terms
of deployable code.

All the experiments presented below have been repeated
five times, with different seeds for generating events and
subscriptions. Each point plots the average value measured.

5.2 Overhead and Benefits
We evaluated the overhead of ASIA compared to a pub-

lish/subscribe-only middleware and studied the advantages
of integrating the aggregation services with the publish/sub-
scribe system.

5.2.1 Investigation of the Costs of Aggregation
We investigate the costs of the aggregation mechanisms

introduced in ASIA. To do so, we compare it against the
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REDS publish/subscribe system and to an external
aggregation system

REDS middleware, which only provides a publish/subscribe
service with no support for aggregation. Both systems are
configured to build and use the same overlay topology, and
the same protocol for distributing subscriptions and events.

In this experiment, we configured all clients to publish
events at their maximum rate, and we measure the over-
all number of events received by subscribers per second. In
ASIA, we also configured publishers to ask for subscriber
counts. Since this value is affected by the number of sub-
scriptions generated by clients, we repeated the experiment
while changing the number of subscriptions generated for
every publication.

Figure 4 shows the maximum throughput we measured
for the two systems. As the results show, the overhead of
aggregate update computation and distribution is negligi-
ble: ASIA exhibits a maximum throughput that is almost
identical to the unmodified publish/subscribe system. This
is true even when we push the system to the extreme case
in which subscriptions/unsubscriptions are generated at the
same rate as publications.

5.2.2 Advantages of Integration
We studied the advantages of integrating the publish/sub-

scribe and aggregation services, as proposed in the ASIA
model. To do so, we compare ASIA with a solution that
adopts two separate systems to provide the publish/sub-
scribe and aggregation services, deployed side by side on
the same brokers. We refer to this solution as PS+Agg.

Figure 5 compares the overall traffic generated by ASIA
and PS+Agg when changing the maximum imprecision ac-
cepted by clients. As a baseline, we also plot the traffic gen-
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erated by a traditional publish/subscribe system that does
not implement any aggregation mechanism. Notice that we
do not consider the traffic of events, which is identical for
all the systems under analysis.

As Figure 5 shows, the overhead introduced by the aggre-
gation mechanisms of ASIA is limited, and decreases with
the maximum imprecision tolerated by clients. At the same
time, Figure 5 highlights the advantages of ASIA with re-
spect to the PS+Agg solution. By piggybacking aggregation
updates, ASIA is capable of significantly reducing the net-
work traffic.

We conducted several other experiments that we omit due
to space constraints. Interested readers can refer to the
ASIA project webpage,1 where we investigate in greater de-
tail the performance of ASIA in terms of throughput, net-
work traffic, and delay for delivering events and aggregate
updates.

Based on these results, we conclude that the ASIA ag-
gregation model is a practical augmentation of distributed
publish/subscribe middleware to provide components inter-
acting via implicit invocations with aggregated crucial infor-
mation that can be computed in a cheap, distributed man-
ner.

5.3 Dynamic Function Loading
Having demonstrated the benefits of an integrated aggre-

gation mechanism for publish/subscribe systems, we now
investigate the cost of real-time deployment of new (aggre-
gation) functions into the broker network.

We configure clients to periodically send special DL Pack-
ets (Dynamic Loading Packets), which include the Java byte-

1http://www.dvs.tu-darmstadt.de/research/
events/asia/
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code of new functions. When a broker receives a DL Packet,
it extracts the bytecode, loads the new functionality, and
starts executing it, thus weaving the new code into the bro-
ker as outlined in Section 4.2.2. It then forwards the packet
to other brokers through the overlay network. This happens
until all brokers receive the new function. For our exper-
iments, each new function implements some mathematical
computation that is executed only once at each broker.

In realistic settings, we expect the deployment of new
functions to occur rarely. To stress the system, however,
we performed all our tests in the extreme situation in which
new functions are deployed at high rate. We investigate the
overhead of function deployment when changing the gener-
ation rate of DL Packets from 1 to 1000 per second.

Initially, we measure how the presence of dynamic load-
ing impacts on the delay for delivering events. During our
experiments, clients use ASIA both as a publish/subscribe
system and as an aggregation system, to collect information
about the total count of publishers.

Figure 6 shows the average delay measured by clients and
its 95th percentile. We compare the results we collect with
a baseline system that does not offer dynamic loading. In-
terestingly, both the average delay and the 95th percentile
oscillate around the values collected from the baseline sys-
tem. We do not measure any significant overhead. More-
over, increasing the rate of DL Packets does not significantly
increase the measured delay.

Considering the same experiment, Figure 7 shows the de-
lay for propagating aggregate updates. While our imple-
mentation uses a separate traffic class for events, aggregate
updates and DL Packets share the same class. We thus ex-
pect a higher impact of dynamic loading. Indeed, as shown
in Figure 7, the 95th percentile is higher when dynamic load-
ing is introduced. Moreover, it slightly increases when the
rate of DL Packets becomes extremely high (over 100 DL
Packets per second). Interestingly, however, even when dy-
namic loading occurs at high rate, the impact on the average
delay remains negligible.

As a final experiment, to better understand the compu-
tational effort of dynamic loading, we monitored the CPU
load of the machines hosting the brokers. The results are
shown in Figure 8. Independently from the rate at which
DL Packets are generated, the average CPU load remains
almost constant and well below 1%. For this reason, we also
plot the maximum load. In all cases, it never reaches 100%;
moreover, when considering dynamic loading, this value only
increases marginally.

6. RELATED WORK

Implicit Invocations.
Several programming languages support implicit invoca-

tions inherently through asynchronous “event” methods or
similar constructs. Examples include ECO [21], JavaPS [13],
EventJava [14], Ptolemy [38], and EScala [19]. None of these
provide any other features than propagation of implicit in-
vocations; focusing on centralized deployments, Ptolemy or
EScala could easily provide information on the number of
publishers per subscriber or vice-versa. In contrast, lan-
guages based on Actors (e.g., Erlang [12]) and inspired by
the Join Calculus [18] (e.g., Polyphonic C# [2]—now in-
tegrated with C#), or combining the two (e.g., Scala Ac-
tors [22], Erlang Joins [44, 37]) focus on asynchronous in-
vocations on single destinations, and thus do not support
implicit invocations.

Distributed Aspects.
In general, AOP is sometimes viewed itself as a form of

event-based programming which is implicit, as opposed to
the explicit events mentioned above. Several authors have
proposed extensions to AOP specifically for asynchronous
distributed systems, including event-based aspect-oriented
programming (EAOP) [11], aspects with explicit distribu-
tion (AWED) [34], and distributed aspects for distributed
objects (DADO) [46]. These focus on advising one-to-one re-
mote object invocations and thus on a different distributed
programming abstraction than implicit invocations, which
are specifically designed for multicast (one-to-many) inter-
action. Together with a design pattern, for instance based on
the use of dummy proxy objects, one could certainly use any
of these approaches to implement some form of implicit in-
vocations. Their applicability for implementing the aspects
presented herein is less obvious.

The specific contribution of EAOP, AWED, or DADO is
to be able to advise remote joinpoints in application com-
ponents. In contrast, the joinpoints introduced herein are
focused on broker logic which is internal to a publish/sub-
scribe-based application; broker networks are precisely in-
troduced to streamline propagated information via aggrega-
tion, and thus to avoid references and dependencies between
application components. Similarly, conspects [24, 25] focus
on advising application components—in order to add con-
textual arguments to implicit invocations—rather than on
the components constituting the infrastructure implement-
ing the implicit invocations.

Publish/Subscribe & Group Communication Systems.
Centralized publish/subscribe middleware systems, such

as ActiveMQ [42], are used as a foundation for distributed
applications that involve many participants, potentially join-
ing and leaving at runtime [23]. To gain scalability, dis-
tributed publish/subscribe middleware such as Padres [17]
have been developed, in which publishers and subscribers
are decoupled in time, space and flow [15] by a network of
brokers.

Researchers have considered additional information that
can be provided by publish/subscribe middleware. Behnel
et al. [1] describe various metrics that are of interest in such
systems. For example, ActiveMQ publishes advisory mes-
sages providing information about the state of the server.
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Traditional group communication systems have a member-
ship service that manages a list of active members for each
group [16, 32, 40]. Group communication systems typi-
cally provide strong delivery guarantees [6] that are aligned
with changes in membership views. However, in contrast to
ASIA, these approaches do not scale to large system sizes.

Distributed Aggregation.
Efforts on distributed aggregation for scalable monitoring

deal with challenges in terms of robustness, scalability, and
dynamism. The spectrum of aggregated information ranges
from state information [45, 33, 5] to a quantification of sys-
tem stability [26, 8, 27, 41].

Astrolabe [45] is an early system for monitoring the state
of distributed resources and provides summarization aggre-
gations based on user-defined aggregation functions. As-
trolabe uses a single logical aggregation tree on top of an
unstructured peer-to-peer gossip protocol. The authors de-
scribe how it could support a topic-based publish/subscribe
model but, in contrast to ASIA, it is unclear how aggrega-
tion would be affected by changes in the topology.

Yalagandula and Dahlin [47] extend distributed hash ta-
bles (DHTs) into a scalable distributed information manage-
ment system (SDIMS). SDIMS performs hierarchical aggre-
gation based on attribute types and names through aggre-
gation functions associated with a certain attribute type.
Jain et al. [27] introduce network imprecision (NI), a con-
sistency metric for large-scale distributed systems. NI al-
lows a system to quantify its stability in terms of currently
(un)reachable nodes and number of updates that might have
been repeatedly processed due to network failures. The
STAR [26] protocol adaptively sets the precision constraints
for processing aggregate queries and is used by NI. How-
ever, such generic aggregation systems cannot leverage spe-
cific properties of publish/subscribe systems, such as overlay
topologies or exchanged messages. Consequently aggrega-
tion trees do not necessarily match routing trees, resulting
in inefficiency and delayed adaptation to system changes.

Other proposed aggregation solutions specialize on certain
goals. For example, Cheung and Jacobsen [5] propose an
algorithm that probabilistically traces publication messages
through replies with data aggregation in order to find the
best broker for connecting a new publisher. Migliavacca
and Cugola [8] provide an approach for handling replies in
publish/subscribe communication. REMO [33] builds many
optimized routing trees for different monitoring tasks, taking
available resources into account and allowing for efficient
data aggregation towards the root of the tree. Adam2 [41]
estimates the distribution of a value by using a gossip-based
algorithm, in which nodes exchange aggregation instances.
All of these systems cannot support the application-specific
aggregation requirements of generic applications.

The paradigm of stream processing (SP) bears certain re-
semblances with aggregation as described herein. While SP
systems also make use of distributed overlay networks, they
pursue a different goal: every node performs a different op-
eration, and the end result is not inherently multicast.

Reflective Middleware.
Middleware systems have long been designed with reflec-

tive features in mind. Object Request Brokers (ORBs) have
been a particular early target of such design. ORBs are
analogous to our event brokers, except that they focus on

remotely accessible objects and explicit invocations thereon
whereas the latter implement implicit invocations. Exam-
ples of reflective ORBs include the DynamicTao [31] and
Open ORB [3] systems. Similar to more recent and generic
work on adaptive middleware and composable systems re-
lying on reflection features [7], these approaches aim at im-
proving the internal design and other non-functional char-
acteristics (e.g., adaptivity, extensibility, and QoS) of a soft-
ware system. Preservation of external interfaces is a declared
goal. In contrast the goal of ASIA is the addition of features
for individual applications or families of applications, thus
extending the external interfaces of a system.

7. CONCLUSIONS
Publish/subscribe systems for implicit invocations enable

decoupling among the communication components in a dis-
tributed system. In practice, components often require some
information on others, and rely on ad-hoc middleware ser-
vices to obtain such information. Progressing from this
premise, we introduced ASIA, a model for augmenting a
distributed publish/subscribe system with integrated mech-
anisms to collect aggregated information.

Since different applications may require different informa-
tion about interacting components, our solution does not
provide a predefined set of aggregated functions. Rather,
it provides domain-specific joinpoints which developers can
program advice for that compute application-specific aggre-
gation functions.

In terms of future work, we are investigating a more formal
definition of the conditions required for safe modification of
broker behavior at run-time. In addition, we are working
on an implementation of ASIA for the ActiveMQ [42] pub-
lish/subscribe system. Last but not least, we are consider-
ing leveraging the well-matured AspectJ [28] tool chain, by
compiling ASIA advice to AspectJ advice, and exploiting
existing dynamic weaving support for runtime deployment
of aggregation functions.
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