
DISTRIBUTED, OBJECT-ORIENTED, ACTIVE,
REAL-TIME DBMSS: WE WANT IT ALL - DO WE

NEED THEM (AT) ALL?

Alejandro P. Buchmann, Christoph Liebig

Department of Computer Science, Darmstadt University of
Technology, Wilhelminenstr. 7, 64283 Darmstadt, Germany

Abstract: Whenever technologies converge there exists the potential for huge benefits
but also the risk of failure. The main pitfall when combining technologies that evolved
independently consists in attempting to provide the union of features without properly
considering the often incompatible assumptions and the crosseffects. In this paper
real-time databases, active databases, and distributed object systems are analyzed
together with some of the basic assumptions underlying previous work in these core
technologies. Crosseffects and potential incompatibilities are discussed in an attempt
to provide a better foundation for a configurable middleware platform that realistically
combines selected features of active, real-time and distributed object systems.

1. INTRODUCTION

The rapid evolution of today’s event-based com-
puting environments and the increased use of
distributed systems in time-critical applications
combined with the desire of reaping the benefits
of objet-orientation, has lead researchers to inves-
tigate ever more complex systems. At the same
time, the combination of these features requires
a thorough understanding of each of the underly-
ing technologies, and more important yet, of the
possible cross-effects. The simple concatenation
of buzz-words will lead to ill-understood systems
whose behavior will be unpredictable and may
pose a danger to life and/or property.

If the semantics of complex system software are
not well understood the users will prefer to im-
plement themselves a minimalistic version of the
required functionality. The resulting systems are
ad-hoc solutions that are expensive and can nei-
ther be extended nor exploited in a different con-
text. Therefore, a middleware platform with clear
semantics is needed that can satisfy the require-
ments of a variety of applications. The research
community has tried to take up this challenge by
combining (at least on paper) active databases,
real-time databases, and distributed object sys-

tems in a single platform. Unfortunately, the full
set of features of each technology is incompatible
with the other technologies that are being com-
bined, and cross effects between technologies have
not been sufficiently studied and considered.

In this paper we try to highlight some of the prob-
lems that may arise when combining technologies
with divergent goals and requirements. For ex-
ample, real-time systems require predictability of
resource consumption and execution time in order
to give performance guarantees; active databases
react to events and trigger rule executions that
dynamically alter the work load and thereby make
any form of predictability rather difficult. The
same is true for object-orientation with its ten-
dency to encapsulate the behavior of objects and
to hide their internal implementation while real-
time systems need the implementation details to
predict worst case execution times. Finally, the
lack of a global clock in distributed systems and
the uncertainty caused by varying communica-
tion delays introduce many additional factors of
unpredictability to both the active and real-time
behavior of a system.

When faced with the seemingly insurmountable
difficulties and apparent contradictions outlined



in the previous paragraph one might be tempted
to conclude that a combination of active, real-
time, object-oriented and distributed functional-
ity is impossible to achieve. Yet there are appli-
cations that do require several of these features.
The question, therefore, is not whether we do need
these features but rather: how can we combine
meaningful subsets of them into generic software
platforms with clear semantics that are modular
and capable of satisfying the requirements of a
variety of applications.

2. APPLICATIONS AND THEIR
REQUIREMENTS

Applications that are often mentioned as moti-
vation for research in the area of active, real-
time, distributed databases fall typically into the
domains of control, navigation, mobile systems,
telecommunications, simulation, e-commerce auc-
tions and profiling, and certain aspects of complex
workflows.

Air traffic control systems cover a variety of as-
pects. While active real-time systems are typically
mentioned to support the air traffic controller
by filtering the information glut and alerting the
controller of dangerous situations, there are sev-
eral other interesting aspects [Liebig, Boesling and
Buchmann 1999]. For once, the portion dealing
with take-off preparation and the gate-to-runway
movement are less time dependent but represent
more complex workflows that are triggered by
events. The new ATC systems will also depend
more on electronically transmitted data delivered
to the cockpit instead of voice traffic. To avoid
swamping the crew with irrelevant information,
event-driven publish-subscribe mechanisms that
must fulfill reliability and timeliness constraints
have been proposed. The new generation of ATC
systems has been specified to use object-oriented
middleware wherever feasible.

In [Locke 1997] aircraft mission control and space-
craft control are described. They have similar
properties and are characterized by small main
memory databases with extremely short mean
latency requirements (0.05 ms mean latency and
1 ms maximum latency). Databases for these
environments are typically used to keep track of
the air- or spacecraft infrastructure in addition
to sensor data. These systems are typically built
around cyclic executives. The resource limitations
that are typical for aircraft and space vehicles
make complex, multifunction software impractical
in many cases.

On-board navigation systems cover a wide range
of support systems with quite different demands.
However, they all must obey strict timing con-
straints since the time available for a reaction is

dependent on the movement of the vehicle. While
the constraints may vary based on the type of
vehicle, they depend on the determination of the
current position (the event) to issue the pertinent
instructions, either to a human operator or to an
automatic controller. Many on-board navigation
systems are built as cooperative distributed sys-
tems [Purimetla et al. 1995] in which the front end
agents perform sensing and filtering operations
while the back-end controller handles the events
that the front-end controllers cannot handle be-
cause of their limited capabilities. Typical of on-
board navigation systems is a fairly small portion
of dynamic data that must be combined with a
large amount of static data, e.g. maps and land-
mark information. The most demanding on-board
navigation and control systems are those used
for control of rather unstable fighter planes that
are essentially flown by the on-board computers.
While the signals detected by the sensors can be
regarded as events, one must be careful not to
imply that this means the kind of event handling
associated with active databases. Instead, sensor
signals are used to invoke specific methods and
persistence of the sensor data is only required for
auditability purposes. It is interesting to observe
that much of the on-board navigation and control
software for the new generation of fighter aircraft
is being built in an object-oriented manner and
that the TAO Object Request Broker and its
Event Service have been modified to support hard
timing constraints for use in this context [Harrison
et al. 1998]. Industrial interest in real-time dis-
tributed object systems is demonstrated by the
recently approved real-time CORBA specification
[Object Management Group (OMG) 1999].

In the automotive industry manufacturers are
exploring emerging technologies for spontaneous
networking, such as Jini [Arnold et al. 1999], as a
mechanism for integration of navigation systems,
embedded systems and the infotainment that is
expected to be part of the next generation of au-
tomobiles. In the latter case one has, in addition to
the distribution, the typical timing problems asso-
ciated with mobility and spontaneous networking.

In telecommunication applications [Raatikainen
1997] the notion of timing constraints is inter-
preted mostly statistically, i.e., a predetermined
percentage of the transactions must meet its dead-
line. This approach is more a high throughput
rather than a typical real-time approach. The
functionality that is frequently mentioned encom-
passes Intelligent Network functionality, such as
verification of PINs, call forwarding, user man-
agement actions to update, for example, the call
forwarding option, televoting, mass calling, etc.
The highest requirements are expected from mo-
bile networks with extremely high transaction
rates and requirements that 96% of the queries



have a response time of 150 ms or less and the
updates be performed in about 1 sec. with relia-
bility of just a few seconds/year downtime. Many
proposed telecommunication architectures assume
an object-oriented paradigm and try to include
standards, such as CORBA.

Simulations provide another class of demanding
applications. Training simulation tries to present
the trainee with a realistic environment and typi-
cal situations to which he must react. These sys-
tems often consist of two databases, a static read-
only database for the environment and a dynamic
database for the simulated situation.

Virtual testbenches are combinations of simulated
systems with hardware in the loop. Such a virtual
testbench may invoke very complex simulation
routines that have timing constraints imposed by
the hardware in the loop. For example, portions of
a car might be simulated while others are actually
running on the testbench and are being monitored
and measured. The timing constraints imposed by
the hardware in the loop are hard timing con-
straints and the volume of data may be extremely
large since data gathering and analysis is the
prime purpose of these systems. Test sequences
and the simulation itself may be governed through
plans or workflows that are conveniently expressed
as event-condition-action rules.

In the area of e-commerce many interesting appli-
cations are just emerging, and the requirements
of these applications with respect to activity, real-
time and distribution have not been well analyzed.
There are situations in e-commerce that appear to
call for many of the features commonly associated
with active and real-time systems. For example,
profiling mechanisms must respond in real-time to
the actions of a visitor to the site in order to retain
the visitor and enhance the probability of a sale
[Datta 1999]. This is an application in which no
transaction processing is required but fast search
and retrieval of profile data is required. The tim-
ing requirements are soft since missing a deadline
does not invalidate completely the result of the
profiling but the value of it may be diminished. In
electronic auctions the proper timestamping and
ordering of events may be critical.

As can be seen from the applications briefly de-
scribed, there is no set of requirements common
to all of them. However, some interesting general-
izations may be possible.

Some form of monitoring and event-driven pro-
cessing is common to all the analyzed applica-
tions.

The applications with tight deadlines often han-
dle only a small data volume that fits into main
memory, especially with current trends in memory
availability. In many of these applications a small

volatile portion may have to be combined with
larger volumes of static data. Long term perma-
nence of the data is often restricted to whatever
is needed for auditability. Predictability is very
important for these applications.

Distribution is clearly needed in several applica-
tions, such as Air Traffic Control and mobile tele-
phony and this will increase as we move into the
realm of ubiquitous computing and spontaneous
networking. The trend towards object oriented
middleware platforms with real-time capabilities
can be observed in some of the most demanding
applications. Pertinent examples are Air Traffic
Control and on-board navigation and control sys-
tems. The emerging platforms for spontaneous
networking, such as Jini, are also built on the ob-
ject paradigm. These systems will handle consid-
erable amounts of data, although not all the data
handled is structured. Multimedia data is usually
streamed and the quality of service requirements
are quite different from the transaction process-
ing typically assumed by the active and real-time
database community.

3. INTEGRATING THE KEY
TECHNOLOGIES

From the previous section we must conclude that
some combination of real-time, active, distributed
and object-oriented functionality is required by a
variety of applications. The question, therefore, is
not whether we should combine them, but how
to do it right. We should be concerned with the
possible interference of the various features and
ask ourselves:

• What are the key features in each base tech-
nology: real-time databases, active databases,
and distributed OO-middleware?
• What subset of active features could be com-

patible with real-time requirements?
• How can predictability be ensured?
• How can active capabilities be provided in a

distributed environment?
• What is the effect of the temporal fuzziness

of distributed systems on active and real-time
capabilities?
• How can active and real-time features be

integrated into distributed object-oriented
middleware?
• What are suitable correctness criteria for

event composition and rule execution in dis-
tributed environments?

3.1 Real-time database issues

According to the definition of [Locke 1997] a
real-time database is a data store whose opera-
tions execute with predictable response, and with



application-acceptable levels of external consis-
tency, temporal consistency, logical consistency,
permanence and atomicity. In this definition, two
key requirements that set an RTDB apart from
a non-RT database system are the temporal con-
sistency and the predictable response. Temporal
consistency as defined in [Ramamritham 1993,
Purimetla et al. 1995] has two aspects. Global
temporal consistency refers to the absolute age
of the data and characterizes its staleness. In
real-time environments the data quality decreases
as time progresses between the time data was
acquired, e.g. from a sensor, and the time it is
consumed. Global temporal consistency is referred
to as external consistency in [Locke 1997]. Mutual
temporal consistency refers to the relative age of
a set of data values, for example, data used in
a calculation should come from the same sensor
cycle or, alternatively, the user may specify an
acceptable maximum age difference that can be
tolerated by the application.

Predictability in real-time database systems can
be analyzed by looking at the various contribu-
tions to the total execution time of a transac-
tion [Buchmann et al. 1989]. These are the time
required for performing the database operations
once data is in the buffer, the I/O time, the time
lost due to transaction interference, the time used
by the non-database portion of application pro-
cessing, and the communication time. To deter-
mine worst case execution times in a deterministic
way, each of these contributing elements must
have an upper bound.

An upper bound for database operations can be
achieved by limiting the size of data, for example,
by setting an upper bound for the number of
tuples in a relation. This approach is commonly
used in real-time environments since it is the basis
also for the calculation of the application depen-
dent (non-database) contribution. Determining an
upper bound for I/O operations is difficult, if
not impossible, for disk resident databases. If one
assumes a worst case of one page fault per access,
nothing will be scheduled due to the extremely
pessimistic worst case execution time that will be
dominated by the high disk access time. Preexecu-
tion, an approach proposed in [O´Neil et al. 1996],
in which a transaction is executed once without
acquiring locks, just to determine what tuples
are needed and to set the buffer, followed by
the real execution in a second step, just shifts
the problem but doesn’t guarantee end to end
predictability. Any disk-based approach can at
best provide statistical values for the expected
execution time. In addition, many real-time ap-
plications require mean read and write latencies
in the range of 0.05 ms, something that is not
achievable with disk-resident data. Therefore, the
only feasible solution for real-time systems that

must give guarantees is avoiding I/O altogether by
using main memory database systems. The drastic
drop in memory costs and the availability of 64-bit
address spaces make it possible to accommodate
without problem the structured data required by
typical real-time systems. For large-volume static
and multimedia data that is streamed without
concurrency control and transactional semantics
a hybrid approach with large buffers for data
staging is usually enough.

The time of interference is the time a transac-
tion is either blocked waiting for resources held
by another transaction or the time required for
roll-back and restart due to a transaction abort,
for example, because of deadlock. Conventional
database systems use aggressive schedulers that
acquire data resources dynamically and may hold
these until committing. Conflicts between trans-
actions are detected and resolved according to
some resolution criterion. The reasons for doing so
are simple and derived from the large disk access
times: To avoid idling resources, such as the CPU,
control passes to another transaction whenever
an I/O operation is required. The overhead of
passing control to another transaction is justified
by the slow response of the disk. Therefore, a
central objective of conventional DBMSs is to pro-
vide high intertransaction parallelism. To achieve
high intertransaction parallelism it is necessary
to lock as few data as possible, i.e., to provide
small locking granules, for example, at the tuple
level. Since the tuples that will be accessed by a
transaction may depend on previous operations
of the transaction, dynamic lock acquisition has
become the method of choice to guarantee small
locking units and thus high intertransaction paral-
lelism. Dynamic lock acquisition results necessar-
ily in scheduling policies based on conflict detec-
tion and conflict resolution. The bulk of the real-
time database research has followed this approach
because the assumption of the disk as the basic
medium was never challenged. However, in main
memory databases inter-transaction parallelism is
less important since no long I/O waiting periods
exist. Since the data will now be available in mem-
ory, no need for passing control to another trans-
action due to I/O is required and transactions
will execute with fewer interruptions. Therefore,
they can also lock larger units, for example, whole
relations, which in turn makes it possible to deter-
mine the resources needed by a transaction ahead
of time through simple syntactic analysis. This
syntactic analysis can be done off-line for canned
queries, a situation that is typical of real-time
environments. Once the data resources are known,
a whole new class of conflict avoiding schedulers
becomes feasible [Ulusoy and Buchmann 1998].
The main advantage of these schedulers is, that
the time of interference is eliminated since a trans-



action starts execution only when its resources
are available. While this approach guarantees the
execution time once a transaction is ready and
scheduled for execution, the end-to-end execution
time still depends on the waiting time in the
queue.

The application-dependent portion of the worst
case execution time can be determined with the
help of tools by analyzing all the possible paths
the application program may take.

The communication portion of the execution time
depends on the degree of distribution of the sys-
tem and the kind of network [Verissimo 1993].
There is a clear difference between a distributed
system running in a LAN with a token ring net-
work, in which an upper bound can be given, or
a distributed system running over a wide area
network or the Internet. It is also important to
consider in this context the fuzziness derived from
the lack of one central clock. This fuzziness will
have an effect on all time stamps and everything
dependent on them, from deadlines and temporal
consistency to event composition and event con-
sumption modes. Therefore, we will return to this
problem later.

In addition to the predictability and concurrency
control issues addressed above, real-time applica-
tions have special recovery needs. These are often
less stringent than those typical of operational
databases used in commercial applications. For
example, since sensor data will arrive periodi-
cally, if a sensor reading is lost, the value can
be captured in the next cycle. In general, no
undo/redo is needed. Logging in real-time sys-
tems often has an archival function for long-term
durability and auditability and less so for transac-
tion roll-back or redo. In main memory databases
alternate logging approaches based on messaging
and asynchronous logging take the place of write-
ahead logging assumed in conventional database
systems. A summary of RTDBMS characteristics
can be found in [Stankovic et al. 1999] and a good
compendium of research results in [Bestavros
et al. 1997, Bestavros and Fay-Wolfe 1997].

3.2 Active database issues

Active databases include Event-Condition-Action
(ECA) rules as first class objects in the database
[Dayal et al. 1988]. ECA rules have an explicit
event part that determines, when a rule is to
be executed, a condition that acts as a filter,
and an action that may be any database-internal
or external action. The events determine to a
large extent the expressive power of an active
database’s rule mechanism. In their most gen-
eral form they include database events, such as

insert, delete, update; control events such as
begin of transaction, commit, abort; temporal
events that maybe absolute or relative, periodic
or aperiodic; and user defined events. Primitive
events may be combined through an event algebra
that may include operators for sequence, disjunc-
tion, conjunction, negation, history, closure, etc.
[Gehani et al. 1992, Gatziu and Dittrich 1993,
Chakravarthy et al. 1994]. An event typically may
trigger more than one rule, and an event may also
participate in many different event compositions.
This raises the question of event consumption, i.e.,
if a stream of events contains more than one event
instance of a certain type that participates in a
composite event definition, which event instance
will be selected for the composition? This prob-
lem was solved for the centralized case in Snoop
[Chakravarthy et al. 1994] through the definition
of contexts. Contexts specify the consumption
mode of events, i.e. they are policy definitions
that define whether events should be consumed
chronologically (chronicle), or whether the most
recent instances should be used (recent). Besides
these two obvious policies, two more have been
defined. The cumulative policy specifies that all
instances of an event that is part of a composite
event will be accumulated until the composite
event is fully composed. At that point all instances
of the participating events will be removed. The
continuous policy defines a sliding window, which
is opened for each new primitive event arrival
that initiates a new composition. The details of
event composition and consumption are beyond
the scope of this discussion, but we must observe
the basic assumptions. All the event compositions
and event consumption modes implicitly assume a
central clock and a total order on events. These as-
sumptions are quite reasonable for the centralized
systems for which they were defined but cannot
be sustained in a distributed environment. Again,
we raise the issue here and defer the discussion.

ECA rules are triggered by events that may origi-
nate in a user transaction or they may be triggered
by temporal or external events. Once a rule is
triggered its condition should be evaluated and
in case the condition is true, the action should
be executed. The coupling mode determines how
an ECA rule should be processed relative to the
triggering transaction. This may be as a subtrans-
action of the user transaction either immediately
following the event detection (immediate coupling
mode) or it may be done at the end of the user
transaction (deferred coupling mode). However,
rules that are triggered by temporal events or
by composite events that are based on primitive
events that were generated in more than one user
transaction cannot identify a single transaction
to which they should be attached and must be
executed in a separate transaction (detached cou-



pling mode). Since events that are generated in a
transaction may require bindings that reflect the
state of the database and/or the transaction at the
instant the event occurred, the participation in an
event composition and the triggering of a separate
transaction may imply a relaxation of the isolation
property. This fact has not received the necessary
attention so far, even for centralized systems.

For a comprehensive compendium of relevant
work on active databases the reader is referred
to [Paton 1998].

3.3 Distribution issues

Distribution affects all aspects of an active, dis-
tributed, real-time system. The discussion in this
section focuses on event processing. Event-based
computing is emerging as the paradigm of choice
for composing applications in open distributed
environments.

One of the core problems of distributed systems
is the synchronization of processes running on
physically and logically distributed nodes with
communications that may exhibit unpredictable
delays and without a central clock. The lack of a
central clock implies that temporal order cannot
unequivocally be established. Time, as provided
by a distributed time service is imprecise with
respect to clock readings at different nodes and
inaccurate with respect to physical time.

Inaccuracies with respect to time have a major im-
pact on timestamping which in turn is the basis for
the determination of temporal consistency, both
global and relative, the composition of events,
and the consumption of events. The fundamental
problem, then, is the characterization of the qual-
ity of the available time service and the proper
consideration of its limitations.

A variety of approximations for modeling the
time imprecision in distributed systems have been
proposed. A thorough discussion of this issue is
beyond the scope of this paper. Therefore, we
will only address three approaches that have been
adopted in the literature for use in distributed and
active systems. For an excellent review of these
issues the reader is referred to [Kopetz 1997].

Logical (Lamport) clocks [Lamport 1978] and
vector time [Schwarz and Mattern 1994] make
it possible to establish a partial order based on
causality. Unfortunately, they are not appropriate
for the open systems with external inputs that are
the subject of this discussion.

When a sparse time base is assumed, the points
at which events can be generated are discretized
and predetermined. Only if events are at least two
time granules apart, the sequence of these events

can be determined unequivocally. This is known as
the 2g precedence model [Kopetz 1992]. In the 2g
precedence model an upper bound to the precision
is assumed and a virtual clock granularity with
granularity g is defined. The 2g precedence model
is very useful for dealing with embedded systems
and other small and tightly controlled environ-
ments. However, since the granularity depends on
the assumed precision, it is not a feasible approach
for wide area networks and open distributed sys-
tems.

The Network Time Protocol (NTP) offers a stan-
dardized time service with a reliable error bound.
NTP is based on the notion of strata that can
guarantee the accuracy within an accuracy inter-
val. By using NTP and injecting an external ref-
erence time, e.g. GPS time, it becomes possible to
provide timestamping with accuracy intervals and
partial ordering of events in large scale distributed
systems [Liebig, Cilia and Buchmann 1999].

3.4 Cross-effects

Even a condensed discussion of the base technolo-
gies illustrates the magnitude of the problems. If
two or more base technologies are combined, a
whole new set of problems must be considered.

The time notion in active databases is quite dif-
ferent from the time notion in real-time systems.
Temporal events in active databases determine
when a rule is fired but no information on ex-
ecution time or deadlines is provided. Real-time
systems are primarily concerned with execution
time and meeting deadlines, and the temporal
consistency of the data.

Real-time requirements impose serious limitations
on the active capabilities that can be provided.
The first and most obvious is the triggering of new
rules. Active databases in general do not limit the
triggering of rules by the action part of another
rule. Especially the object-oriented aDBMSs may,
by the very nature of object-oriented systems,
execute any method of arbitrary complexity in
the action part. Emphasis in the active database
community has been placed on ensuring termi-
nation, i.e., the avoidance of cycles. However, if
timing constraints must be obeyed, the size of a
task may not dynamically expand. The strongest
limitation on the execution model of a real-time
active database system consists in disallowing im-
mediate and deferred coupling modes, thus allow-
ing only detached execution of triggered transac-
tions. Given the possible violation of the isolation
property because of parameter transfer, this ap-
proach may not be acceptable. Furthermore, if a
rule is triggered by a transaction that is aborted,
the atomicity property is violated since a de-
tached transaction is an independent transaction



that cannot be rolled back. Therefore, sequential
causally dependent detached transactions must be
used. An alternative consists in limiting the depth
of triggering, for example, to one rule. From the
point of view of determining the execution time
of such a transaction this is equivalent to the
evaluation of a conditional statement. Limiting
the depth of triggering raises, however, a serious
problem, since the action part of the rules now
must be strictly controlled not to produce any le-
gal event, or we are faced with the problem of dis-
tinguishing between triggering and non-triggering
events of the same type. Therefore, in a real-time
active DBMS, the action portion of rules and the
acceptable event set must be carefully matched
and possibly curtailed. Before discussing further
restrictions on the event set, we must analyze the
effect of distribution on event composition.

Event composition in its general form depends on
the ability to determine the sequence of occur-
rence of events. This is important not only for
operators, such as, sequence, but also for all other
operators since the consumption of events directly
depends on it. For example, in a distributed sys-
tem it becomes difficult to determine, whether an
event generated at node N1 and detected at node
N2, really should be consumed in a chronological
consumption policy, or if there is another (older)
instance of that event type generated at node N3
that was delayed in the network. The assumption
of a 2g precedence clock synchronization model
alone does not solve these problems. Particular
care must be exercised when specifying a 2g prece-
dence model to keep in mind the underlying as-
sumption of sparse time and a guaranteed upper
bound to the precission. If this is not the case,
either because dense time is suddenly assumed or
because Internet-based distribution is expected,
the results will be wrong. Another weakness of
applying the 2g precedence model to event com-
position that is frequently swept under the rug is
the implicit treatment of the ambiguities. If two
events are not distinguishable because they are
not at least 2g apart, they are considered as con-
current, and the event consumption is ambiguous.
This ambiguity must either be resolved explicitly
through application semantics or it must be made
clear to the user that an exception exists. The
latter approach must necessarily be taken when
developing a generic middleware platform. All the
operators that have been defined for the event
algebras of centralized active databases must be
carefully reexamined and restated with their lim-
itations being made explicit.

Whenever an event is detected, there is an inher-
ent detection delay between the time the event
occurred and the time it is detected. The de-
tection delay may depend on system load and
may impact the temporal consistency of the data.

This problem was identified in [Branding and
Buchmann 1995], where as a first pragmatic ap-
proach the complexity of events was drastically
curtailed and special high-priority events where
proposed for overload situations in real-time ac-
tive databases. The detection delay is magnified
in distributed environments. In [Liebig, Cilia and
Buchmann 1999] the detection delay is explicitly
taken into account for the case of event detection
and composition in distributed active systems.
Event composition in a distributed environment
under real-time constraints becomes very difficult.
Sparse time must be assumed and transmission
delays must have an upper bound. This limits
the feasible environments to logically distributed
systems on single nodes or very tightly controlled
specialized LANs. Unless this is the case, only a
statistical approach to real-time is possible. Given
the temporal fuzziness introduced through the
distribution, one would be well advised to avoid
event composition in a distributed real-time en-
vironment or at least to keep it to a minimum,
since the resolution of ambiguities to guarantee
correctness is a time-consuming process that real-
time applications with tight deadlines may not be
able to afford.

Event composition in an open distributed sys-
tem presents additional problems. In a central-
ized system every producer of a certain event is
known. In an open distributed environment this
is not necessarily the case. This means that group
communication concepts and mechanisms must be
employed to ensure that all potential producers or
consumers of an event are encounted for. In the
case that event composition is itself distributed
over several nodes, the result of event composition
is influenced by transmission delays and commu-
nication failures. Therefore a correctness criterion
for distributed composition of events is needed
and a real-time cognizant approach to enforce
such criteria must be developed. This problem is
even more complicated, when implicit or explicit
replication of composite event detection is intro-
duced.

Finally, the crosseffect resulting from rule exe-
cution in distributed environments is addressed.
In [Ceri and Widom 1992] various paradigms for
distributed rule processing are identified and char-
acterized on the basis of whether multisite rules
are permitted or not, whether rules may execute
before the transaction is done at that site, and
whether intersite priorities exist or not. Even in
the tightly integrated relational DBMS with a
rather restrictive execution model that was an-
alyzed in [Ceri and Widom 1992], distributed rule
processing is quite complex and requires lock-
ing and coordination among sites to guarantee
the same semantics as centralized rule execution.
At present, research efforts in distributed active



databases are focused on the problems of event
handling and composition. A serious discussion
of the semantics of rule processing in open dis-
tributed systems under timing constraints has not
even begun.

4. CONCLUSIONS

An analysis of a set of applications and the
base technologies together with the possible cross-
effects has shown the futility of attempting to
combine the full spectrum of functionality of ac-
tive databases, real-time systems, and distributed
object systems in a single platform. However,
some useful subsets, each challenging in its re-
quirements but feasible, can be identified:

• Main-memory databases where distribution
can be limited to mirroring for reliability and
recoverability with limited active capabilities
to provide timing guarantees in real-time
environments with tight timing constraints.
• Centralized active databases with high query

to update ratios, very high data volumes, and
tight but soft deadlines.
• Distributed object platforms with enforce-

ment of timing constraints in tightly con-
trolled distributed environments with little
database functionality and limited event sets.
• Time-constrained distributed systems with

rather lax but not necessarily soft timing re-
quirements, wide area distribution, and pos-
sibly large data volumes.

The biggest challenge will be to move away
from application-specific solutions and to provide
application-independent platforms for which the
underlying assumptions and the resulting seman-
tics are clearly stated and easily understood by the
developers of the application systems. To accom-
plish this we must move beyond a superficial com-
bination of base technologies, and analyze their
interactions carefully. As we understand these in-
teractions better we may be able to move the
boundaries between the subsets identified above
towards the goal of a more generic distributed
object platform that offers active and real-time
functionality.

5. ACKNOWLEDGEMENTS

The authors wish to thank Mariano Cilia for many
interesting discussions.

6. REFERENCES

Arnold, O´Sullivan, Scheifler, Waldo and Woll-
rath: 1999, The Jini Specification, Addison
Wesley.

Bestavros, A. and Fay-Wolfe, V. (eds): 1997, Real-
Time Database and Information Systems -
Research Advances, Kluwer Academic.

Bestavros, A., Lin, K.-J. and Son, S. (eds): 1997,
Real-Time Database Systems - Issues and
Applications, Kluwer Academic.

Branding, H. and Buchmann, A.: 1995, On provid-
ing soft and hard real-time capabilities in an
active dbms, in M. Berndtsson and J. Hans-
son (eds), Active and Real-Time Database
Systems (ARTDB-95), Springer, pp. 158–169.

Buchmann, A., Dayal, U., McCarthy, D. and Hsu,
M.: 1989, Time-critical database schedul-
ing: A framework for integrating real-time
scheduling and concurrency control, Proceed-
ings Fifth International Conference on Data
Engineering, IEEE, Los Angeles.

Ceri, S. and Widom, J.: 1992, Production rules
in parallel and distributed database environ-
ments, Proceedings of the 18th VLDB Con-
ference, Vancouver, Canada, pp. 339–351.

Chakravarthy, S., Krishnaprasad, V., Anwar, E.
and Kim, S.: 1994, Composite Events for
Active Databases: Semantics, Contexts and
Detection, Proc. VLDB´94, Santiago, Chile,
pp. 606–617.

Datta, A.: 1999, Position statement on artdbs,
ARTDB-99. Panel Discussion.

Dayal, U., Buchmann, A. and McCarthy, D.: 1988,
Rules are objects too: a knowledge model
for active, object-oriented database systems,
Proceedings of the 2nd International Work-
shop on Object-Oriented Database Systems,
LNCS 334, Springer.

Gatziu, S. and Dittrich, K.: 1993, Events in an
active object-oriented database system, Pro-
ceedings of Rules in Database Systems, Edin-
burgh, pp. 23–39.

Gehani, N., Jagadish, H. and Shmueli, O.:
1992, Event specification in an active object-
oriented database, Proceedings of the Inter-
national Conference on Management of Data
(SIGMOD ’92).

Harrison, T., O´Ryan, C., Levine, D. and
Schmidt, D.: 1998, The design and perfor-
mance of a real-time corba event service. Sub-
mitted to IEEE Journal on Selected Areas in
Communications.

Kopetz, H.: 1992, Sparse time versus dense time
in distributed real-time systems, Proceed-
ings of the 12th International Conference on
Distributed Computing Systems, Yakohama,
Japan, pp. 460–467.

Kopetz, H.: 1997, Real-Time Systems - Design
Principles for Distributed Embedded Applica-
tions, Kluwer Academic Publishers.

Lamport, L.: 1978, Time, clocks and the ordering
of events in a distributed system, CACM
21(7), 558–565.



Liebig, C., Boesling, B. and Buchmann, A.: 1999,
A notification service for next generation
IT systems in air traffic control, GI Work-
shop Multicast - Protokolle und Anwendun-
gen, Braunschweig.

Liebig, C., Cilia, M. and Buchmann, A.:
1999, Event composition in time-dependent
distributed systems, International Confer-
ence on Cooperative Information Systems
COOPIS99, Edinburgh.

Locke, D.: 1997, Real-time databases: Real-world
requirements, in A. Bestavros, K. Lin and
S. Song (eds), Real-Time Database Systems
- Issues and Applications, Kluwer Academic
Publishers.

Object Management Group (OMG): 1999, Real-
time corba architecture, Technical Report ptc-
99-06-02, OMG, Famingham, MA .

O´Neil, P., Ramamritham, K. and Pu, C.: 1996, A
two-phase approach to predictably scheduling
real-time transactions, Performance of Con-
currency Control Mechanisms in Centralized
Database Systems, Prentice-Hall, pp. 494–
522.

Paton, N. (ed.): 1998, Active Rules in Database
Systems, Springer-Verlag (New York).

Purimetla, B., Sivasankaran, R., Ramamritham,
K. and Stankovic, J.: 1995, Real-time
databases: Issues and applications, in S. Son
(ed.), Advances in Real-Time Systems, Pren-
tice Hall.

Raatikainen, K.: 1997, Real-time databases in
telecommunications, in A. Bestavros, K. Lin
and S. Son (eds), Real-Time Database Sys-
tems - Issues and Applications, Kluwer Aca-
demic Publishers.

Ramamritham, K.: 1993, Real-time databases, In-
ternational Journal of Distributed and Paral-
lel Databases 1(2).

Schwarz, R. and Mattern, F.: 1994, Detecting
causal relationship in distributed computa-
tions: In search of the holy grail, Distributed
Computing 7(3), 149–174.

Stankovic, J., Son, S. and Hansson, J.: 1999, Mis-
conceptions about real-time databases, IEEE
Computer 32(6), 29–36.

Ulusoy, O. and Buchmann, A.: 1998, A real-time
concurrency control protocol for Main Mem-
ory database systems, Information Systems
23(2), 109–125.

Verissimo, P.: 1993, Real-time communication, in
S. Mullender (ed.), Distributed Systems, 2
edn, Addison-Wesley.


