
Benchmarking Publish/Subscribe-based
Messaging Systems

Kai Sachs1, Stefan Appel1, Samuel Kounev2, and Alejandro Buchmann1

1 Databases and Distributed System Group, TU Darmstadt, Germany
lastname @dvs.tu-darmstadt.de

2 Descartes Research Group, Karlsruhe Institute of Technology
skounev@acm.com

Abstract. Publish/subscribe-based messaging systems are used increas-
ingly often as a communication mechanism in data-oriented web appli-
cations. Such applications often pose serious performance and scalabil-
ity challenges. To address these challenges, it is important that systems
are tested using benchmarks to evaluate their performance and scala-
bility before they are put into production. In this paper, we present
jms2009-PS, a new benchmark for publish/subscribe-based messaging
systems built on top of the SPECjms2007 standard workload. We in-
troduce the benchmark and discuss its configuration parameters show-
ing how the workload can be customized to evaluate various aspects of
publish/subscribe communication. Finally, we present a case study il-
lustrating how the benchmark can be used for performance analysis of
messaging servers.

1 Introduction

Publish/subscribe-based messaging systems are used increasingly often as a com-
munication mechanism in data-oriented web applications such as Web 2.0 ap-
plications, social networks, online auctions and information dissemination ap-
plications to name just a few [1]. Moreover, the publish/subscribe paradigm
is part of major technology domains including Enterprise Service Bus, Enter-
prise Application Integration, Service-Oriented Architecture and Event-Driven
Architecture. With the growing adoption of these technologies and applica-
tions, the need for benchmarks and performance evaluation tools in the area
of publish/subscribe systems increases. While general benchmarks for message-
oriented middleware (MOM) exist, no benchmarks specifically targeted at pub-
lish/subscribe communication have been proposed. In this paper, we present a
new benchmark for publish/subscribe-based messaging systems built on top of
the SPECjms2007 standard workload.

SPECjms2007 is the current industry-standard benchmark for MOM servers
based on the JMS (Java Message Service) standard interface [2]. It was developed
by the Java subcommittee of the Standard Performance Evaluation Corpora-
tion (SPEC) with the participation of TU Darmstadt, IBM, Sun, BEA, Sybase,
Apache, Oracle and JBoss. One of the major benefits of SPECjms2007 is that, in



addition to providing a standard workload and metrics for MOM performance,
the benchmark provides a flexible and robust framework for in-depth perfor-
mance evaluation of messaging infrastructures. It allows to create custom work-
load scenarios and interactions to stress selected aspects of the MOM infrastruc-
ture. Examples of such user-defined scenarios can be found in [3] and [4]. While
SPECjms2007 includes some limited publish/subscribe communication as part
of the workload, the focus of the benchmark is on point-to-point (PtP) commu-
nication via queues which dominate the overall system workload [5]. Moreover,
the workload does not exercise message filtering through JMS selectors which is
an important feature of publish/subscribe messaging that typically causes the
most performance and scalability issues.

To address the need for a workload focused on publish/subscribe messaging,
we developed the new jms2009-PS benchmark which uses the SPECjms2007
workload as basis. A preliminary version of the benchmark was demonstrated at
the SIGMETRICS/Performance 2009 Demo Competition [6]. In this paper, we
introduce the benchmark and discuss its configuration parameters showing how
the workload can be customized to evaluate different aspects of publish/subscribe
communication. Overall, jms2009-PS provides more than 80 new configuration
parameters allowing the user to customize the workload in terms of the num-
ber of topics, the number of subscriptions, the number and type of selectors,
and the message delivery modes. After discussing the configuration parameters,
we present a case study, in which we demonstrate how to use jms2009-PS for
evaluating alternative ways of implementing publish/subscribe communication
in terms of their overhead, performance and scalability.

The rest of this paper is structured as follows: We start with some back-
ground on message-oriented middleware and the SPECjms2007 benchmark in
Section 2. Following this, we present the jms2009-PS benchmark in Section 3.
We introduce the various configuration parameters and show how the workload
can be customized. Finally, in Section 4, we present our case study and wrap up
with some concluding remarks in Section 5.

2 Background

2.1 Message-Oriented Middleware

Message-oriented middleware (MOM) is a specific class of middleware that sup-
ports loosely coupled communication among distributed software components
by means of asynchronous message-passing as opposed to a request/response
metaphor. The loose coupling of communicating parties has several important
advantages: i) message producers and consumers do not need to know about each
other, ii) they do not need to be active at the same time to exchange information,
iii) they are not blocked when sending or receiving messages [7].

The Java Message Service (JMS) [2] is a standard Java-based interface for
accessing the facilities of enterprise MOM servers. JMS supports two messaging
models: point-to-point (PtP) and publish/subscribe (pub/sub). With PtP mes-
saging each message is sent to a specific queue and is retrieved and processed



by a single consumer whereas with pub/sub messaging each message is sent to
a specific topic and it may be delivered to multiple consumers interested in the
topic. Consumers are required to register by subscribing to the topic before they
can start receiving messages. In the pub/sub domain, message producers are
referred to as publishers and message consumers as subscribers. JMS queues and
topics are commonly referred to as destinations. The two messaging models are
depicted in Figures 1 and 2. The JMS specification defines several modes of
message delivery with different quality-of-service attributes:

Sender

Receiver
Msg y, Msg x

Sender

Queue n

Queue 1

JMS Server

Msg x

Msg y

Fig. 1. Point-to-point messaging.

Publisher

Publisher

Msg x

Msg y, Msg x

Topic m

Topic 1

JMS Server

Subscriber

Subscriber

Subscriber

Msg y, Msg x

Msg y, Msg x

Msg y

Fig. 2. Pub/sub messaging.

Non-Persistent/Persistent: In non-persistent mode, pending messages are
kept in main memory buffers while they are waiting to be delivered and are
not logged to stable storage. In persistent mode, the JMS provider takes
extra care to ensure that no messages are lost in case of a server crash. This
is achieved by logging messages to persistent storage such as a database or
a file system.

Non-Durable/Durable: JMS supports two types of subscriptions, durable
and non-durable. With non-durable subscriptions a subscriber will only re-
ceive messages that are published while he is active. In contrast to this,
durable subscriptions ensure that a subscriber does not miss any messages
during periods of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be trans-
actional or non-transactional. A transaction is a set of messaging operations
that are executed as an atomic unit of work.

In addition to the above described delivery modes, JMS allows the specifica-
tion of selectors to enable message filtering. When publishing messages, produc-
ers can specify property-value pairs (e.g., ”color=red”) which are stored in the
message headers. When subscribing, consumers can specify a selector to receive
only messages with certain property values (e.g., ”color=blue AND size=42”).
Selectors are specified using a subset of the SQL92 conditional expression syn-
tax. For a more detailed introduction to MOM and JMS the reader is referred
to [8, 2].



2.2 SPECjms2007

The SPECjms2007 benchmark models a supermarket supply chain where RFID
technology is used to track the flow of goods. The participants involved are the
headquarters (HQ) of the supermarket company, its stores (SM), its distribution
centers (DC) and its suppliers (SP). SPECjms2007 defines seven interactions
between the participants in the scenario:

1. Order/shipment handling between SM and DC
2. Order/shipment handling between DC and SP
3. Price updates sent from HQ to SMs
4. Inventory management inside SMs
5. Sales statistics sent from SMs to HQ
6. New product announcements sent from HQ to SMs
7. Credit card hot lists sent from HQ to SMs

Interactions 1 and 2 represent a chain of messages while the rest of the
interactions include a single message exchange [4]. A single parameter called BASE
determines the rate at which interactions are executed and is used as a scaling
factor. The benchmark is implemented as a Java application comprising multiple
JVMs and threads distributed across a set of client nodes. For every destination
(queue or topic), there is a separate Java class called Event Handler (EH) that
encapsulates the application logic executed to process messages sent to that
destination. Event handlers register as listeners for the queue/topic and receive
call backs from the messaging infrastructure as new messages arrive. In addition,
for every physical location, a set of threads (referred to as driver threads) is
launched to drive the benchmark interactions that are logically started at that
location.

2.3 Related Work

Over the last decade several proprietary and open-source benchmarks for evalu-
ating MOM platforms have been developed and used in the academia and indus-
try including SonicMQ’ Test Harness [9], IBM’s Performance Harness for Java
Message Service [10], Apache’s ActiveMQ JMeter Performance Test [11] and
JBoss’ Messaging Performance Framework [12]. Using these and other similar
benchmarks, numerous performance studies have been conducted and published,
see for example [13–20]. While the benchmarks we mentioned have been em-
ployed extensively for performance testing and system analyses, unfortunately,
they use artificial workloads that do not reflect any real-world application sce-
nario. Furthermore, they typically concentrate on stressing individual MOM fea-
tures in isolation and do not provide a comprehensive and representative work-
load for evaluating the overall MOM server performance. For a more detailed
discussion of related work we refer the interested reader to [4, 21].



Table 1. Configuration parameters supported for each message type.

Intr. Message Location T P D Q TD ST Description

order DC X X X X X - Order sent from SM to DC.
orderConf SM X X X X X - Order confirmation sent from DC to

SM.
shipDep DC X X X X X - Shipment registered by RFID readers

upon leaving DC.1
statInfo-
OrderDC

HQ X X X X X - Sales statistics sent from DC to HQ.

shipInfo SM X X X X X - Shipment from DC registered by
RFID readers upon arrival at SM.

shipConf DC X X X X X - Shipment confirmation sent from SM
to DC.

callForOffers HQ X X X - X X Call for offers sent from DC to SPs
(XML).

offer DC X X X X X - Offer sent from SP to DC (XML).
pOrder SP X X X X X - Order sent from DC to SP (XML).
pOrderConf DC X X X X X - Order confirmation sent from SP to

DC (XML).2
invoice HQ X X X X X - Order invoice sent from SP to HQ

(XML).
pShipInfo DC X X X X X - Shipment from SP registered by RFID

readers upon arrival at DC.
pShipConf SP X X X X X - Shipment confirmation sent from DC

to SP (XML).
statInfo-
ShipDC

HQ X X X X X - Purchase statistics sent from DC to
HQ.

3 priceUpdate HQ X X X - X - Price update sent from HQ to SMs.

4 inventoryInfo SM X X X X X - Item movement registered by RFID
readers in the warehouse of SM.

5 statInfoSM HQ X X X X X - Sales statistics sent from SM to HQ.

6 product-
Announcement

HQ X X X - X - New product announcements sent
from HQ to SMs.

7 creditCardHL HQ X X X - X - Credit card hotlist sent from HQ to
SMs.

3 jms2009-PS - A Pub/Sub Benchmark

We now present the new jms2009-PS benchmark which is specifically targeted at
pub/sub systems. We developed jms2009-PS using the SPECjms2007[4] work-
load and its scaling strategy as a basis [22]. Overall, we added more than 80
new configuration parameters allowing the user to customize the workload to
his needs. All configurations are identical in terms of the number of subscrip-
tions and the message throughput generated for a given scaling factor, however,
they differ in six important points:

1. number of topics and queues used
2. number of transactional vs. non-transactional messages
3. number of persistent vs. non-persistent messages
4. total traffic per topic and queue
5. complexity of used selectors (filter statements)
6. number of subscribers per topic

While the benchmark is targeted at pub/sub workloads, it allows to use
queue-based PtP messaging in cases where messages are sent to a single con-



sumer. This allows to compare the costs of queue-based vs. topic-based commu-
nication for different message delivery modes. In the case of topic-based com-
munication, for each interaction several implementations are supported. In the
first implementation, all types of messages are exchanged using one common
topic per interaction. Each message consumer (e.g., orders department in DC1)
subscribes to this topic using a selector specifying two filters that define the mes-
sages he is interested in: message type (e.g., orders) and location ID (e.g., DC 1).
The message type and location ID are assigned as properties of each message
published as part of the respective interaction. In the second implementation, a
separate topic is used for each type of message (e.g., one topic for orders, one for
invoices). Consequently, message consumers do not have to specify the message
type at subscription time, but only their location ID. It is easy to see that the
number of subscribers per topic is lower and the filtering is simpler (only one
property to check) in the second implementation compared to the first one. In
the first implementation, more traffic is generated per topic, while in the second
implementation the traffic per topic is less but the system has to handle more
topics in parallel. Therefore, the two implementations stress the system in dif-
ferent ways and allow to evaluate different performance aspects. In addition to
these two implementations, the benchmark supports several further implemen-
tations which allow to stress additional aspects of topic-based communication.
The user can select an implementation by means of the Target Destination (TD)
parameter discussed in the next section.

3.1 Configuration Parameters

In this section, we describe in detail the new configuration parameters introduced
in jms2009-PS. The parameters can be configured on a per message type basis.
Table 1 shows the parameters supported for each message type. In the following,
we briefly describe each parameter.
Transactional [true|false] (T) Specifies whether messages should be sent as
part of a transaction.
Persistent [true|false] (P) Specifies whether messages should be sent in per-
sistent mode.
Durable [true|false] (D) Specifies whether a durable subscription should be
used by message consumers.
Queue [true|false] (Q) Specifies whether a queue or a topic should be used
in cases where there is a single message consumer.
Target Destination (TD) Specifies for each message type the set of topics
and respective selectors that should be used to distribute messages to the tar-
get consumers. The benchmark supports six different target destination options.
Depending on the selected configuration, it automatically takes care of config-
uring message properties (set by producers) and selectors (set by consumers at
subscription time) to guarantee that messages are delivered to the correct con-
sumers. The target destination options supported by jms2009-PS are shown in
Table 2. For each option, the set of topics and the required selectors are de-
scribed.



Table 2. Target destination options.

Setting Description Selector

LocationID-
MessageType

A separate topic for each combination of location
instance and message type is used, e.g., a topic
per DC for order messages: DC1_OrderT for DC 1,
DC2_OrderT for DC 2, etc.

– No selectors are needed.

MessageType A single topic per message type is used, e.g., a
topic DC_OrderT for order messages of all DCs. – TargetLocationID=

’locationID’

Interaction A single topic per interaction is used, e.g., a topic
Interaction1_T for all messages involved in Inter-
action 1.

– TargetLocationID=
’locationID’

– MessageType=
’messageType’

LocationType A single topic per location type is used, e.g., a
topic SM_T for all messages sent to SMs. – TargetLocationID=

’locationID’
– MessageType=

’messageType’

LocationID A separate topic for each location instance is
used, e.g., a topic SM1_T for all messages sent to
SM 1.

– MessageType=
’messageType’

Central One central topic for all messages is used, e.g.,
one topic T for all messages that are part of the
seven interactions.

– LocationType=
’locationType’

– TargetLocationID=
’locationID’

– MessageType=
’messageType’

Subscription Type [IN |OR|SET ] (ST) In Interaction 2, a distribution cen-
ter (DC) sends a CallForOffers to suppliers (SP). Each SP offers a subset of all
product families and is only interested in the CallForOffers messages targeted
at the respective product families. There are multiple ways to implement this
communication pattern and jms2009-PS supports the following options:

– Use a separate topic for each product family: The SP has to subscribe
to all topics corresponding to the product families he is interested in and no
selector is needed.

– Use one topic for all product families: The SP has to subscribe to
this topic using a selector to specify the product families he is interested in.
jms2009-PS offers three ways to define the respective subscription:
• Using multiple OR operators: The SP places a single subscrip-

tion using the following selector: ProductFamily=”PF1” OR ProductFam-
ily=”PF2” OR ... OR ProductFamily=”PFn”

• Using a single IN operator: The SP places a single subscription using
the following selector: ProductFamily IN (”PF1”,”PF2”,...,”PFn”)

• Using a set of subscriptions: The SP subscribes for each product
family he is interested in separately:
ProductFamily=”PF1” [· · ·] ProductFamily=”PFn”



4 Case Study

4.1 Introduction

We now present a case study illustrating how jms2009-PS can be used for per-
formance analysis of messaging servers. The environment in which we conducted
our case study is depicted in Figure 3. ActiveMQ server was used as a JMS server
installed on a machine with two quad-core CPUs and 16 GB of main memory.
The server was run in a 64-bit JRockit 1.6 JVM with 8 GB of heap space. A
RAID 0 disk array comprised of four disk drives was used for maximum perfor-
mance. ActiveMQ was configured to use a file-based store for persistent messages
with a 3.8 GB message buffer. The jms2009-PS drivers were distributed across
three machines. To further increase the network capacity, a separate GBit link
was installed between the JMS server and the third driver machine. The latter
was configured to always use this link when accessing the server. The drivers
were distributed across the machines in such a way that the network traffic was
load-balanced between the two networks.

ActiveMQ 4.1.2
2 x 4-Core  Intel Xeon 2.33 GHz
16 GB RAM, 4 SAS RAID 0
Windows 2003 Server 64bit

1GBit1GBit

jms2009-PS Driver
IBM x3850 Server
4 x 2-Core Intel Xeon 3.5 GHz
16 GB, 6 SAS RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Fire X4440 x64 Server
4 x 4-Core Opteron 8356 2.3 GHz
64 GB RAM, 8x146 GB RAID 10
Debian Linux 2.6.26

jms2009-PS Driver
Sun Sparc Enterprise T5120
8-Core T2 1.2 GHz
32 GB RAM, 2x146 GB RAID 0
Solaris 10 10/08  SPARC

Fig. 3. Experimental environment.

4.2 Test Scenarios

We studied three different scenarios which were identical in terms of the to-
tal number of messages sent and received for a given scaling factor (BASE).
Transactions and persistent message delivery were configured as defined in the
SPECjms2007 workload description[4]. The scenarios differ in the number of
message destinations and destination types used for communication. Figure 4
illustrates the configurations used in the three scenarios for two of the message
types: order messages sent from SMs to DCs and orderConf messages sent from
DCs to SMs (cf. Table 1).

– Scenario I (SPECjms2007-like Workload): The workload is configured
similar to the SPECjms2007 workload, i.e., it uses mainly queues for com-
munication. Each location instance has its own queue for each message type
and therefore there is no need for selectors.



Recv

OrderQueue1 OrderQueuen…
Other Queues

Topics

SM1 DC1

Pub Sub

SMn DCn

Recv

Pub Sub

Recv

ConfQueue1 ConfQueuen…

DC1 SM1

Pub Sub

DCn SMn

Recv

Pub Sub

Incoming Order Topic

Other Topics

SM1

Pub

SMn

Pub

(DC=1) (DC=n)

Order Confirmation Topic

…

Recv

DC1 DCn

Sub

(DC=n)

…

Recv

Sub

(DC=1)

DC1

Pub

DCn

Pub

(SM=n)

…

Recv

SM1 SMn

Sub

(SM=n)

…

Recv

Sub

(SM=1)(SM=1)

Message Bus

SM1

Pub

SMn

Pub

(DC=1)
(T=Order)

(DC=n)
(T=Order)

…

Recv

DC1 DCn

Sub

(DC=n)
(T=Order)

…

Recv

Sub

(DC=1)
(T=Order)

DC1

Pub

DCn

Pub

(SM=1)
(T=Conf.)

(SM=n)
(T=Conf.)

… SM1 SMn

Sub

(SM=n)
(T=Conf.)

…

Recv

Sub

(SM=1)
(T=Conf.)

Scenario I

Scenario II

Scenario III

Se
t 

P
ro

p
er

ti
es Selecto

rs
Se

t 
P

ro
p

er
ti

es Selecto
rs

Se
t 

P
ro

p
er

ti
es Selecto

rs

Fig. 4. Considered Scenarios

– Scenario II (Pub/Sub with Multiple Topics): For each message type,
a separate topic is used, i.e., the TD configuration parameter is set to
MessageType (cf. Table 2).

– Scenario III (Pub/Sub with Message Bus): One topic is used for all
messages, i.e., the TD configuration parameter is set to Central (cf. Table 2).

The three scenarios differ mainly in terms of the flexibility they provide.
While Scenario I is easy to implement given that no properties or selectors are
necessary, it requires a reconfiguration of the MOM server for each new location
or message type since new queues have to be set up. In contrast, Scenarios II
and III, which only use topics, provide more flexibility. In Scenario II, a recon-
figuration of the MOM server is necessary only when introducing new message
types. Scenario III doesn’t require reconfiguration at all since a single topic (mes-
sage bus) is used for communication. In addition, Scenarios II and III support
one-to-many communication while the queue-based interactions in Scenario I
are limited to one-to-one communication. One-to-many communication based
on pub/sub allows to easily add additional message consumers, e.g., to maintain
statistics about orders. On the other hand, the use of a limited number of topics
in Scenarios II and III degrades the system scalability. As shown in the next sec-



tion, the jms2009-PS benchmark allows to evaluate the trade-offs that different
configurations provide in terms of flexibility, performance and scalability.

 0
 20
 40
 60
 80

 100

200 400 600 800

CP
U 

Ut
iliz

at
io

n

BASE

I
II
III

 0
 5

 10
 15
 20
 25

50 100 150 200

CP
U 

Ut
iliz

at
io

n

BASE

I
II
III

Scenario Max Load CPU/BASE Avg. Dlv. Latency (ms)

I 720 0.077 123
II 125 0.168 1587

III 63 0.147 3235

Fig. 5. Experimental Results

4.3 Experimental Results

Figure 5 presents the experimental results for the three scenarios described
above. It shows the CPU utilization for increasing workload intensities (BASE),
the maximum load that can be sustained by each scenario, the CPU time per
unit of the BASE parameter and the average message delivery latency. The re-
sults show the scalability and performance of the three configurations as well as
their costs in terms of CPU consumption. Scenario I scales up to BASE 720 and
exhibits the lowest message delivery latency (123ms). The flexibility provided
by Scenario II and III comes at the cost of much worse scalability and perfor-
mance. The maximum load that can be sustained in Scenario II and Scenario III
is respectively 6 and 12 times lower than that in Scenario I. Similarly, the aver-
age message delivery latency is about 13 times higher for Scenario II compared
to Scenario I and about 26 times higher for Scenario III. Thus, the flexibility



provided by Scenario II and III comes at a high price. This is due to two reasons:
i) the use of selectors leads to roughly two times higher CPU processing time per
message as shown in Figure 5, ii) the use of topics for communication leads to
synchronization delays. Comparing Scenarios II and III reveals that the selector
complexity in this case does not have a significant impact on the CPU processing
time per message. What is much more significant is the number of topics used
for communication. The single topic in Scenario III clearly leads to a scalability
bottleneck and explosion of the message delivery latency. In the third scenario,
the throughput was limited by the performance of a single CPU core.

Overall, the results show that topic-based communication using selectors is
much more expensive than queue-based communication and, depending on the
number of topics used, it limits the scalability of the system. We demonstrated
how, by using jms2009-PS, the performance and scalability of different messaging
workloads and configuration scenarios can be quantified. The high configurabil-
ity of the benchmark allows to tailor the workload to the user’s requirements
by customizing it to resemble a given application scenario. The user can then
evaluate alternative ways to implement message communication in terms of their
overhead, performance and scalability.

5 Conclusions

We presented a new benchmark for publish/subscribe-based messaging systems
built on top of the SPECjms2007 standard workload. We discussed its config-
uration parameters showing how the workload can be customized to evaluate
different aspects of publish/subscribe communication. Overall, jms2009-PS pro-
vides more than 80 new configuration parameters allowing the user to customize
the workload in terms of the number of topics, the number of subscriptions, the
number and type of selectors, and the message delivery modes.

We presented a case study demonstrating how using jms2009-PS, alternative
ways to implement publish/subscribe communication in an example application
scenario can be evaluated in terms of their overhead, performance and scalability.
We defined three different scenarios with different communication patterns. The
case study showed that the flexibility provided by topic-based publish-subscribe
communication comes at a high price. The use of selectors in our scenario led to
roughly two times higher CPU processing time per message. The most critical
factor affecting the system performance however was the number of topics used
for communication. Having a low number of topics provides maximum flexibility,
however, it introduces a scalability bottleneck due to the synchronization delays.
Especially, the scenario in which a single topic was used to implement a message
bus clearly identifies the limitations of such an approach.

Overall, with jms2009-PS we provide a powerful benchmarking tool. Through
its configurability it allows the user to evaluate publish/subscribe platforms for
certain communication patterns using a complex real-world workload. Our next
steps will be to extend the benchmark workload with new interactions and to
prepare a complex case study analysing and comparing different scenarios on
alternative platforms.



References

1. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Tech-
nologies. In: Proceedings of the International Conference on Distributed Event-
Based Systems (DEBS 2009). (2009)

2. Sun Microsystems, Inc.: Java Message Service (JMS) Specification - Ver. 1.1 (2002)
3. Happe, J., Friedrich, H., Becker, S., Reussner, R.H.: A pattern-based Performance

Completion for Message-oriented Middleware. In: Proc. of the ACM WOSP. (2008)
4. Sachs, K., Kounev, S., Bacon, J., Buchmann, A.: Performance evaluation of

message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation 66(8) (Aug 2009) 410–434

5. Sachs, K., Kounev, S., Buchmann, A.: Performance Modeling of Message-Oriented
Middleware - A Case Study. (2009) In review.

6. Sachs, K., Kounev, S., Appel, S., Buchmann, A.: A Performance Test Harness
For Publish/Subscribe Middleware. In: SIGMETRICS/Performance 2009 Demo
Competition, ACM (June 2009)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of
Publish/Subscribe. ACM Computing Surveys 35(2) (2003) pages 114–131

8. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley (2003)

9. Sonic Software Corporation: Sonic Test Harness.
http://communities.progress.com/pcom/docs/DOC-29828 (2005)

10. IBM Hursley: Performance Harness for Java Message Service.
http://www.alphaworks.ibm.com/tech/perfharness (2005)

11. ActiveMQ: JMeter performance test. http://incubator.apache.org/
activemq/jmeter-performance-tests.html (2006)

12. JBoss: JBoss JMS New Performance Benchmark. http://wiki.jboss.org/
wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark (2006)

13. Crimson Consulting Group: High-Performance JMS Messaging - A Benchmark
Comparison of Sun Java System Message Queue and IBM WebSphere MQ.
www.sun.com/software/products/message queue/wp JMSperformance.pdf (2003)

14. Krissoft Solutions: JMS Performance Comparison. http://www.fiorano.com/comp-
analysis/jms perf report.htm (2006)

15. Sonic Software Corporation: Benchmarking E-Business Messaging Providers.
White Paper (January 2004)

16. Carter, M.: JMS Performance with WebSphere MQ for Windows V6.0.
http://www-1.ibm.com/support/docview.wss?rs=171& uid=swg24010028 (2005)

17. Fiorano Software Inc.: JMS Performance Comparison -
Performance Comparison for Publish Subscribe Messaging.
www.fiorano.com/whitepapers/fmq/jms performance comparison.php (2010)

18. Rindos, A., Loeb, M., Woolet, S.: A performance comparison of IBM MQseries
5.2 and Microsoft Message Queue 2.0 on Windows 2000. IBM SWG Competitive
Technical Assessment, Research Triangle Park, NC (2001)

19. Maheshwari, P., Pang, M.: Benchmarking message-oriented middleware: TIB/RV
versus SonicMQ. Concurrency Computat.: Pract. and Exper. 17(12) (2005)

20. Menth, M., Henjes, R., Zepfel, C., Gehrsitz, S.: Throughput performance of popular
JMS servers. SIGMETRICS Perform. Eval. Rev. 34(1) (June 2006) 367–368

21. Kounev, S., Sachs, K.: Benchmarking and Performance Modeling of Event-Based
Systems. it - Information Technology 51(5) (2009) 262–269

22. Sachs, K., Kounev, S., Appel, S., Buchmann, A.: Benchmarking of Message-
Oriented Middleware. In: Proc. of the DEBS 2009. (2009)


