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Abstract

Today, the Internet can be seen as a global marketplace populated by a huge number of
providers and consumers that exchange data from a wide range of domains. A combination
of data from different sources for further automatic processing is often hindered by differences
in the underlying modeling assumptions and representation. In addition, the available sources
are in most cases semistructured, i.e., provide no fixed and explicitly specified schema. Thus,
an integrated use of Web-based data requires explicit information about its organization and
meaning.

In this paper we present a representation model that combines concepts for an explicit
description of the structure and semantics of the available data with concepts of a flexible,
self-describing model suitable for the representation of semistructured data. We show how
data from different sources can be represented in a uniform way on the basis of this model,
by integrating data from different online reservation systems as an example. We present a
particular way of integrating heterogeneous sources from the Web which is not claimed to
be generally applicable, but provides a fairly simple solution for many application domains.

1 Introduction

Since the World Wide Web popularized its existence, the Internet has grown exponentially, leav-

ing its roots as a researchers’ forum and entering the collective consciousness. In addition to

being a way for individuals and organizations to provide information, businesses have embraced

the Internet as a way to offer their services. Today, the Internet is both a vehicle for advertising

and a global marketplace of goods and services, ranging from electronic publications to tradi-

tional books, from financial services to travel planning, and the online monitoring of traditional

logistics and physical distribution of goods.

In all these forms of electronic commerce we can identify common patterns or metaphors: In the

business-to-consumer metaphor the business advertises and provides a service and an individual

typically accesses and extracts the relevant information directly. For this kind of interaction the

popular approach of presenting the information in the form of HTML pages is sufficient. The

casual user browses, interprets the information and interacts with the provider in a point-and-

click paradigm.
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In the business-to-business interaction the business partners tend to rely on previously estab-

lished protocols that have been in use for longer time, such as protocols for interbank fund

transfers or for reservation of air travel through one of the major reservation systems, for exam-

ple SABRE or Amadeus.

A third form of interaction is emerging, that may be characterized as business-to-business-to-

consumer. A typical example of this paradigm is the search for lowest possible fares by a

travel agent on behalf of a client. The travel agent is a business that acts as a knowledgeable

intermediary. For this kind of service provider the typical point-and-click interaction is too

time consuming while the interaction with individual reservation systems is too restrictive since

many interesting opportunities are provided by ticket consolidators, last minute providers or

are provided only through typical end-user oriented HTML pages. Therefore, in the business-

to-intermediary-to-consumer metaphor it is necessary to extract information, consolidate it and

use it for further electronic processing.

Unfortunately, the available data sources represent the same or related information in different

forms. This is because of different political and cultural contexts, or because of different

intentions concerning the use of the data. In particular, an integrated use of the available

resources is rarely possible because:

• Most of the data sources available online provide data in a semistructured form. This data

has no obligatory and rigid data schema associated with it on which an automatic pro-

cessing can be based. Thus, the underlying structure and semantics have to be extracted

and made explicit before the data can be used.

• In addition, a semantically meaningful use of the available data requires explicit knowledge

about the underlying modeling assumptions concerning the organization and the meaning

of the data. In most cases, these modeling assumptions are given implicitly only, and thus

have to be made explicit.

Therefore, an integrated use of Web-based data requires the extraction of structure and meaning

of the data, the explicit characterization of the corresponding metadata, and the consolidation

of the extracted information in a common model for further electronic processing.

Our present research was motivated by concrete problems faced by the travel industry in the

business-to-intermediary-to-consumer metaphor. It is our belief that this is a major growth area

of electronic commerce, and that a mechanism for extracting both structure and semantics of

Web-based data and making this information explicit through metadata is an essential enabler

for this business model.

In our approach we advocate the use of existing common vocabularies or ontologies as a basis

for the interpretation of Web-based data. In the travel industry these are for example the

common three letter codes or the UNICORN protocol. Ideally, providers should adhere to those.

However, in an imperfect real world, it becomes necessary to extend the existing vocabularies

on the consumer side. This is quite realistic in a business-to-intermediary-to-consumer setting,

since the intermediary will deal with a finite number of content providers on a regular and

extensive basis. Therefore, some initial effort on the part of the consumer of the information is

justified if it enables further automatic processing of the information.
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In this paper we discuss the role of metadata in describing the structure and semantics of avail-

able data. We motivate our approach through a typical but simplified scenario from the travel

industry. We introduce a representation model that combines aspects of a flexible, self-describing

data model for the representation of semistructured data sources, with aspects concerning an

explicit description of the organizational and semantic assumptions underlying the available

data. In this way, the proposed model is well suited for the integration of semistructured,

heterogeneous Web-based data sources for further processing.

1.1 MIX - A Data Model for the Representation of Semistructured Data

Many of the data sources available online provide information in the form of semistructured data

[Abit97, Bune97], such as SGML [ISO86] and HTML [RHJ97] pages, or BibTex [Lamp85] files.

Generally, they provide no obligatory, explicitly specified schema in the sense of conventional

database systems to which all data must adhere. Accordingly, the available data is represented

in a highly irregular way, i.e., data objects that represent the same real world phenomenon

may describe different aspects of that phenomenon, or information that may be classified as

semantically equivalent is represented differently.

Although this data has no strict and regular schema, it provides some internal structure and is

based on certain modeling assumptions that might be used when processing the data. However,

in most cases the underlying schema information is given only implicitly, i.e., is given as special

tags or by the headings of sections and subsections. This schema information is not as rigid

and complete as schema information found in traditional relational or object-oriented database

systems.

Furthermore, because the available schema information is part of the data itself, as in the case

of SGML or HTML pages for example, it may be modified as frequently as the data it describes.

Therefore, in the context of semistructured data frequent modifications of the underlying struc-

ture and semantics of the data have to be taken into account. This aggravates the explicit

specification of a rigid schema, and has to be taken into consideration when representing and

processing these data.

The introduction of flexible data models for the representation of semistructured data in the

context of an integrated use of autonomous, heterogeneous data sources, as they are typical for

the Internet, is important for two reasons:

• Management and Representation of Data from Semistructured Data Sources

Because semistructured data sources generally provide no such strict and stable schema

to which all data must adhere, the available data cannot be easily mapped onto classical

data models that are strongly typed. The use of NULL values for the representation of

irregular structured data and the need for tracking frequent schema modifications result

in unnatural and inefficient representations of the data, and require the introduction of

more flexible data models for their efficient representation, management, and exchange.

• Representation Models for the Integration of Heterogeneous Data Sources

In addition, the need for representing irregular structured data arises naturally in the

context of integrating data from multiple, heterogeneous sources, even if the available

sources themselves are well structured.
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During the integration of data sources that have been designed independently, we may

encounter different kinds of heterogeneity which can not be easily, if at all, resolved by

simply converting local data structures to representation constructs of a common data

model. Even if the participating sources are all based on the same perception of a cer-

tain domain, different sources typically record different attributes of the same real world

phenomena. In addition, semantically equivalent information may be represented by using

different modeling constructs or concepts, e.g., using different systems of measurement,

scaling, or derivation formula. In most cases, discrepancies of these kinds cannot be re-

solved directly by the system, because missing information aspects typically can not be

obtained, or application-specific information must be taken into consideration to resolve

these heterogeneities.

For this reason, data that results from the integration of heterogeneous sources in many

cases provides no regular, obligatory structure and representation for all data objects.

In addition to that, modifications of the underlying data sources or the integration of

additional resources frequently lead to modifications of the integrated data and may ne-

cessitate additional integration effort. Therefore, this data may be classified as similar to

semistructured data.

Representation models that support a natural representation of data with highly irregular

structure, as well as an efficient modification of the schema information underlying these

data, obviously provide a significant simplification for the integration of heterogeneous,

possibly semistructured data sources [CGH+94, MAG+97].

Most previous approaches for automatic processing of semistructured data concentrate on struc-

tural characteristics of the data. They are mainly based on the specification of grammars

[ACC+97, AK97, HGC+97] for making the underlying structure explicit, or use browsing-

oriented schemas [AMM97, MMM97, SL97] that represent HTML pages as objects with several

attributes like URL, title, and author. These approaches do not take the information content,

i.e., the meaning of the data into account in a satisfactory way. However, for an integrated use

of semistructured data coming from different sources we have to take both the structure and the

semantics of the data into consideration.

1.2 Representation of Semantic Context Information by Using Metadata

A semantically correct use and a meaningful exchange of data available from autonomous data

sources requires both information concerning their organization and structure, as well as the

assumptions about their meaning made by the person or organization owning the data. This

information, which we call context information [GMS94], provides the basis for determining

the relationships between the data and the real world aspects it describes. With regard to the

kind of aspects described by this context information we may distinguish between structural

and semantic context information. However, in this paper we will concentrate on the semantic

context information.

In most cases, this context information is given only implicitly, i.e., it is in the minds of the

responsible designer, is specified in textual documentations not available externally, or is reflected

in the local applications operating on the corresponding data. This context information is lost
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when data is exchanged across institutional boundaries, and thus has to be made available

explicitly as metadata.

Atomic or complex data objects in the sense of object-oriented database systems correspond to

instances of certain data types defined for the respective data source. The meaning and possible

use of such data objects are first determined by their underlying data type. However, even if the

type of a given data object describes some semantic aspects of the corresponding data objects,

many of the modeling assumptions remain implicit.

As a prerequisite, to integrating data from different sources these semantic assumptions have

to be made explicit. For this, different approaches have been discussed in the literature

[CRE87, SM91, SSR92, ON94, GMS95, RS95, KS96, HMV96], which all fall into the spec-

trum characterized by the following extremes: the coding of semantic context information by

introducing specific data types (e.g., [CRE87]), and the representation of context information

in the form of additional “meta-attributes” outside of the underlying type system.

The latter approach corresponds to the specification of variable attribute sets similar to Lisp

property lists [Stee90], which describe different aspects of a given data object. These meta-

attributes may be represented as explicitly stored or virtual attributes [SSR94, KS96, RS95]

which can be made available directly as part of the data, or may be given in the form of rules

defining the association of data objects with their semantic properties [SM91, ON94, GMS95].

By using additional meta-attributes for an explicit description of the semantic properties of a

data object the conversion between different semantic contexts has to be implemented by the

explicit introduction of appropriate conversion functions.

In contrast, when using specific data types for the representation of semantic context information

all semantic properties of a data object are determined by its associated type. In this case,

the transformation of a data object between two representations concerning different semantic

contexts may be reduced to the appropriate type conversions between the underlying type system

of the source and the sink of the data, respectively. These conversions are well known from

object-oriented programming languages.

Accordingly, the use of specific data types for the representation of semantic context information

provides the following advantages:

• This approach corresponds to the representation of semantics in object-oriented language

models, and therefore allows a natural representation of context information on the basis of

object-oriented type models. No additional concept meta-attributes has to be introduced.

• The mechanism of type conversion is a concept well known from many programming

languages. In particular, we may rely on technologies for automatic type conversion,

derivation of resulting data types, and static type checking.

On the other hand the following reasons can be given against this representation approach:

• The need for the specification of an according type for each data object generally leads to

a significant growth of the underlying type system. In the worst case, the number of data

types corresponds to the product of all semantic aspects to be represented. For example, to

represent the format (e.g., LaTeX, Postscript, Word Perfect, etc.), as well as the possible

compression of text files we may specify the following type system: LaTeX Uncompr,
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LaTeX Compr, Postscript Uncompr, etc., for the classification of the possible instances.

In this case, the underlying type system is no longer suitable for structuring the available

types, and describing the structural and semantic similarities of the corresponding data

objects in a clear way [RS95, SSR94].

• Generalization and specialization relationships, as they are specified in an object-oriented

model, are, more often than not, not suitable for the representation of information about

the semantic relationships between different data objects. Specialization relationships

provide inheritance for attribute and method declarations only. In many cases, the “in-

heritance” of certain attribute values would be more appropriate. In this way, the class

MonetaryQuantity may be understood as a subclass of PhysicalQuantity with the attribute

value PhysicalDimension = “Monetary′′, for example.

• In addition, type hierarchies of this kind do not support bidirectional conversion functions,

i.e., automatic type conversion is only possible from sub- to super-types. Accordingly, map-

ping functions for type conversions between data types belonging to the same hierarchical

level have to be specified explicitly. Therefore, in general, type conversions in hierarchi-

cally structured type systems seem to be as costly as in the case of meta-attributes for the

representation of context information [RS95].

• In general, it is impossible to explicitly describe all modeling assumptions underlying a

given data object [SG89]. Thus, an explicit representation of context information always

has to be seen as incomplete. For this reason, the representation of context information

by using specific data types is often not suitable, because it requires the specification of all

context aspects to be described before the mapping of data to the type system. In contrast,

the use of a variable set of meta-attributes provides a much more flexible representation

approach, because the set of context aspects may be extended any time, dependent on the

available information and the intended use of the data.

• Furthermore, many of the data sources available via the Internet provide data in semistruc-

tured form only. These sources have no explicitly specified schema to which all data cor-

responds. Thus, structure and semantics of data objects may vary, even if these describe

entities of the same class of real world phenomena. For this reason, context information

concerning the organization and meaning of this data has to be given on an extensional

level, i.e., on the level of data values and instances. Accordingly, the use of variable

sets of meta-attributes allows a much more natural and efficient representation of context

information for semistructured data.

For these reasons, the approach presented in this paper for the representation of data with their

semantic context lies in the middle of the two alternatives discussed above. As depicted in

Figure 1, the represented data is grouped under an appropriate concept, similar to a domain-

specific data type. This concept is taken from a predefined conceptualization, which we call an

ontology here. This ontology can be understood as a domain-specific vocabulary onto which the

available data has to be mapped.

However, the set of context aspects, i.e., meta-attributes, given for a data object are not

determined by the associated ontology concept, but are only suggested by the semantics of this

concept. With this, the context information is represented on an extensional level, and may
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be seen as additional attributes that are accessible by the user or application program directly,

i.e., without requiring additional interpretation steps.

Data

Meta-Attributes
Data

Basic Data Type
Abstract Data Type
Domain-Specific

Abstract Data Type Meta-Attributes
Domain-Specific

Data

Figure 1: Representation Alternatives for Semantic Context Information

The association of ontology concepts corresponds to the classification of the available data

according to the model underlying this ontology. This enables an explicit description of the

relationships between a given data object and the real world phenomenon it describes, and thus

provides the basis for the detection of semantic similarities of data objects from different sources.

The disadvantages of a purely type-based context representation (e.g., the excessive growth of

the underlying type system, and the inflexible association of context aspects) are avoided.

The data model presented in the this paper provides a semantic description model which allows

an explicit description of the semantic assumptions underlying a given data object on the basis

of the representation approach discussed above.

1.3 Scenario

In the business-to-intermediary-to-consumer scenario we are dealing with, to find the lowest

possible airfare available, or to put together a trip involving more than one airline, travel agencies

must access and share data from different online reservation systems. However, different airlines

and consolidators, like American Airlines/SABRE or Teleport Travel, represent their information

differently which makes the use of data from different providers difficult and time consuming.

We were approached by a major travel agency that needed help in extracting data from the

web and preparing it for further processing. In the scenario we were given, the consumer of the

information accesses a heterogeneous but relative stable combination of reservation systems and

web sites.

Figures 2 and 3 show flight information from two different online reservation systems as they

are available on the Web. The available data is provided as semistructured data in the form

of HTML pages. Because there is no obligatory data schema associated with this data, the

structure underlying it is irregular, e.g., some offers are composed of multiple flight segments,

and information concerning certain aspects is not given for all flights or is represented differently,

as is the case with information concerning meal services in reservation system A.
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Figure 2: Reservation System A

Although the available data obviously has some internal structure, this structural information is

not accessible as a separately specified schema, but is given in the form of HTML tags, and thus

is part of the data itself. Therefore, the underlying structural information has to be extracted

first to become useful for automated processing.

In contrast to conventional database schemas, the structure underlying the data is much more

flexible and may be modified as easily as the data itself. Accordingly, frequent modifications

of the chosen representation have to be expected and taken into consideration by using a very

flexible description model when mapping these data to a common representation.

Figure 3: Reservation System B

In addition, the data sources we are looking at describe equivalent information differently. They

provide different aspects of the flights, and represent the same real world aspects using different

structural constructs or semantic concepts. For example, information about the flight distance is

recorded in source B only. Additionally, both reservation systems identify airlines with different

coding conventions. The detection and resolution of these semantic heterogeneities obviously

requires knowledge about the exact semantics underlying the represented data.
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The rest of the paper is organized as follows: In the next section we present a model that enables

the explicit description of the structure and semantics of semistructured data by using metadata

in a manner similar to that discussed in [SSR94, GMS94, KS96]. In Section 3 we show how data

from semistructured, heterogeneous data sources can be represented and integrated in an easy

and natural way using our model. For this, we use the example of online reservation systems

introduced above. Section 4 gives a short comparison of our model with related research efforts.

Finally, Section 5 provides conclusions.

2 MIX - Metadata based Integration model for data X-change

In this section we introduce a model for the representation of data together with an explicit

description of their underlying interpretation context. This model, which we call Metadata

based Integration model for data X-change, or MIX for short, can be seen as a self-describing

data model in the sense of [MR90, LMR90]. This is because information about the structure

and semantics of the data is not provided as a separately specified data schema, but is given as

part of the available data itself. Thus, MIX allows a flexible association of context information

in the form of metadata on an extensional level, and is well suited for the representation of

semistructured data.

By using the MIX model we may represent structured and semistructured data in a uniform

way, that is, we may represent them on a common interpretation basis. This supports the

automatic processing of the available data. In addition, it allows the detection and (at least

partially) resolution of heterogeneities between different data sources, and favors a semantically

meaningful data exchange because the underlying interpretation contexts are made explicit.

The model is based on the concept of a semantic object. A semantic object represents a data

item together with its underlying semantic context. This semantic context consists of a flexible

set of meta-attributes (also represented as semantic objects) that explicitly describe the implicit

assumptions about the meaning of the data item. Preferably, this metadata has to be provided

by the source when mapping the data to semantic objects, or, in its absence, may be added

by the consumer of the data for future automatic processing. However, because we cannot

explicitly describe all modeling assumptions, the semantic contexts always has to be understood

as a partial representation.

In addition, each semantic object has a concept label associated with it that specifies the relation-

ship between the object and the real world aspects it describes. To support the interpretation of

the available data and metadata, these labels have to be taken from a commonly known vocab-

ulary, or ontology, that represents an agreement about the exact meaning of the given concepts.

In this way, the concept labels, as well as the semantic context of a semantic object explicitly

describe the supposed meaning of the data. Our somewhat simplified notion of context allows

us to keep the model simple, and supports an economic representation.

The following sections introduce the fundamental concepts of the MIX model. In Section 2.1

we discuss the role of domain-specific ontologies as a common interpretation basis for data and

metadata. We distinguish between simple and complex semantic objects. The concept of simple

semantic objects, which are used for the representation of atomic data values is introduced

in Section 2.2. Section 2.3 deals with the idea of semantic conversion and shows how simple
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semantic objects can be converted among different semantic contexts. Based on these concepts,

Section 2.4 shows how conversion functions can be used for the comparison of semantic objects

represented with regard to different contexts. Section 2.5 defines arithmetic operations on simple

semantic objects.

In Section 2.6 we introduce complex semantic objects for the representation of complex data

objects. The concepts of semantic conversion and semantic comparability are generalized for

the class of complex semantic objects in Sections 2.7 and 2.8, respectively. Finally, Section 2.9

defines the concept of semantic identity which provides a prerequisite for the integration of

semantic objects that represent the same real world phenomenon.

2.1 Ontologies as a Common Interpretation Basis

To ensure a semantically correct interpretation of the available metadata we use domain-specific

ontologies [MMS98, MKIS98]. An ontology provides an agreement about a shared conceptual-

ization of a given application domain [Grub95, Guar96]. The concepts specified in the ontology

provide a common vocabulary for which no further negotiation concerning their meaning is

necessary. In addition, the ontology provides information about the representation of the data

described on the basis of the model. In this way, the ontology can serve as a common basis

for the interpretation of context information in the form of metadata. We assume a tight cou-

pling of different ontologies by assembling them following the module-based approach described

in [FFR96]. A more loose approach of correlating different ontologies has been discussed in

[MKIS98].

In an ideal situation, all instances that make use of data and metadata from a given domain

should adhere to the corresponding ontology. In an imperfect real world, we must allow ontologies

on consumer side that are tailored to specific needs and provide for extensibility of the model.

Ontologies should follow existing description standards (like the Unicorn standard [UNI94] for

travel information, or the well known two letter airline code) as much as possible. Aspects for

which no such standards exist require new ontology concepts to be specified by the corresponding

data source, or by the consumer of the data. Depending on the application domain at hand, this

can be done following a top-down approach as proposed in [FFR96], or a bottom-up approach as

introduced in [VM98]. By providing the means for adding metadata and extending the ontology

on the receiver side, we believe we can claim a reasonable combination of rigor and flexibility.

However, such a conceptualization of a given application domain has to be understood as

an abstraction which is always incomplete and which incorporates significant simplifications

because of efficiency reasons or because of the specific needs of the institution providing

the data. Unimportant aspects of the application domain being conceptualized are ignored.

Therefore, the set of semantic properties associated with a given semantic object via the

corresponding ontology concepts always has to be seen as a subset of the semantic properties

that correspond to the real world phenomenon it describes.

Definition 1 (Ontology)

In the MIX model, we simplify by understanding an ontology O as a vocabulary for the notation

and representation of a given application domain, which is given in the form of a finite set of

concepts:
O := {C1, . . . , Cn} , n ∈ IN .
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Each ontology concept Ci has a physical representation type RepType(Ci) associated with it,

which is either atomic (e.g., string, integer, real, etc.), or “complex”, in which case the exact

physical representation is not determined by the concept. The domain of the representation type

Dom(RepType(Ci)) specifies the possible values for the representation of data corresponding to

Ci.

There is a significant difference between the terms concept and physical representation type, as

they are used here. An ontology concept may be understood as an abstraction of a (homoge-

neous) set of real world phenomena, and thus describes the correspondence between data of a

given concept and the and the respective real world domain. In contrast, the physical represen-

tation type determines the representation of a data value of a certain concept in the system. An

example for the concept of an ontology as it is used here is given by the AirTravel ontology in

the appendix.

2.2 Simple Semantic Objects

In this section we introduce the concept of a simple semantic object. A simple semantic object

may be understood as an atomic data item, like a simple number value or a character string,

with enough additional information attached so that its semantics can be figured out by a human

reader or automatically. The meaning of a simple semantic object is determined by a concept

label which specifies the real world aspect the object refers to, and an explicit description of

its semantic context. This semantic context consists of a flexible set of meta-attributes that

explicitly describe implicit modeling assumptions concerning the meaning of the represented

data value.

Definition 2 (Simple Semantic Objects)

Given O as the ontology underlying the representation. The simple semantic object SemObj

representing the atomic data value v is a 3-tuple of the form:

SemObj := < C, v́,S > ,

where C ∈ O denotes the ontology concept to which the semantic object adheres, and v́ ∈
Dom(RepType(C)) is the physical representation of v according to the physical representation

type of C1. S specifies the semantic context associated with SemObj.

The semantic context S of a simple semantic object explicitly specifies the interpretation context

of a data value, and is defined as:

S := {<C1, v1, S1>, . . . , <Ck, vk, Sk>} , k ∈ IN0 ,

where <Ci, vi, Si >, 1 ≤ i ≤ k, are the semantic objects that describe different aspects of the

semantic object. In turn, they may provide additional context information that further describes

the respective semantic aspect specified.

1Different data sources may provide different physical representations of the data items they offer. To deal
with these physical heterogeneities in a clean manner in the definition above we have to distinguish between v,
represented with regard to the local type system of the respective source, and v́, represented according to the
physical representation type specified in the common ontology.

11



In the rest of this paper, SSOO denotes the (infinite) set of simple semantic objects that are

definable based on ontology O. By IPO we denote the power set of all possible semantic contexts

that are definable based on ontology O.

The following definition introduces the concept of a semantic type of a simple semantic object.

Each simple semantic object corresponds to a semantic type that specifies the ontology concept

to which the object adheres, as well as its corresponding physical representation. However, the

information given as the semantic context of a simple semantic object is not determined by its

semantic type. This allows data items from different sources that refer to the same real world

aspects to be subsumed under the same semantic type, even if they differ in their underlying

contextual assumptions. Otherwise we would have to introduce a new semantic type for each

set of semantic properties of a semantic object which would lead to an excessive growth of the

underlying type system.

Accordingly, the domain of a semantic type encompasses the set of all semantic objects that

semantically correspond to the specified ontology concept and are represented according to the

associated physical representation type.

Definition 3 (Semantic Type of a Simple Semantic Object)

Given O as the ontology underlying the representation.The semantic type SemType of a simple

semantic object <C, v, S> is defined as the tuple:

SemType(<C, v, S>) := <C, RepType(C)>

with domain:

Dom(<C, RepType(C)>) := {<C, v, S> | C ∈ O, v ∈ Dom(RepType(C)), S ∈ IPO} .

Following this, the semantic type of context S = {<C1, v1, S1>, . . . , <Ck, vk, Sk>} is defined

as:

SemType(S) := { SemType(<C1, v1, S1>), . . . , SemType(<Ck, vk, Sk>) } =

{ <C1, RepType(C1)>, . . . , <Ck, RepType(Ck)> }
with domain:

Dom(SemType(S)) = Dom({ <C1, RepType(C1)>, . . . , <Ck, RepType(Ck)> }) :=

Dom(<C1, RepType(C1)>) × . . . × Dom(<Ck, RepType(Ck)>) .

The elements <Ci, RepType(Ci)> of SemType(S) are called semantic aspects of the semantic

type of S.

A semantic aspect corresponds to a category of meta-information that describes a certain

property of a semantic object. These properties include fundamental assumptions about the

meaning and possible use of a given data object. The ontology concept associated with a

given semantic object implies which semantic aspects are meaningful. In general, however, the

particular semantic aspects described in a semantic context are only a subset of all meaningful

semantic aspects of an ontology concept. Thus, dependent on the available context information,

two semantic objects of the same concept may have different semantic aspects associated.
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Example:

The following example illustrates the representation of a simple data value by a corresponding

simple semantic object. The AirTravel ontology, as given in in the appendix, describes the

meaning and representation of the concepts Distance (represented as a real value), Unit as the

underlying unit of measure (represented as a string value, e.g., “mile”, “km”, “m”, etc.), and

Scale as the scale factor of a numerical value (also represented as a real value). Based on these

concepts, the flight distance between Frankfurt/Main and New York as given in Figure 3 may

be represented as:

dist = < Distance, 3850, {< Unit, “mile” > 2, < Scale, 1 >} > .

The corresponding semantic type is given by:

SemType(dist) = < Distance, real >

with domain:

Dom(SemType(dist)) = {<Distance, v, S> | Distance ∈ AirTravel,
v ∈ Dom(real), S ∈ IPAirTravel }.

2.2.1 Contentderived and Contentdescribing Semantic Aspects

Concerning the concept of a semantic aspect as introduced in the last subsection, we may

distinguish between aspects that can be derived from the information represented by the given

data object directly, which we call contentderived semantic aspects, and semantic aspects that

provide additional information concerning the meaning of the data that can not be derived from

the data content. These aspects are called context describing semantic aspects.

Definition 4 (Contentderived and Contentdescribing Semantic Aspects)

Given C1 denoting the semantic aspect <C1, RepType(C1)>. <C1, RepType(C1)> is called a

contentderived semantic aspect with regard to concept C, if for all semantic objects of semantic

type <C,RepType(C)> we can define a mapping function FC,C1 of the following signature:

FC,C1 : Dom(RepType(C)) −→ Dom(RepType(C1)) ,

with:

FC,C1(v) = v1 .

Otherwise, we call <C1, RepType(C1)> a contentdescriptive semantic aspect with regard to

concept C.

This means, C1 denotes a contentderived semantic aspect, if we can find a corresponding function

that maps each semantic object of semantic object type <C,RepType(C)> to the according

value v1 given only the meaning of concept C and the information represented by v.

2If a semantic object does not provide additional context information we use the simpler notation SemObj =
<C, v> instead of SemObj = <C, v, ∅>.
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2.3 Semantic Conversion

The association of context information with a given data value serves as an explicit specification

of the implicit assumptions about the meaning of the data. This allows the determination of

semantic objects that represent the same information, even if they are represented differently,

i.e., with relation to different contexts. For example, intuitively:

< Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > and

< Distance, 3.85, {<Unit, “mile”>,<Scale, 1000>} >

are semantically equivalent; that is, they represent the same information. They may be classified

semantically equivalent because we can specify a conversion according to the mapping rule “v

(scale x) = v x
y (scale y)” by which one representation can be transformed into the other. Con-

version functions of this kind provide the prerequisite for a semantically meaningful comparison

of semantic objects. In addition, conversion functions are used when semantic objects have to

be exchanged between institutions that expect different semantic contexts of the data, or when

semantic objects from different sources have to be integrated. In this section we look at semantic

conversion of simple semantic objects. In Section 2.7 the statements given here are generalized

for the semantic conversion of complex semantic objects.

2.3.1 Elementary Conversion Functions

The following definitions introduce the concept of elementary conversion functions. Elementary

conversion functions build the foundation of composite conversion functions which are introduced

in Section 2.3.3.

Definition 5 (Elementary Conversion Functions)

Given the semantic aspect < C1, RepType(C1) > and a simple semantic object SemObj =

< C, v, S > with <C1, RepType(C1)> ∈ SemType(S). An elementary conversion function

φC1 concerning the semantic aspect C1 is defined as a function of the following signature:

φC1 : Dom( {<C1, RepType(C1)>} ) × SSOO −→ SSOO ,

that converts the data value v ∈ Dom(RepType(C)) represented with regard to context S =

{<C1, v1>, . . . } to the data value v́ ∈ Dom(RepType(C)) represented on the basis of context

Ś = {<C1, v́1>, . . . }, with v1, v́1 ∈ Dom(RepType(C1)), i.e.:

φC1 ( {<C1, v́1>}, < C, v, S >) = <C, v́, Ś> .

For any semantic aspect < C̃1, RepType(C̃1)> /∈ SemType(S) not represented in the semantic

context of the semantic object to be considered the semantic object remains unaffected by the

corresponding elementary conversion function φC̃1
, i.e.:

φC̃1
( {<C̃1, ṽ1>}, <C, v, S> ) = < C, v,S > .

In this case < C̃1, RepType(C̃1) > is called a not significant semantic aspect of the semantic

object in consideration.
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With this, the elementary conversion function φC1 may be understood as a mapping function

that transforms a simple semantic object, represented with regard to a certain value v1 of the

significant aspect C1, into another semantically corresponding2 representation with regard to v́1

for C1. Other semantic aspects represented in the context of the semantic object to be converted

are not considered for the conversion.

Example:

Concerning the example from Section 2.2, if φUnit defines a conversion function for the semantic

aspect denoted by Unit, we get:

φUnit( {<Unit, “km”>}, < Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > ) =

< Distance, 6194.65, {<Unit, “km”>,<Scale, 1>} > ,

with “1 mile = 1.609 km” being the underlying mapping rule.

In general, there can be more than one semantically meaningful conversion function defined for

a given semantic aspect. For example, the definition of a conversion function for the mapping

among different currency units depends on the specific exchange rates that have to be used by

an application. Conversion functions can be specified in the underlying ontology, or may be

stored in an application-specific conversion library. Which conversion functions to be used may

depend on the application using the integrated data, and has to be specified by the respective

application.

2.3.2 Properties of Elementary Conversion Functions

Conversion functions may provide properties that, as will be shown in Section 2.4, are important

for the application of comparison operators on semantic objects. In particular, a conversion

function may be total, lossless with regard to the information represented by the according

semantic object as well as orderpreserving concerning a given order relation [SSR94].

Definition 6 (Total and Partial Conversion Functions)

Given a simple semantic object SemObj =<C, v, S> with S = {<C1, v1>, . . . , <Ck, vk> }, and

given <C1, RepType(C1)> ∈ SemType(S) a significant semantic aspect concerning SemObj.

A total (elementary) conversion function φC1 represents a mapping function of the form:

φC1( {<C1, v́1>}, <C, v, {<C1, v1>, . . . , <Ck, vk>} >) = <C, v́, {<C1, v́1>, . . . , <Ck, vk>} > ,

that is defined for all arguments v1, v́1 ∈ Dom(RepType(C1)) from the domain of the concept

underlying aspect <C1, RepType(C1)> as well as for all data values v ∈ Dom(RepType(C)).

Otherwise φC1 is called a partial (elementary) conversion function.

Examples:

The elementary conversion function φUnit introduced in Section 2.3.1 provides an example of a

total conversion function, because for every transformation of a given physical quantity among

different units of measure, we can give a general and semantically meaningful mapping rule.

2The semantically corresponding representation is imposed by the semantics of the application domain to be
considered, and is specified by the respective mapping rule.
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An elementary conversion function concerning the semantic aspect of the granularity of a

geographic location, e.g., Boston, Paris, Alaska, etc., gives an example of a partial, i.e.,

non-total, conversion function [SSR94]. The set of values specifying different locations can be

seen as hierarchically ordered similar to the ontology specified in [KS96]. Thus, Paris may

be understood as being more specific than the corresponding location France, for example.

Hence, for the explicit specification of the granularity of a location we introduce the semantic

aspect Granularity with Dom(Granularity) = {“city”, “country”, . . .}. A conversion func-

tion φGranularity may provide a conversion of a location value between different granularities, e.g.:

φGranularity ( {<Granularity, “country”>}, < Location, “Paris”, {<Granularity, “city”>} > ) =

< Location, “France”, {<Granularity, “country”>} > ,

However, the conversion function φGranularity is not total according to Definition 6, because in

general we may not be able to define a semantically meaningful mapping from a coarse to a fine

granularity.

Definition 7 (Lossless and Lossy Conversion Functions)

Given a simple semantic object SemObj = < C, v, S > with S = {< C1, v1 >, . . .},
and given < C1, RepType(C1) > ∈ SemType(S) a significant semantic aspect concerning

SemObj. A conversion function φC1 is lossless, iff for all v ∈ Dom(RepType(C)) and for

all vi ∈ Dom(RepType(C1)), 1 ≤ i ≤ m, for which φC1 is well defined we have:

φC1({<C1, vm>}, <C, v, {<C1, v1>, . . .}>) =

φC1({<C1, vm>}, φC1({<C1, vm−1>}, . . . φC1({<C1, v2>}, <C, v, {<C1, v1>, . . .}>) . . .)) .

Otherwise we call φC1 a lossy (elementary) conversion function.

That means, a lossless conversion function φC1 defines a mapping function whose result does not

depend on whether a semantic object will be transformed between two values of the according

semantic aspect directly, or in a sequence of intermediate conversion steps. In the special case of

v1 = vm, with φC1 being a lossless conversion function, each data value v ∈ Dom(RepType(C))

may be converted back to its original context without any information loss. Thus, a lossless

conversion function is a mapping function for which a corresponding inverse function can be

specified.

Examples:

The elementary conversion function φUnit provides an example of a lossless conversion function,

because starting from a given length value, any sequence of transformation steps among different

units of measure leads to the same conversion result as transforming it to the unit corresponding

to the final conversion step directly.

Examples of lossy conversion functions include functions for transformations between differ-

ent document formats, between different discrete representations of continuous data or lossy

compression functions like JPEG and MPEG.

Definition 8 (Orderpreserving Conversion Functions)

Given a simple semantic object SemObj = <C, v, S> with S = {<C1, v1>, . . . , <Ck, vk>},
and given < C1, RepType(C1) > ∈ SemType(S) a significant semantic aspect concerning

SemObj. An elementary conversion function φC1 for the semantic aspect denoted by C1 is
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called orderpreserving with respect to order relation Θ, iff for all v1, v́1 ∈ Dom(RepType(C1))

and for all vx, vy, v́x, v́y ∈ Dom(RepType(C)) with vx Θ vy for which φC1 is well defined we

have:

<C, v́x, {<C1, v́1>, . . . , <Ck, vk>}> = φC1({<C1, v́1>}, <C, vx, {<P1, p1>, . . . , <Pk, pk>}>) ,

<C, v́y, {<C1, v́1>, . . . , <Ck, vk>}> = φC1({<C1, v́1>}, <C, vy, {<C1, v1>, . . . , <Ck, vk>}>)

with : v́x Θ v́y .

This means, conversion function φC1 is orderpreserving with regard to order relation Θ, if the

corresponding order relation for the values vx, vy is well defined and will not be violated by the

application of φC1 .

Examples:

The elementary conversion function φUnit also provides an example for an orderpreserving con-

version function with regard to “<” and “>”, because the according relationships between two

data values represented with regard to the same unit of measure are independent of the actual

unit.

In [SSR94] Sciore, Siegel, and Rosenthal give a mapping function concerning the semantic aspect

CodeType specifying the underlying character code, e.g., ASCII or EBCDIC, of a given integer

value as an example for an elementary conversion function that is not orderpreserving with

regard to “<” and “>”. The following semantic objects:

<CharCode, 48, {<CodeType, “ASCII”>}> and

<CharCode, 240, {<CodeType, “EBCDIC”>}>

both provide a representation of character ‘0’, and the semantic objects:

<CharCode, 65, {<CodeType, “ASCII”>}> and

<CharCode, 193, {<CodeType, “EBCDIC”>}>

are representants of character ‘A’.

Thus, the corresponding conversion function φCodeType is not orderpreserving with regard to “<”

and “>”, because by using ASCII as the underlying character code we have ‘0’ represented by a

smaller integer than character ‘A’, whereas for using code type EBCDIC the inverse relationship

holds.

2.3.3 Semantic Conversion of Multivalued and Multileveled Semantic Contexts

In this section we will generalize the concepts introduced for the semantic conversion of single-

valued semantic contexts according to the conversion concerning multivalued and multileveled

semantic contexts.

2.3.3.1 Conversion Concerning Multivalued Semantic Contexts

In Section 2.3.1 we introduced the concept of elementary conversion functions, for which the

target context describes only a single semantic aspect of the semantic object to be considered.
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This restriction will be removed with regard to the general case of conversion functions con-

cerning multivalued semantic contexts, that is, semantic contexts that provide more than one

semantic aspect.

Definition 9 (Composite Conversion Functions)

Given a simple semantic object SemObj =<C, v, S> with S = {<C1, v1>, . . . , <Cn, vn>},
and given Ś = {<C1, v́1>, . . . , <Ck, v́k>}. A composite conversion function φ concerning the

semantic type SemType(Ś) of the multivalued semantic context Ś, is a function of the following

signature:

φ : Dom(SemType(Ś)) × SSOO −→ SSOO ,

that maps SemObj to the simple semantic object SemObj ′ which corresponds to a conversion

of SemObj with regard to all significant semantic aspects <Ci, RepType(Ci)> ∈ SemType(Ś).

With v, v́ ∈ Dom(RepType(C)), Ś as specified above, and S̃ = {<C1, v́1>, . . . , <Cm, v́m> } ⊆ Ś,

being the set of all significant semantic aspects concerning SemObj from Ś, we define:

φ( {<C1, v́1>, . . . , <Ck, v́k>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) :=

φ( {<C1, v́1>, . . . , <Cm, v́m>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) :=

<C, v́, {<C1, v́1>, . . . , <Cm, v́m>,<Cm+1, vm+1>, . . . , <Cn, vn>} > .

The resulting semantic object SemObj ′ may be obtained by applying the corresponding ele-

mentary conversion functions φCi concerning the semantic aspects < Ci, RepType(Ci) > ∈
SemType(S). Hence, we define the composite conversion function φ as:

φ( {<C1, v́1>, . . . , <Ck, v́k>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) :=

φCk ( {<Ck, v́k>}, . . . φC1( {<C1, v́1>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) . . . ) ,

or according to Definition 5 with S̃ specified as above:

φ( {<C1, v́1>, . . . , <Ck, v́k>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} >) :=

φ( {<C1, v́1>, . . . , <Cm, v́m>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} >) =

φCm( {<Cm, v́m>}, . . . φC1( {<C1, v́1>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} >) . . . ) .

Thus, a composite conversion function φ of the given form, is a function that maps a simple

semantic object, represented concerning context S, to a semantically corresponding representa-

tion concerning context S̆ ∈ Dom(SemType(S))3. Semantic aspects of context Ś that are not

specified in S, i.e, that are not significant concerning SemObj, are ignored. Thus, elementary

conversion functions, as introduced in Definition 5, may be understood as a special case of a

composite conversion function with regard to a context Ś with | Ś | = 1.

Example:

The following example will illustrate the relationships between elementary and composite conver-

sion functions. Concerning the example from Section 2.2, if φ defines a conversion function for the

3Formal: S̆ = S̃ ∪ {<Ci, vi> ∈ S | <Ci, RepType(Ci)> /∈ SemType(S̃)}.
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semantic aspects denoted by Unit and Scale, with context Ś = {< Unit, “km” >,< Scale, 10 >}
we get:

φ( {<Unit, “km”>,<Scale, 10>}, <Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > ) =

φScale( {<Scale, 10> },
φUnit( {<Unit, “km”>}, <Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > ) ) =

φScale({<Scale, 10>}, <Distance, 6194.65, {<Unit, “km”>,<Scale, 1>} > ) =

<Distance, 61.9465, {<Unit, “km”>,<Scale, 10>} > .

Where φ is based on the corresponding mapping rules “1 mile = 1.609 km” for Unit and “v

[scale x] = v x
y [scale y]” for Scale, respectively.

In this example, the execution order of the elementary conversion functions does not matter

for the conversion result, i.e., both execution sequences lead to the same object representation.

The elementary conversion functions used here are therefore called commutative. However,

conversion functions are not commutative, generally, i.e., the conversion result may depend on

the execution order of the conversion functions used. For example, a conversion function for the

conversion concerning different units of measure and a function for data compression are not

commutative in general.

Definition 10 (Commutative Conversion Functions)

Given two conversion functions φ1 and φ2. φ1 and φ2 are commutative, iff for all semantic

objects SemObj ∈ SSOO and all semantic contexts S1, S2 with SemType(S1) = SemType(S2)

for which φ1 and φ2 are well defined, we have:

φ1( S1, φ2( S2, SemObj ) ) = φ2( S2, φ1( S1, SemObj ) ) .

If the elementary conversion functions underlying a given composite conversion function φ are

not pairwise commutative we have to define the execution order for them in φ. In [SSR94]

the introduction of priorities specifying the relative execution order of conversion functions is

proposed. Following this approach, commutative conversion functions may be assigned the same

priority.

2.3.3.2 Properties of Multivalued Composite Conversion Functions

A generalization of the properties of elementary conversion functions, as described in Sec-

tion 2.3.2, for the class of conversion functions concerning multivalued semantic contexts follows

in a natural way from the definition of composite conversion functions as sequences of elemen-

tary conversion functions. In the following definitions we suppose, without loss of generality,

that all semantic aspects specified by the semantic context used in a conversion function are

significant in the sense of Definition 5. Generally, the properties specified apply to a conversion

function concerning Ś, iff they apply to the corresponding conversion function with regard to all

significant aspects S̃ ⊆ Ś of the semantic object to be considered.
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Definition 11 (Total and Partial Composite Conversion Functions)
Given a simple semantic object SemObj = < C, v, S > and given φ a composite conversion
function concerning the semantic type SemType(Ś) of context Ś = {<C1, v́1>, . . . , <Ck, v́k>}
with SemType(Ś) ⊆ SemType(S). That means, all semantic aspects < Ci, RepType(Ci) > ∈
SemType(Ś) are significant with regard to SemObj. A total composite conversion function φ
is a mapping function of the form:

φ( {<C1, v́1>, . . . , <Ck, v́k>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) =

<C, v́, {<C1, v́1>, . . . , <Ck, v́k>,<Ck+1, vk+1>, . . . , <Cn, vn>} > ,

which is defined for all arguments vi, v́i ∈ Dom(RepType(Ci)), 1 ≤ i ≤ k, and all v ∈
Dom(RepType(C)).

Following the definition of a composite conversion function as a sequence of elementary conver-
sion functions, as given in Definition 9:

φ( {<C1, v́1>, . . . , <Ck, v́k>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) =

φCk ( {<Ck, v́k>}, . . . φC1({<C1, v́1>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) . . . ) ,

we get that a composite conversion function φ is total, iff for all elementary conversion functions

φCi , 1 ≤ i ≤ k, it is composed of, we have:

φCi is defined for all vi, v́i ∈ Dom(RepType(Ci)) and all SemObj ∈

{ φCi−1({<Ci−1, vi−1>}, . . . φC1({<C1, v́1>}, <C, v, {<C1, v1>, . . . , <Cn, vn>} > ) . . . )

| vj , v́j ∈ Dom(RepType(Cj)), 1 ≤ j < i ≤ k, v ∈ Dom(RepType(C)) } .

This means, a composite conversion function φ is total, iff each of the underlying elementary

conversion functions is well defined for all values of the domain of its corresponding semantic

aspect as well as for all semantic objects of the possible result set of the elementary conversion

function directly preceding it. In particular, φ is total, if all elementary conversion functions it

is composed of are total according to Definition 6.

Definition 12 (Lossless and Lossy Composite Conversion Functions)

Given a simple semantic object SemObj =<C, v, S> and given φ a composite conversion func-

tion concerning the semantic type SemType(Ś) of context Ś with SemType(Ś) ⊆ SemType(S).

That means, all semantic aspects <Ci, RepType(Ci)> ∈ SemType(Ś) are significant with re-

gard to SemObj. φ is lossless (otherwise lossy), if the conversion result is the same, whether

SemObj is converted among two semantic contexts directly, or with any sequence of intermediate

conversion steps. Formally, φ is lossless, iff for all v ∈ Dom(RepType(C)) and for all semantic

contexts Si ∈ Dom(SemType(Ś)) ⊆ Dom(SemType(S)), 1 < i ≤ n, for which φ is well defined,

we have:
φ( Sn, <C, v, S>) = φ( Sn, φ( Sn−1, . . . φ( S1, <C, v, S>) . . . ) ) .

According to the definition of a composite conversion function as a sequence of elementary

conversion functions, a composite conversion function φ is lossless, iff all elementary conversion

functions it is composed of are lossless according to Definition 7.
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Definition 13 (Orderpreserving Composite Conversion Functions)

Given a simple semantic object SemObj = < C, v, S > and given φ a composite conversion

function concerning the semantic type SemType(Ś) of context Ś = {<C1, v́1>, . . . , <Ck, v́k>}
with SemType(Ś) ⊆ SemType(S). That means, all semantic aspects < Ci, RepType(Ci) > ∈
SemType(Ś) are significant with regard to SemObj.

φ is orderpreserving concerning order relation Θ, if the relationship of two data values

vx, vy ∈ Dom(RepType(C)), represented the same according to the semantic aspects specified

in SemObj(Ś), remains unaffected by its application. Formally, φ is orderpreserving concerning

Θ, iff for all Ś ∈ Dom(SemType(S)) and for all vx, vy, v́x, v́y ∈ Dom(RepType(C)) with vxΘvy,

for which φ is well defined, we have:

< C, v́x, {<C1, v1>, . . . , <Ck, vk>, . . .}> =

φ( {<C1, v́1>, . . . , <Ck, v́k>}, < C, vx, {<C1, v́1>, . . . , <Ck, v́k>, . . .}> ) ,

< C, v́y, {<C1, v1>, . . . , <Ck, vk>, . . .}> =

φ( {<C1, v́1>, . . . , <Ck, v́k>}, < C, vy, {<C1, v́1>, . . . , <Ck, v́k>, . . .}> )

with : v́x Θ v́y .

Following from the definition of a composite conversion function φ as a sequence of elementary

conversion functions φCi , a composite conversion function is orderpreserving concerning the

order relation Θ, if all elementary conversion functions it is composed of are well defined for

the respective data values and are orderpreserving concerning Θ in the sense of Definition 8

(prove omitted). However, the inverse conclusion is not true in general, because applying

two elementary conversion functions not orderpreserving with regard to Θ in sequence may

neutralize their order inversing property.

2.3.3.3 Conversion Concerning Multileveled Semantic Contexts

Similar to multivalued contexts, multileveled contexts, that is, semantic contexts whose semantic

aspects provide additional context information, lead to a generalization of elementary conversion

functions as introduced in Section 2.3.

Definition 14 (Multileveled Semantic Contexts and Conversion Functions)

Given a simple semantic object SemObj = < C, v, S > with S = {< C1, v1, {< C2, v2, . . . ,

{< Cn, vn >} . . . >} >}4 as its associated context. We call <Ci, RepType(Ci)>, 1 ≤ i < n,

multileveled semantic aspects, and accordingly S a multileveled semantic context.

Given further a multileveled context Ś = {<C1, v́1, {<C2, v́2, . . . , {<Ck, v́k >} . . . >} >} that

describes the semantic aspect C1 up to level k ≤ n. The multileveled conversion function φ̆

with signature:
φ̆ : Dom(SemType(Ś)) × SSOO −→ SSOO

provides a function that maps SemObj to a semantic object SemObj ′, that corresponds to the

conversion of SemObj concerning all semantic aspects <Ci, RepType(Ci)> of SemType(Ś),

1 ≤ i ≤ k ∈ IN, i.e., with v, v́ ∈ Dom(RepType(C)) we have:

4Note that the semantic aspects denoted by Ci, 1 ≤ i < n, provide additional semantic context information.

21



φ̆ ( {<C1, v́1, {<C2, v́2, . . . , {<Ck, v́k>} . . . >} >},
<C, v, {<C1, v1, {<C2, v2, . . . , {< Cn, vn >} . . . >} >} > ) =

<C, v́, {<C1, v́1, {<C2, v́2, . . . , {<Ck, v́k, {<Ck+1, vk+1, . . . {<Cn, vn>} . . . >} >} . . . >} >} > .

In contrast to composite conversion functions, φ̆ can not be specified as a composition of

elementary conversion functions, because in the case of a multileveled conversion function

concerning semantic aspect < Ci, RepType(Ci) > we have to take into consideration all

semantic aspects <Cj, RepType(Cj)>, 1 ≤ i < j ≤ k. That means, the conversion result of the

conversion concerning aspect <Ci, RepType(Pi)> may directly depend on the particular values

given for the semantic aspects < Cj, RepType(Cj) >. In the case of multileveled conversion

functions, semantic aspects not specified for a given semantic aspect of Ś are supposed as equal

to those given for the corresponding aspect from S.

2.4 Semantic Comparability

In this section, we introduce the concept of semantic comparability of simple semantic objects. In

particular, we discuss how semantic equivalence of different semantic objects has to be defined,

and how semantic comparability of semantic objects is determined. The example given in

Section 2.3 shows two semantic objects that intuitively appear to be semantically equivalent,

i.e., represent the same information:

< Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > and

< Distance, 3.85, {<Unit, “mile”>,<Scale, 1000>} > .

They may be classified semantically equivalent, because by applying the corresponding conver-

sion function φUnit they can be converted from one representation into the other. However,

consider the two semantic objects below:

< Price, 1430, {< Currency, “USD” >} > and

< Price, 2600, {< Currency, “DEM” >} > ,

and the conversion function φCurrency that converts monetary quantities according to a given

exchange rate. As usual for money exchange, we have to take into consideration the asymmetry

of conversion that may exist between buying and selling rates. Supposing φCurrency converts

US dollar to German marks on the basis of the exchange rates “1 USD = 1.778 DEM” and “1

DEM = 0.55 USD”. Then we get the following results:

φCurrency ( {< Currency, “DEM” >}, < Price, 1430, {< Currency, “USD” >} > ) =

< Price, 2542.54, {< Currency, “DEM” >} > ,

φCurrency ( {< Currency, “USD” >}, < Price, 2600, {< Currency, “DEM” >} > ) =

< Price, 1430, {< Currency, “USD” >} > .

Because of the asymmetry of the conversion function and the difference that results when con-

verting from “DEM” to “USD” or vice versa it may be reasonable to classify these objects

semantically equivalent with regard to “USD” as the underlying currency, but not semanti-
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cally equivalent if currency “DEM” is used. This intuitive judgment concerning the semantic

equivalence of the objects shown in this example, leads to the formal definition of semantic

comparability as given in the next definition.

Definition 15 (Semantic Comparability of Simple Semantic Objects)

Given two simple semantic objects SemObj1 =< C, v1,S1 > and SemObj2 =< C, v2,S2 >, and

given context S with SemType(S) ⊆ SemType(S1) ∩ SemType(S2). This means, all semantic

aspects specified in S are significant with regard to SemObj1 and SemObj2, respectively. Then

for a comparison operator Θ well defined on Dom(RepType(C)) we define:

< C, v1,S1 > ΘS < C, v2,S2 >

concerning context S and the composite conversion function φ, iff we get: v́1 Θ v́2

with : < C, v́1, Ś1 > = φ( S, < C, v1, S1 > ) and

< C, v́2, Ś2 > = φ( S, < C, v2, S2 > ) ,

where Śi, i ∈ {1, 2}, is given as Śi = S ∪ {< Cj, vj > ∈ Si | < Cj , RepType(Cj) > /∈
SemType(S)}.

Following [SSR94], the semantic context S used for the comparison is referred to as the target

context, and the conversion function φ is called reference conversion function, or reference

function for short, of the semantic comparison.

Thus, the result of the semantic comparison of two simple semantic objects is defined through

the conversion of both objects to a common context by using an appropriate conversion function,

and the comparison of the data values underlying the converted semantic objects. Generally,

the result of a semantic comparison depends on the respective target context as well as on the

reference function to be used.

The set of semantic aspects specified in target context may be different from those given by the

contexts of the semantic objects to be compared. Semantic aspects specified in those contexts

not specified in the target context are ignored for the comparison.

2.4.1 Decidable and Non-Decidable Semantic Aspects

In the last section we supposed that two semantic objects may be compared by converting them

to a common target context, and comparing the resulting data values underlying them. However,

this algorithm does not lead to semantically meaningful results in every case.

For example, with regard to the semantic aspect Precision, which specifies the maximal absolute

imprecision of a numerical value, the following simple semantic objects:

SemObj1 = < Price, 3.1, {<Precision, 0.1>,<Currency, “USD”>} > ,

SemObj2 = < Price, 2.9, {<Precision, 0.1>,<Currency, “USD”>} >

represent two monetary quantities that are known to be, because of their imprecision, in

the range 3.0 and 3.2 USD (inclusive), and 2.8 and 3.0 USD (inclusive), respectively. Ac-

cording to Definition 15, we have SemObj1 >S SemObj2 with S = {< Precision, 0.1 >,
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< Currency, “USD” >} as its target context. This does not necessarily correspond to the

meaning of the semantic objects considered. Without additional information we cannot

decide which relationships between SemObj1 and SemObj2 have to be assumed semantically

meaningful. Therefore, in [SSR94] the distinction between resolvable and nonresolvable semantic

properties is made. We provide a similar distinction here.

Definition 16 (Decidable and Non-Decidable Semantic Aspects)

Given the semantic aspect < C̃,RepType(C̃) >, and two semantic objects represented with

regard to context S = {<C̃, ṽ> }:
SemObj1 = <C, v1, S> ,

SemObj2 = <C, v2, S> .

Given further Θ a comparison operator well defined for Dom(RepType(C)). Then we call

<C̃, RepType(C̃)> a decidable semantic aspect, iff for all v1, v2 ∈ Dom(RepType(C)) with

v1 Θ v2, it is semantically meaningful to deduce SemObj1 ΘS SemObj2 with regard to context S.

Otherwise, we call <C̃, RepType(C̃)> a nondecidable semantic aspect concerning comparison

operator Θ.

Intuitively, for a decidable semantic aspect the semantic comparison of two semantic objects

can always be deduced from the corresponding comparison of the data values underlying them.

In the case of nondecidable semantic aspects, additional information about the meaning of the

objects to be compared, e.g., in form of application-specific comparison functions, is necessary

to get semantically meaningful comparison results. In the rest of this paper, we suppose that

all semantic aspects considered are decidable for the respective comparison operator.

2.4.2 Absolute Semantic Comparability

The evaluation of semantic comparison operators may lead to the observation that in some cases

the comparison result only depends on the semantic aspects specified in the target context, and

not on the particular values given for them, that is, the comparison result is the same for all

semantic contexts of a given semantic type. For example, the semantic objects:

< Distance, 3850, {<Unit, “mile”>,<Scale, 1>} > and

< Distance, 3.85, {<Unit, “mile”>,<Scale, 1000>} > .

are semantically equivalent with regard to each target context that specifies the semantic aspects

Unit and Scale, i.e., they are semantically equivalent regardless of what particular values are

specified for Unit and Scale. Therefore, in [SSR94] this kind of semantic relationship is called

absolute concerning the given target context.

Definition 17 (Absolute Semantic Equivalence)

Given two simple semantic objects SemObj1 = <C, v1, S1 > and SemObj2 = <C, v2, S2 >,

and given the semantic context S with SemType(S) ⊆ SemType(S1) ∩ SemType(S2). That

means, all semantic aspects specified in S are significant with regard to SemObj1 and SemObj2,

respectively. Then SemObj1 and SemObj2 are absolute semantically equivalent concerning

the semantic type SemType(S) and the corresponding reference function φ, denoted as:
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SemObj1 =SemType(S) SemObj2 ,

iff holds: ∀ Ś ∈ Dom(SemType(S)) : <C, v1, S1> =Ś <C, v2, S2> .

This means, two simple semantic objects are absolute semantic equivalent concerning the se-

mantic type SemType(S) and a corresponding reference function, iff the result of the semantic

comparison is independent of the particular values of the semantic aspects specified in any target

context of semantic type SemType(S). A generalization of this definition for the comparison

operators “<”, “>”, “6=”, etc., can be given analogously.

In [SSR94] the correlation between the properties of totality, losslessness, and orderpreservation

of a reference function and the absolutelyness of a semantic composition is shown. Transfered

to the context of the representation model presented here, the following propositions can be

determined as well.

Proposition 1

Given two simple semantic objects SemObj1 =<C, v1, S1> and SemObj2 =<C, v2, S2>, and

given the semantic context S of the semantic type SemType(S) ⊆ SemType(S1)∩SemType(S2).

That means, all semantic aspects specified in S are significant with regard to SemObj1 and

SemObj2. Then we can show that, if the corresponding conversion function φ is total and

lossless according to Definition 11 and 12, respectively, each semantic comparison operation

Θ ∈ {“ = ”, “ 6= ”} between SemObj1 and SemObj2 is absolute concerning SemType(S) and

reference function φ.

In particular, with the statements given in Section 2.3.3, if all elementary conversion functions

φCi specified for the corresponding semantic aspects <Ci, RepType(Ci)> of SemType(S) are

total, and lossless, each semantic comparison operation Θ ∈ {“ = ”, “ 6= ”} between SemObj1

and SemObj2 is absolute with regard to SemType(S) and reference function φ composed from

the elementary conversion functions φCi .

Proof:

The proof for Proposition 1 is outlined with regard to the special case of the equivalence

operator. A proof for ”6=” follows analogously. Given two simple semantic objects of the same

semantic object type with:
<C, v1, S1> =S <C, v2, S2>

concerning the target context S with SemType(S) = SemType(S1) = SemType(S2)5. Given

further the total und lossless reference function φ with:

<C, v́1, Ś1> = φ( S, <C, v1, S1> ) and

<C, v́2, Ś2> = φ( S, <C, v2, S2> ) .

Then, following Definition 15, we have: v́1 = v́2 .

5Because all semantic aspects that are not significant are irrelevant for the comparison, without loss of gener-
ality we assume that all aspects of S are significant with regard to <C, v1, S1> and <C, v2, S2>.
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According to the totality assumed for the underlying reference function φ, it is defined for all

semantic contexts S̃ ∈ Dom(SemType(S)) as well. With the losslessness of φ, with v́1 = v́2, and

with the equivalence of the semantic contexts Ś1 and Ś2 (Ś1 = Ś2 = S) we get:

φ ( S̃, <C, v1,S1>) =

φ ( S̃, φ ( S, <C, v1, S1> ) ) =

φ ( S̃, <C, v́1, Ś1>) =S

φ ( S̃, <C, v́2, Ś2>) =

φ ( S̃, φ ( S, <C, v2, S2> ) ) =

φ ( S̃, <C, v2, S2>) .

Thus we have:

<C, v1, S1> =S̃ <C, v2, S2> .

for any semantic context S̃ ∈ Dom(SemType(S)).

With regard to the comparison operators “<” and “>”, we have to demand that the underlying

conversion function is orderpreserving according Definition 13 as well. This additional restriction

ensures that the relative order of the semantic objects to be compared will be preserved by the

corresponding conversion.

Proposition 2

Given two simple semantic objects SemObj1 =<C, v1, S1> and SemObj2 =<C, v2, S2>, and

given the semantic context S with SemType(S) ⊆ SemType(S1) ∩ SemType(S2). That means,

all semantic aspects specified in S are significant with regard to SemObj1 and SemObj2. Then

we can show that, if the corresponding conversion function φ is total, lossless, and orderpreserv-

ing, each semantic comparison operation Θ ∈ {“<”, “>”} between SemObj1 and SemObj2 is

absolute concerning SemType(S) and reference function φ.

Proof:

The according proof follows the one given for Proposition 1. The additional restriction concern-

ing the orderpreservation of reference function φ ensures that for each operator Θ ∈ {“<”, “>”}
and for all S̃ ∈ Dom(SemType(S)) the following holds:

v́1 Θ v́2 ⇒ φ ( S̃, <C, v́1, Ś1>) ΘS̃ φ ( S̃, <C, v́2, Ś2>) ,

that is, the relative order with regard to Θ is preserved by the corresponding conversion con-

cerning S̃ and φ.

Similarly to Proposition 1, if all elementary conversion functions φCi specified for the corre-

sponding semantic aspects <Ci, RepType(Ci)> of SemType(S) are total, lossless, and order-

preserving, then each semantic comparison operator Θ ∈ {“<”, “>”} between SemObj1 and

SemObj2 is absolute with regard to SemType(S) and reference function φ composed from the

elementary conversion functions φCi .
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2.5 Arithmetic Operations

The concept of arithmetic operations such as addition and multiplication can be transfered to

the MIX representation model as well, presupposed the semantic objects in consideration are

represented on the basis of numeric data types. In general, similar to the comparison operators

discussed in the last section, arithmetic operations have to be applied with respect to a common

semantic context of their operands to obtain semantically meaningful results. Thus, generally the

result of an arithmetic operation also depends on the target context and the reference function

chosen for the necessary conversion. For example, “adding” the following semantic objects:

<Price, 1430, {<Currency, “USD”>}> +S

<Price, 2600, {<Currency, “DEM”>}>

with regard to target context S1 = {< Currency, “DEM” >} and the according reference

function φCurrency given in Section 2.4 results in:

SemObj1 = <Price, 5142.54, {<Currency, “DEM”>}> .

But using S2 = {< Currency, “USD” >} as the underlying target context and the same

conversion function as above we will obtain the object given below:

SemObj2 = <Price, 2860, {<Currency, “USD”>}> ,

which, according to Definition 15, is not semantically equivalent to SemObj1 with regard to S1

and S2, respectively.

Definition 18 (Arithmetic Operations on Simple Semantic Objects)

Given two simple semantic objects SemObj1 =<C, v1, S1> and SemObj2 =<C, v2, S2>, and

given a semantic context S with SemType(S) ⊆ SemType(S1)∩SemType(S2). That means, all

semantic aspects specified in S are significant with regard to SemObj1 and SemObj2. Then for

an arithmetic operation ⊕ well defined on Dom(RepType((C)) we define:

<C, v1, S1> ⊕S <C, v2, S2> := <C, v́1 ⊕ v́2,S> ,

with : <C, v́1, Ś1> = φ ( S, <C, v1, S1>) and

<C, v́2, Ś2> = φ ( S, <C, v2, S2>)

concerning the target context S and the reference function φ.

This means, the result of the arithmetic operation ⊕S is defined by the conversion of both

operands with regard to the given target context and reference function, followed by the appli-

cation of the corresponding arithmetic operation ⊕ defined on the data values v́1, v́2 underlying

the converted semantic objects. Thus, generally the result of an arithmetic operation on seman-

tic objects depends on the target context and conversion function chosen.

As is the case for semantic comparison operations, semantic aspects not specified in the target

context are not considered. However, in contrast to semantic comparison the context of the

semantic object representing the operation result is always the same as the target context used,

which may provide only a subset of the semantic aspects specified for the given operands.
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2.6 Complex Semantic Objects

In this section we introduce the concept of a complex semantic object. Complex semantic

objects can be understood as heterogeneous collections of semantic objects that are grouped

under a corresponding ontology concept. Each subobject describes exactly one aspect of the

represented real world phenomenon. The attributes given for a complex semantic object, except

those necessary for the identification of the object, are not determined by its ontology concept,

and thus may vary between different complex semantic objects of the same concept.

Definition 19 (Complex Semantic Objects)

Given O as the ontology underlying the representation, and given a complex data object o consist-

ing of multiple, possibly heterogeneous data elements. Then we define the corresponding complex

semantic object CompSemObj that represents o as the tuple:

CompSemObj := <C,
�
> ,

where C ∈ O is the ontology concept underlying the semantic object, and
�

corresponds to the set

of semantic objects associated with CompSemObj that provide a representation of the subobjects

of o. The set of attributes given for a complex semantic object:

�
:= {A1, . . . , Am, Am+1, . . . , Am+n} =

� ∪ �
R , m ∈ IN, n ∈ IN0

is divided into two distinct subsets
�

and
�
R . Whereat

�
:= {A1, . . . , Am} is the set of attributes

that are, similar to a set of key attributes in the relational model, used to identify a complex

semantic object of concept C. Subset
�
R := {Am+1, . . . , Am+n} provides the set of additional

attributes recorded for CompSemObj according to the information given by o. Again, the at-

tributes represented by
�

and
�
R are given as semantic objects that may be either simple or

complex.

In the following sections by CSOO we denote the (infinite) set of all complex semantic objects,

and by SOO := SSOO ∪ CSOO the set of all semantic objects that are represented on the basis of

ontology O.

The semantic type SemType of CompSemObj is defined as the tuple:

SemType(CompSemObj) := <C, SemType(
�

)> with

SemType(
�

) = SemType(
�

) ∪ SemType( �
R ) :=

{ SemType(A1), . . . , SemType(Am), SemType(Am+1), . . . , SemType(Am+n) }

and domain:

Dom(SemType(CompSemObj)) := {< C, ´�
> | ´� ∈ Dom(SemType(

�
)) } with

Dom(SemType(
�

)) := Dom(SemType(A1)) × . . . × Dom(SemType(Am)) ×
Dom(SemType(Am+1)) × . . . × Dom(SemType(Am+n)) .

The attributes to be described in
�

are determined by concept C associated with the complex

semantic object, and therefore are specified in the underlying ontology. The semantic object

type of
�
SemType(

�
) specifies the number and concepts underlying the corresponding

semantic objects. This provides the prerequisite for the definition of semantic identity as it
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is given in Section 2.9. In contrast, the set of attributes specified in
�
R may vary between

different semantic objects of the same ontology concept, as is shown in the following example.

In this way, complex semantic objects provide a flexible way to represent data with irregular

structure, as it may be given by semistructured sources, or may result from the integration of

different heterogeneous data sources.

CompSemObjA1
=

< FlightOffer, {
< ClassOfService, “Economy”, {<ClassOfServiceCode, “FullClassName”>} >,
< Price, 2600, {<Currency, “DEM”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 400 >,
< AirlineIdentifier, “LH”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “10:35”, {<TimeFormat, “HH:MM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “13:00”, {<TimeFormat, “HH:MM”> } >,
< Service, “M”, {<ServiceCode, “OneLetterServiceCode”>} > } > } >

CompSemObjA2
=

< FlightOffer, {
< ClassOfService, “Economy”, {<ClassOfServiceCode, “FullClassName”>} >,
< Price, 2640, {<Currency, “DEM”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 1319 >,
< AirlineIdentifier, “AF”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “10:25”, {<TimeFormat, “HH:MM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “CDG”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “11:35”, {<TimeFormat, “HH:MM”>} > } >,

< FlightSegment, {
< FlightNumber, 6 >,
< AirlineIdentifier, “AF”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “13:00”, {<TimeFormat, “HH:MM”>} >,
< DepartureAirport, “CDG”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “15:00”, {<TimeFormat, “HH:MM”>} >,
< Service, “M”, {<ServiceCode, “OneLetterServiceCode”>} >,
< Service, “S”, {<ServiceCode, “OneLetterServiceCode”>} > } > } >

Figure 4: MIX Representation of Source A

Example:

On the basis of the ontology described in the appendix, the data given by system A of the

air travel example may be represented as complex semantic objects of concept FlightOffer6 as

linearized in Figure 4. Each offer is identified by its service class, price, and the constituting

flight segments. In turn, flight segments are distinguished by their flight number, airline, and

departure date. Additional properties, such as departure time, arrival airport, and meal services

are not required for the unique identification of a flight segment and might not be given for all

flight segments.

6Attributes used for the identification, i.e., attributes from � , are underlined for easier recognition.
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Definition 20 (Simple and Complex Semantic Aspects)

Given the concept of a complex semantic object, we generalize the definition of the semantic

context S of a simple semantic object to be the set:

S := {S1, . . . , Sk} , k ∈ IN0 ,

where the semantic aspects Si specified in S are represented as simple semantic objects according

to Definition 2, or as complex semantic objects as defined in Definition 19. In the first case we

call the corresponding semantic aspect <C, RepType(C)> a simple semantic aspect. In the

second case we call <C, SemType(
�

)> a complex semantic aspect.

The definitions given so far, can be generalized according to this extended definition of a semantic

context in a straightforward manner.

2.7 Semantic Conversion of Complex Semantic Objects

Following Section 2.6, a complex semantic object does not provide additional context informa-

tion. Thus, the semantic context of a complex semantic object is given through the context

information specified for its subobjects. This has been defined to keep the model simple. Ac-

cordingly, the concept of a conversion function can be directly extended for the application on

complex semantic objects.

Definition 21 (Conversion Functions for Complex Semantic Objects)

Given a complex semantic object CompSemObj = <C,
�
>, and given context S. A (complex)

conversion function Φ with regard to SemType(S) is a mapping function of the signature:

Φ : Dom(SemType(S)) × CSOO −→ CSOO

that converts a complex semantic object CompSemObj into the complex semantic object

CompSemObj′ that corresponds to the conversion of all subobjects A ∈ �
of CompSemObj

according to all significant semantic aspects < C, RepType(C) > ∈ SemType(S). Given
�

= {A1, . . . , Am, Am+1, . . . , Am+n} we define Φ recursively as7:

Φ ( S, < C, {A1, . . . , Am, Am+1, . . . , Am+n} >) := < C, { Φ̆(S, A1), . . . , Φ̆(S, Am+n) } >

with:

Φ̆ ( S, Ai ) :=

{
φ̃ ( S, Ai ), if Ai is a simple semantic object,

Φ ( S, Ai ), if Ai is a complex semantic object,

where φ̃ is the corresponding conversion function for simple semantic objects with regard to

SemType(S).

Thus, a complex conversion function is a mapping function that converts a complex semantic

object between different contexts by being recursively applied to all of its subobjects. If a given

subobject is a simple semantic object we use the corresponding conversion function for simple

semantic objects.

7We suppose here that all subobjects of � can be converted independently.
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Example:

This example will illustrate the interrelations of the concepts introduced. Considering the con-

version of the complex semantic object SemObjA1 , as depicted in Figure 4. According to context

{<Currency, “USD”>} and conversion function ΦCurrency we get:

ΦCurrency ( {<Currency, “USD′′>},
<F lightOffer, {

< ClassOfService, “Economy′′, {< ClassCode, “FullName′′ >} >,
< Price, 2600, {< Currency, “DEM ′′ >,< Scale, 1 >} >,
< F lightSegment, { . . . } >) =

<FlightOffer, {
φCurrency ( {< Currency, “USD′′ >}, < ClassOfService, “Economy′′, {< ClassCode, “FullName′′ >} > ),

φCurrency ( {< Currency, “USD′′ >}, < Price, 2600, {< Currency, “DEM ′′ >,< Scale, 1 >} > ),

ΦCurrency ( {< Currency, “USD′′ >}, < F lightSegment, { . . . } > )} > =

<FlightOffer, {
< ClassOfService, “Economy′′, {< ClassCode, “FullName′′ >} >,
< Price, 1430, {< Currency, “USD′′ >,< Scale, 1 >} >,
< F lightSegment, { . . . } >} > .

Whereat, we suppose φ̃ = φCurrency, with φCurrency being the conversion function from Sec-

tion 2.4.

2.7.1 Properties of Composite Conversion Functions for Complex Semantic
Objects

According to the definition of a composite conversion function for the conversion of complex

semantic objects, the properties of totality, and losslessness of composite conversion functions as

discussed in Section 2.3.3.2, can be extended to the class of the conversion functions for complex

semantic objects.

Definition 22 (Total and Partial Conversion Functions)

Given a complex semantic object CompSemObj =<C, {A1, . . . , Am, Am+1, . . . , Am+n }>, and

given Φ a (complex) conversion function with regard to the semantic type SemType(S). Then

according to Definition 21

Φ ( S, <C, {A1, . . . , Am, Am+1, . . . , Am+n } >) := <C, {φ̆ ( S, A1), . . . , Φ̆ ( S, Am+n)} >

is total, iff the composite conversion function Φ̆ is total according to Definition 11 or, recursively,

Definition 22. Otherwise, we call Φ a partial conversion function.

Definition 23 (Lossless and Lossy Conversion Functions)

Given a complex semantic object CompSemObj =<C, {A1, . . . , Am, Am+1, . . . , Am+n }>, and

given Φ a (complex) conversion function with regard to the semantic type SemType(S). Then

Φ ( S, <C, {A1, . . . , Am, Am+1, . . . , Am+n} >) := <C, {Φ̆ ( S, A1), . . . , Φ̆ (S, Am+n)} >

is lossless, iff for all Sj ∈ Dom(SemType(S)), 1 ≤ j ≤ k, and all CompSemObj ∈ CSOO, for
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which Φ̆ (Ai), Ai ∈
�

, 1 ≤ i ≤ m+ n, is well defined, we have:

Φ ( Sk, CompSemObj ) = Φ ( Sk, Φ ( Sk−1, . . .Φ ( S1, CompSemObj ) . . . ) ) .

Otherwise, we call Φ a lossy conversion function.

From this and the definition of Φ, it follows that Φ is lossless, iff φ̃, the corresponding conversion

function for simple semantic objects, (see Definition 21) underlying Φ is lossless according to

Definition 12.

2.8 Semantic Comparability of Complex Semantic Objects

In Section 2.4 we introduced the concept of semantic comparability of two simple semantic

objects. In particular, simple semantic objects that are semantically equivalent with regard

to a given target context and reference function, may be understood as representing the same

information, i.e., they describe the same real world aspects. The statements given there can be

generalized for the class of complex semantic objects in a straight forward manner.

Definition 24 (Semantic Comparability of Complex Semantic Objects)

Given two complex semantic objects CompSemObjA = <C, {A1, . . . , Am, Am+1, . . . , Am+n}>
and CompSemObjB = <C, {B1, . . . , Bm, Bm+1, . . . , Bm+n}> of the same semantic type. That

is, both objects represent the same aspects of the respective real world entity. Then for context

S and a comparison operator Θ ∈ {“ = ”, “ 6= ”} defined for all Dom(SemType(Ai)) and

Dom(SemType(Bi)), 1 ≤ i ≤ m+ n, we define:

< C,
�
> ΘS < C, � >

with respect to context S and the conversion function Φ, iff:

Ái ΘS B́i, 1 ≤ i ≤ m+ n ,

Ái, B́i given by:

<C, {Á1, . . . , Ám, Ám+1, . . . , Ám+n} > = Φ ( S, <C, {A1, . . . , Am, Am+1, . . . , Am+n} > ) ,

<C, {B́1, . . . , B́m, B́m+1, . . . , B́m+n} > = Φ ( S, <C, {B1, . . . , Bm, Bm+1, . . . , Bm+n} > ) .

This means, the result of the semantic comparison of two complex semantic objects of the same

semantic type is defined by the conversion of both objects to a common context S, followed by the

semantic comparison of the attributes of the converted subobjects. According to Definition 15,

we call the semantic context S the target context, and Φ the reference function of the semantic

comparison.

2.8.1 Absolute Semantic Comparability of Complex Semantic Objects

Based on Definition 24, the concept of absolute semantic comparability can be generalized for

the class of complex semantic objects as follows.
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Definition 25 (Absolute Semantic Comparability of Complex Semantic Objects)

Given two complex semantic objects CompSemObjA =<C,
�
> and CompSemObjB =<C, � >

of the same semantic type, with SemType(Ai) = SemType(Bi), Ai ∈
�
, Bi ∈ � , 1 ≤ i ≤ m+n.

That is, both objects represent the same aspects of the respective real world entity.

CompSemObjA and CompSemObjB are absolute semantic equivalent with regard to

the semantic type SemType(S) and the corresponding reference function Φ, denoted as:

<C,
�
> =SemType(S) <C, � > ,

iff we have:

∀ Ś ∈ Dom(SemType(S)) : <C,
�
> =Ś <C, � > .

Thus, two complex semantic objects are absolute semantic equivalent with regard to a given

semantic type SemType(S) and the corresponding reference function Φ, if the result of the

semantic comparison is independent of the particular values given in the target context for the

semantic aspects of SemType(S). The corresponding definition for the comparison operator “6=”

can be given analogously.

Similar to the correlation between the properties of the reference function and the absolute-

ness of semantic comparison operators as discussed in Proposition 1, we can show according

relationships for the class of composite conversion functions for complex semantic objects.

Proposition 3

Given two complex semantic objects CompSemObjA =<C,
�
>, and CompSemObjB =<C, � >

of the same semantic type. Then for a given semantic type SemType(S) we can show, that if the

corresponding conversion function Φ is total and lossless according to Definition 22 and 23, each

comparison operator Θ ∈ {“=”, “6=”} between CompSemObjA and CompSemObjB is absolute

with regard to SemType(S) and function Φ.

In particular, with Definition 21 we get that, if the composite conversion function φ̃ underlying

Φ (see Definition 21) is total and lossless according Definition 11 and 12, respectively, each

comparison operator Θ ∈ {“=”, “6=”} between CompSemObjA and CompSemObjB is absolute

with regard to SemType(S) and reference function Φ.

Proof:

The proof for Proposition 3 is given here with regard to the semantic equivalence operator.

The corresponding proof for the comparison operator “6=” follows similarly. Given two complex

semantic objects of the same semantic type with:

<C,
�
> =S <C, � >

concerning target context S and the total and lossless reference function Φ, with:

<C, {Á1, . . . , Ám, Ám+1, . . . , Ám+n}> = Φ ( S, <C, {A1, . . . , Am, Am+1, . . . , Am+n}>) ,

<C, {B́1, . . . , B́m, B́m+1, . . . , B́m+n}> = Φ ( S, <C, {B1, . . . , Bm, Bm+1, . . . , Bm+n}>) .

Then, according to Definition 22, we have:

Ai =S Bi , Ai ∈
�
, Bi ∈ � , 1 ≤ i ≤ m+ n .
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Because Φ is total and lossless, it follows from Definition 22 and 23 that the conversion function

φ̃ underlying Φ is total and lossless. Thus, according to Proposition 1, for all simple semantic

objects Aj ∈
�

and Bj ∈ � we get:

Aj =SemType(S) Bj , i.e., ∀ Ś ∈ Dom(SemType(S)) : Aj =Ś Bj .

Following from the recursive definition of Φ given in Definition 21, we get:

∀ Ś ∈ Dom(SemType(S)) : <C,
�
> =Ś <C, � >

and thus according to Definition 25:

<C,
�
> =SemType(S) <C, � > .

2.9 Semantic Identity

Different complex semantic objects of the same ontology concept may refer to different semantic

contexts or may describe different aspects of the entity they represent. This raises the question,

when can two semantic objects represented differently in this sense be said to describe the

same real world phenomenon? The following definition introduces the concept of semantic

identity of semantic objects with regard to a given semantic context and conversion function.

If two semantic objects are semantically identical on the basis of the underlying ontology and

dependent on the same context, we classify them as being two representations of the same real

world phenomenon.

Definition 26 (Semantic Identity)

Given two complex semantic objects CompSemObjA = <C,
�
> and CompSemObjB = <C, � >

of the same ontology concept. This means, both objects are identified by the same set of attributes,

i.e., SemType(
�

) = SemType( � ). Then CompSemObjA and CompSemObjB are semantically

identical with regard to context S and the reference function Φ, denoted as:

CompSemObjA idS CompSemObjB ,

iff recursively:

Ai idS Bi, Ai ∈
�
, Bi ∈ � , 1 ≤ i ≤ m ,

for context S and function Φ. In the case of two simple semantic objects SemObj1 and SemObj2,

the semantic identity of these objects is defined as:

SemObj1 idS SemObj2 ⇔ SemObj1 =S SemObj2 .

This means, two complex semantic objects of the same ontology concept are semantically iden-

tical with regard to a given context and reference function if, recursively, their identifying sub-

objects are semantically identical with regard to this context and conversion function.

At the lowest level of this recursion, simple semantic objects must be compared. Two simple

semantic objects are semantically identical with respect to a given context and conversion func-

tion if they are semantically equivalent with regard to this context and conversion function,

since identity and equivalence are the same for atomic values.
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Thus, semantic identity defines whether two semantic objects describe the same real world

object. In contrast, semantic equivalence describes whether two semantic objects represent

the same information. By definition, semantically equivalent semantic objects are semantically

identical since they concur in both the identifying and all other attributes. The reverse is not

always true since two semantically identical objects may have the same identifying attributes,

e.g., airline, flight number and date, but different non-identifying attributes, such as meal service.

See Section 3 for an example.

Definition 27 (Absolute Semantic Identity)

Given two semantic objects Obj1and Obj2. Obj1 and Obj2 are absolute semantically identic

with regard to semantic type SemType(S) and the corresponding conversion function Φ denoted

as:
Obj1 idSemType(S) Obj2 ,

iff we have:

∀ Ś ∈ Dom(SemType(S)) : Obj1 idŚ Obj2 .

Thus, two semantic objects are absolute semantically identic with regard to a given semantic

type SemType(S) and the corresponding reference function Φ, if the property of semantic

identity between them is independent from the particular values given for the semantic aspects

of SemType(S) in the respective target context.

CompSemObjB1
=

< FlightOffer, {
< ClassOfService, “Y”, {<ClassOfServiceCode, “OneLetterClassCode”>} >,
< Price, 1430, {<Currency, “USD”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 400 >,
< AirlineIdentfier, “Lufthansa”, {<AirlineIdentifierCode, “FullAirlineName”>} >,
< DepartureDate, “Jun 06, 1998”, {<DateFormat, “Mon DD, YYYY”>} >,
< DepartureTime, “10:35 AM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “01:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< Distance, 3850, {<Unit, “mile”>, <Scale, 1>} > } > }>

CompSemObjB2
=

< FlightOffer, {
< ClassOfService, “Y”, {<ClassOfServiceCode, “OneLetterClassCode”>} >,
< Price, 1450, {<Currency, “USD”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 107 >,
< AirlineIdentfier, “Delta”, {<AirlineIdentifierCode, “FullAirlineName”>} >,
< DepartureDate, “Jun 06, 1998”, {<DateFormat, “Mon DD, YYYY”>} >,
< DepartureTime, “09:35 AM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “12:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< Distance, 3850, {<Unit, “mile”>, <Scale, 1>} > } > }>

Figure 5: MIX Representation of Source B
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3 Data Integration on the Basis of MIX

The data given by the reservation systems introduced in Section 1.3 may be parsed and rep-

resented as semantic objects of concept FlightOffer as linearized in Figures 4 and 5. By cir-

cumventing the need to agree on all attributes, the two sources will be able to agree on the

same meaning for FlightOffer. Both data sources make different semantic assumptions which

result in different semantic contexts at the sources. We will show how to arrive at a common

representation of the data through the integration process.

The process of integrating data represented on the basis of the MIX representation model takes

place in two steps. First, the semantic objects have to be converted to a common context, which

can be specified by the application interested in the data, by using appropriate conversion

functions. For example, for the aspects of TimeFormat and AirlineIdentifierCode we may

specify the following mapping rules:

”hh :mm” [“HH:MM”] ⇒

�������� �������

“00:mm AM” [“HH:MM AM/PM”], if hh = 0

“hh :mm AM” [“HH:MM AM/PM”], if 0 < hh < 12

“12:mm PM” [“HH:MM AM/PM”], if hh = 12

“(hh− 12) :mm PM” [”HH:MM AM/PM”], if hh > 12

“hh :mm XX” [“HH:MM AM/PM”] ⇒

�������� �������

“00:mm” [“HH:MM”], if XX = “AM” ∧ hh = 12

“hh :mm” [“HH:MM”], if XX = “AM” ∧ hh 6= 12

“12:mm” [“HH:MM”], if XX = “PM” ∧ hh = 12

“(hh+ 12):mm” [“HH:MM”], if XX = “PM” ∧ hh 6= 12 ,

and

XX [“TwoLetterAirlineCode”] ⇒ FullNameOf (XX)5 [“FullAirlineName”]

name [“FullAirlineName”] ⇒ TwoLetterCodeOf (name)5 [“TwoLetterAirlineCode”] .

S = { < AirlineIdentifierCode, “TwoLetterAirlineCode” >,

< AirportIdentifierCode, “ThreeLetterCode” >,

< DateFormat, “Mon DD YYYY” >,

< TimeFormat, “HH:MM AM/PM” >,

< ClassOfServiceCode, “OneLetterClassCode” >,

< ServiceCode, “OneLetterServiceCode” >,

< Currency, “USD” >,

< Unit, “mile” >,

< Scale, 1 > }

Figure 6: Common Representation Context

In the second step, semantic objects which are semantically identical are identified and inte-

grated into a common representation. Using context S, depicted in Figure 6, as a common

representation context and the conversion functions introduced so far, CompSemObjA1 and

CompSemObjB1 may be classified as semantically identical according to Section 2.9 because

they represent the same flight offer.

5These mappings can be realized easily by appropriate mapping tables.
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Semantically identical MIX objects may be interpreted as being representatives of the same real

world phenomenon. Therefore, they are merged into one semantic object by unification of their

attribute sets, whereat attributes that are semantically identical are fused in turn. Attributes

described in both objects that are semantically equivalent are represented only once. Applying

the corresponding conversion functions, the resulting data can be represented as shown in

Figure 7, where CompSemObjA1 and CompSemObjB1 have been merged into CompSemObjAB.

CompSemObjAB =
< FlightOffer, {

< ClassOfService, “Y”, {<ClassOfServiceCode, “OneLetterClassCode”>} >,
< Price, 1430, {<Currency, “USD”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 400 >,
< AirlineIdentfier, “LH”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “10:35 AM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “01:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< Service, “M”, {<ServiceCode, “OneLetterServiceCode”>} >,
< Distance, 3850, {<Unit, “mile”>, <Scale, 1>} > } > } >

CompSemObj’A2
=

< FlightOffer, {
< ClassOfService, “Y”, {<ClassOfServiceCode, “OneLetterClassCode”>} >,
< Price, 1452, {<Currency, “USD”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 1319 >,
< AirlineIdentifier, “AF”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “10:25 AM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “CDG”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “11:35 AM”, {<TimeFormat, “HH:MM AM/PM”>} > } >,

< FlightSegment, {
< FlightNumber, 6 >,
< AirlineIdentifier, “AF”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “01:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “CDG”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “03:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< Service, “M”, {<ServiceCode, “OneLetterServiceCode”>} >,
< Service, “S”, {<ServiceCode, “OneLetterServiceCode”>} > } > } >

SemObj’B2
=

< FlightOffer, {
< ClassOfService, “Y”, {<ClassOfServiceCode, “OneLetterClassCode”>} >,
< Price, 1450, {<Currency, “USD”>, <Scale, 1>} >,
< FlightSegment, {

< FlightNumber, 107 >,
< AirlineIdentfier, “DL”, {<AirlineIdentifierCode, “TwoLetterAirlineCode”>} >,
< DepartureDate, “Jun 06 1998”, {<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “09:35 AM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< DepartureAirport, “FRA”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportIdentifierCode, “ThreeLetterCode”>} >,
< ArrivalTime, “12:00 PM”, {<TimeFormat, “HH:MM AM/PM”>} >,
< Distance, 3850, {<Unit, “mile”>, <Scale, 1>} > } > } >

Figure 7: Unified Data Representation
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4 Related Research

There has been a lot of research on the issues of metadata to describe the semantics of data,

as well as flexible data models to support the representation and integration of heterogeneous

data. However, we mention here only three closely related approaches.

The data model proposed in [SSR94] supports the explicit representation of context information

of a given data value, as well as the conversion of this data between different contexts. The

semantic context is represented as metadata that describes the organization and meaning of the

data value. The model is strictly value-based and limited to the exchange of atomic values.

Thus, it lacks the possibility of defining composite objects that can be handled as one unit. Our

concept of a semantic object extends the concepts discussed in [SSR94] with regard to complex,

maybe irregularly structured data objects. They assume a common vocabulary. MIX makes

the common vocabulary explicit and provides both for the exchange of vocabularies, and their

extensibility.

XML [XML98] provides a flexible, self-describing data model for the representation and exchange

of structured and semistructured data similar to the MIX model. The XML standard supports

a textual representation of data by using application-specific tags. These tags may be used to

explicitly refer to the meaning of the represented data, and may be specified in a document

type definition (DTD). Optional, required or fixed attributes can be determined for every tag

to further describe its meaning or function. However, XML does not enforce a semantically

meaningful data exchange per se, since different providers can define different tags to represent

the same or semantically similar information. Furthermore, because XML is supposed to be

a very flexible though simple model for data exchange, it does not support the integration of

heterogeneous data. In contrast, MIX supports an explicit representation of semantic differences

underlying the data, and specifies how data based on this representation may be converted to a

common representation.

In addition, MIX has some similarities with the Object Exchange Model (OEM) [PGW95]. The

OEM is a data model well-suited for the representation of data with heterogeneous structure.

Besides the actual data value, each data object has a unique object-ID, a type which determines

its representation, and a label which provides additional information concerning the meaning

associated with it. The OEM, as well as the MIX model, are self-describing data models in the

sense that structure and meaning of the data objects are given as part of the available data

objects. Both data models provide a highly flexible description model, especially well suited for

the representation of semistructured data.

However, there are some important differences. First, in the OEM objects are identified via

system-wide object identifiers. In contrast to this, the available data objects in MIX have

certain attributes associated with them which support the identification of data objects based

on their information content. Second, different from the OEM model, where data objects have

source-specific labels, concept labels associated with MIX objects come from domain-specific

vocabularies for which a common agreement about their meaning has been reached. These

vocabularies exist and are known to users working in specific application domains. Finally,

OEM is tailored mainly to the representation of data with irregular structure. In addition to

this, the MIX model also supports an explicit representation of the semantics underlying the

data, and provides conversion functions to convert data between different semantic contexts.

38



In this way, the MIX model combines concepts of a flexible, self-describing data model suitable

for the representation of semistructured data, with concepts concerning the explicit description

of the semantic assumptions underlying this data.

5 Conclusion

An integrated use of the data sources available online requires an explicit description of both the

structure and the assumptions about the meaning of the data. In this paper we presented a flex-

ible data model that supports the representation of data together with metadata that describes

its organization and semantics. We showed how semistructured data can be represented in a

natural way, and on a uniform interpretation basis by using this model. We use the MIX model

in a project for integrating structured and semistructured data sources from the Internet. The

prototype of a Java-based implementation exists for MIX and the MIX integration environment.

Current research is concerned with the extension of the representation of conversion functions,

and with the extraction of MIX representations for a wider range of semistructured data.

OEM and XML provide support for the representation and exchange of data in terms of at-

tribute/value pairs, with user defined labels. However, this alone will not provide for semanti-

cally meaningful exchange of data, and interoperability among data providers and consumers.

This is because, different providers may define their own ways of using attribute/value pairs to

represent the same information. In contrast to this, MIX offers data providers and consumers

the possibility to refer to a commonly agreed upon vocabulary, and provides hooks for the

introduction of conversion functions to convert the available data to a common representation.

Unlike OEM, XML, and semantic values as introduced in [SSR94] which can only represent ob-

ject state, MIX objects are full fledged data objects in the sense of object-oriented programming

languages. This means, domain-specific but application-independent processing code, e.g., con-

version functions, can be specified in the common ontology, and associated with these objects.

An application may access these data objects without any further parsing. It further offers the

possibility of extending common vocabularies on the receiver side.

If the Internet is to develop further to support advanced application requirements, we need data

models which allow a flexible representation of state and processing code, as well as a general

framework which directly supports the integration of heterogeneous resources. We believe the

MIX model provides a first step to satisfy these needs.
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Appendix AA AirTravel Ontology

AirlineIdentifier represented as String
Description: Identifies an international airline.

AirlineIdentifierCode represented as String
Description: Identification code of an international airline. Every scheduled airline has a

two letter code, and most also have a three letter code. E.g., Lufthansa is “LH”.
Domain: {“TwoLetterAirlineCode”, “ThreeLetterAirlineCode”, “FullAirlineName”}

TwoLetterAirlineCode = international two letter airline code
ThreeLetterAirlineCode = international three letter airline code

AirportIdentifier represented as String
Description: Identifies an international airport.

AirportIdentifierCode represented as String
Description: Identification code of an international airport, for example “FRA” for

Frankfurt Main International Airport.
Domain: {“ThreeLetterAirportCode”, “FullAirportName”}

ThreeLetterAirportCode = international three letter airport code
FullAirportName = full official airport name

ArrivalDate represented as DateTimeOntology.Date
Description: Specifies the arrival date of a flight.

ArrivalTime represented as DateTimeOntology.Time
Description: Specifies the approximate arrival time of a flight.

ClassOfService represented as String
Description: Specifies a class of service for a flight, either First, Business, or Economy Class.

ClassOfServiceCode represented as String
Description: Identification code of a class of service.
Domain: {“OneLetterClassCode”, “FullClassName”}

OneLetterClassCode = {F(First Class), C(Business Class), Y(Economy Class)}
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FullClassName = {“FirstClass”, “BusinessClass”, “EconomyClass”}
DepartureAirport represented as AirTravelOntology.AirportIdentifier
Description: The DepartureAirport identifies the departure airport. It may be

represented either as a full airport name, for example Tempelhof; Berlin,
Germany, or by a specific three letter airport code, for example “THF”.

DepartureDate represented as DateTimeOntology.Date
Description: Specifies the departure date of a flight.

DepartureTime represented as DateTimeOntology.Time
Description: Specifies the approximate departure time of a flight.

DestinationAirport represented as AirTravelOntology.AirportIdentifier
Description: The DestinationAirport identifies the departure airport of a flight. It

may be represented either as a full airport name, for example Tempelhof;
Berlin, Germany, or by a specific three letter airport code, for example “THF”.

FlightNumber represented as Integer
Description: Specifies an airline specific flight identification number.

FlightOffer represented as a Complex Semantic Object
Description: A FlightOffer represents a flight offer given by a travel agency, which

can be booked by a customer.
Identifier: AirTravelOntology.ClassOfService

AirTravelOntology.Price
set of AirTravelOntology.FlightSegment

FlightSegment represented as a Complex Semantic Object
Description: If a flight involves a connection, i.e., a passenger has to change planes,

this flight is divided into two flight segments.
Identifier: AirTravelOntology.FlightNumber

AirTravelOntology.AirlineIdentifier
AirTravelOntology.DepartureDate

Price represented as FinanceOntology.MonetaryQuantity
Description: The price specifies the fare of a flight offer.

Scale represented as Real
Description: Specifies the scale factor of a given numerical value.

Service represented as String
Description: Denotes a special flight service, e.g., serving lunch or showing a movie.

ServiceCode represented as String
Description: Identification code of a flight service.
Domain: {“OneLetterServiceCode”, “FullServiceName”}

OneLetterServiceCode = {D(Dinner), L(Lunch), S(Snack), V(Movie), . . .}
FullServiceName = {“Dinner”, “Lunch”, “Snack”, “Movie”, . . .}

Unit represented as String
Description: Represents a constant quantity that serves as a unit of measure for

some physical dimension.

. . .
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