
A Jini-based Gateway Architecture
for Mobile Devices

Gerd Aschemann, Roger Kehr, and Andreas Zeidler

Darmstadt University of Technology, Department of Computer Science
{aschemann,kehr,az}@informatik.tu-darmstadt.de

C
o

p
yr

ig
h

t 
S

p
ri

n
g

er
 V

er
la

g
, J

IT
 ’9

9,
 S

ep
te

m
b

er
 2

0-
21

, 1
99

9,
 D

u
es

se
ld

o
rf

, G
er

m
an

y
C

o
p

yr
ig

h
t 

S
p

ri
n

g
er

 V
er

la
g

, J
IT

 ’9
9,

 S
ep

te
m

b
er

 2
0-

21
, 1

99
9,

 D
u

es
se

ld
o

rf
, G

er
m

an
y

Abstract. In the near future we expect a widespread deployment of
mobile computational resources including network-enabled end devices
like Laptops and PDAs. An interesting problem then and today is the
transparent change of locality. Traditionally several manual actions are
necessary to reconfigure the device and to rebind client-applications to
services available in the host network. This paper presents the architec-
ture of a Jini-based Application Level Gateway (ALGW) which avoids
manual reconfiguration of a mobile device every time the user changes
the host network. To do so, the ALGW makes use of key technologies pro-
vided by Jini. Jini is used for dynamic looking up and binding to services
needed by the user and located in the host network. Moreover, Jini can
be used for value-added services like our authenticating SMTP-Service.

1 Introduction

There is a rapidly growing market for intelligent mobile devices. Devices such
as Laptops and Personal Digital Assistants (PDAs) are getting cheaper, smaller,
and more powerful. We expect a fast and wide proliferation of intelligent mobile
devices within the next few years.

Coupled to this development is a changing pattern of usage [13]. The user
of a mobile device – in contrast to the user of a desktop system – is moving
geographically, connecting the device often to different local networks in order
to fulfill different tasks. A salesperson, for example, needs to connect to the
Internet browsing for important information or use email for reporting the sales
of the day to the company’s sales department. To do so, he or she can dial up an
Internet Service Provider (ISP) via modem but is hinged to the availability of
a particular ISP at the current location. More convenient would be to connect
directly to an available Local Area Network (LAN), e.g., of a customer or a
hotel. The same solution is desirable for people often changing between a fixed
number of different environments, e.g., the office and the home network.

Today, however, the change of network environments is linked to a number
of reconfiguration tasks to be done manually (Fig. 1). There is an obvious gap of
transparency between the need to change the network environments on the one
hand and the methods to support this change in a transparent and convenient
manner for the user on the other hand. One has to change various configuration



Network A
1.2.3.x

Configuration
Network A

Configuration
Network A

Network B
10.11.12.x

1.2.3.5 mail1

1.2.3.20 dns1

10.11.12.19 xchange
10.11.15.22 name3

10.11.25.80 proxy

Fig. 1. Connecting to different networks

parameters such as the own IP address, the name of a local mailserver, or the
WWW-proxy configuration in the web-browser. Moreover, in a public accessible
network environment there usually exists a level of distrust between the user on
the one hand and the provider of the local network on the other hand. Both have
an interest in security and privacy of the data and the integrity of the services
they use or provide. A scheme of authentication and legitimation is needed.

To alleviate the lack of flexibility and transparency of reconfiguration for the
user when changing the network environment, we propose a Jini [17] based gate-
way architecture preventing the user from reconfiguring his or her mobile device.
To do so we are using Application Level Gateways and Jini as enabling infra-
structure. In short, an application level gateway is a mediator between a mobile
device and the local network and its available services. The purpose is to provide
a mechanism which allows the user to use a single static configuration for every
network. The application level gateway takes care of mapping services needed
locally to services available in the network. To ensure transparency and security
for the user, we employ some key features of Jini which will be introduced in
greater detail throughout the next section.

The overall architecture, including requirements and solutions, is described
in Sect. 3, while Sect. 4 gives an example of an enhanced email service using our
proposal. Related work can be found in Sect. 5, and we finish with a conclusion
and description of future work.

2 Key Concepts of Jini

Jini is a recently released service-based network infrastructure from Sun Mi-
crosystems. Jini is deliverd in the form of a Java API and relies on features



available in the Java 2 platform only. It offers components we use in our archi-
tecture to enable our application level gateway to participate in a LAN without
reconfiguration of the mobile device by the user. We give a short introduction
of the key building-blocks of Jini.

Bootstrapping. Jini has a built-in bootstrapping mechanism called Jini Dis-
covery and Join Protocol [18] based on multicast and unicast-communication.
This set of protocols enables arbitrary Jini-enabled objects, i.e., hardware de-
vices as well as software, to find the Jini Lookup Service (LUS) [19] and register
their services and properties at the local federation of services. This allows for
“spontaneous” networking of network components to find each other in a stan-
dardized manner.

Lookup Service. A Lookup Service acts as a central repository for services.
Appropriate means are offered for clients to query and select registered services
based on Java interfaces – describing the type of the service – and so-called
entries – descriptive information or additional state information about a service
in the form of serialized Java objects.

Additionally, clients can register interest in state changes of the lookup service
– e.g., when a new service of a certain type registers or deregisters itself – to
receive event notifications via remote listener objects.

Proxy Objects. Services upload serialized Java objects, called service proxies,
to the lookup service. These objects can be downloaded to any client Java Virtual
Machine (JVM) and invoked to access the service. The proxy acts as a mediator
to the service itself, and may implement programmatic interfaces as well as
graphical user front-ends for the service. The proxy encapsulates any protocol
used for the actual communication between the proxy object and the service.
This is a key feature when considering secure communication as we will see later.

Leases. Leases are time-based contracts between two objects within Jini. A
lease grantor can bind a service to a lease holder for a certain amount of time.
The lease holder can use the granted service within this period according to the
contract made, but has to renew the interest for the service granted, i.e., renew
the lease before it expires. Failing to do so automatically cancels the contract.
Utilized appropriately we use leases for the detection of changes, e.g., the change
of the network environment.

3 Architecture

The basic idea of our approach is to provide a generic application level gateway
for all or most of the services a mobile device typically uses, e.g., WWW, printing,
mail/pop etc. To put it simply, the application level gateway provides all the



services locally, by installing a respective proxy as a server. If the service is used,
the gateway has to care for a transparent hand over to a real service in the
host network. However, this – at first sight – simple approach leads to some new
problems:

1. Finding the real services. The application level gateway has to find real
servers on the host network, sometimes to choose an appropriate one if there
are more than one and to establish a connection to it.

2. Transfer of data and mapping of protocols. The gateway has to transfer
the data back and forth between the real server and the application. Some-
times the client and the server will not use the same protocol, even if the
provided service is the same in an abstract sense, e.g., UNIX systems and MS
Windows Systems usually access printing services with different protocols.
Therefore a mapping between the different protocols must be performed.

3. Detection of locality changes. A change of locality, i.e., a change of the
host network, must be detected and appropriate action must be performed,
e.g., the respective servers on the new host network must be found and
rebinding or reconnection must take place.

4. Reconfiguration of lower level services. Some of the network changes
are beyond the scope of the application level gateway, i.e., basic IP connec-
tivity and configuration of basic IP services, e.g., Naming Service (DNS).

Furthermore we want to achieve two additional purposes:

– Our solution aims at the reuse of most client applications and their server
counterparts without any implementation changes. The client applications
are configured once to use the application level gateway on the local host as
a proxy server and talk to it with their respective protocol. Reuse of legacy
server implementations and even existing proxy applications can be obtained
by another mechanism we will describe further down (see Sect. 3.2).

– We want to enable value added service implementations in some cases, like
making a service fault tolerant or making a service and its usage more
secure in terms of authentication, encryption, privacy protection or non-
repudiation. In our example (see Sect. 4) we outline such a value added
service implementation.

3.1 The Jini-based Approach

Fortunately, with Jini we have a valuable technology to solve these problems.
Figure 2 shows the basic architecture of the gateway and how it provides access
to the services of the host network to local client applications. For simplicity we
assume that all service implementations are Jini-enabled, i.e., they are registered
with the Jini Lookup Service and provide a proxy to plug them into the gateway.

1. Bootstrapping and trading. If the mobile device enters a network it uses
the Jini bootstrapping mechanism to find a suitable LUS and then uses the
Jini trading facility to obtain appropriate services.



Lo
ca

l P
or

ts

Application Level
Gateway

Jini Lookup
Service

Service Registrations in
Lookup Service

SMTP
Client

Client
Applications

Mobile Device

...

WWW
Browser

Hosting
Network

Proxy

Proxy

Proxy

Proxy 4. Direct Communication

2. lookup (service)

3. upload Proxy

Proxy

e.g., reconfigure!

Jini-enabled
Connection

Service (triggers
system activities)

1. Register as Service

Proxy

Fig. 2. Architectural overview of the gateway components

2. Binding of services and bridging of data. The respective proxies are
loaded into the application level gateway and the client applications are able
to use them. If the client application and the current service use the same
protocol, the proxy functionality is reduced to forwarding of data which
arrives at the local port to the host and port of the service. If they use
different protocols the proxy must play the role of a protocol converter.
Within the gateway the proxy can be plugged in in two different ways. If
simple forwarding is desirable, the gateway simply hands over the data to
a streaming interface of the proxy and accordingly expects the streaming
interface to return data which are sent back by the real server. If protocol
conversion is necessary, a programmatic interface of the proxy with certain
operations due to the semantics of the provided service is used.

3. Change Detection. The Jini lease mechanism is used to immediately detect
a locality change due to the fact that the user may spontaneously leave the
network. Part of the gateway architecture is a connection service responsible
for the detection of locality changes. It requests leases with a short duration,
e.g., one minute, from the LUS. This requires regular short term renewal of
the lease, i.e., some sort of a heartbeat. If the connection service fails to renew
the lease, it may try to find another LUS. If this also goes wrong it is very
likely that the device has left the host network and the connection service
informs the application level gateway about this event. This information can
be forwarded to currently plugged in proxies, which may take advantage of



it. Additionally it starts to periodically check for new Jini connectivity with
the help of lower level services such as DHCP (see below) and also forwards
this event to the application level gateway as soon as it has found a new
LUS.

4. Network Reconfiguration. To obtain basic network connectivity, usually
native services of the underlying operating system must be used. In the
area of mobile devices DHCP (Dynamic Host Configuration Protocol) is
often used to get an IP address and other bootstrap parameters from the
network but such configuration is normally only performed at boot time.
Since we can easily detect loss of network connectivity by the connection
service, it periodically triggers the DHCP client application to check for
new IP connectivity and reconfiguration of low level parameters, e.g., IP
gateways, net-masks, naming services etc. If the connection service gets a
positive return from the DHCP facility about a successful rebinding on the
network level, it can go on to re-establish Jini connectivity as outlined above.

3.2 Legacy integration and enhanced features

If we want to reuse server implementations, it does not make sense to encapsulate
each server within a Java/Jini proxy on its own. Moreover we provide a generic
proxy which implements the streaming interface and is only parameterized with
the actual values, i.e., host name and port of the real service. However, these
proxies must be registered with the Jini Lookup Service. Since proper parame-
terization is necessary we have left this task to an extended version of our Scot
configuration repository [2], which is used to maintain service location within a
network. It could easily be replaced by another mechanism, ranging from a sim-
ple service using file based configuration information up to an arbitrary complex
service using relational databases or other repositories.

For some services we can reuse existing application level gateways, e.g., from
firewall toolkits like DeleGate [7], classical daemons like the lpd printer spooler
or standard WWW proxy servers like squid1 [16]. This possibility is enabled by
the application level gateway in terms of rewriting the respective configuration
files and databases and restarting the application level gateways. Jini is only
used to obtain the appropriate parameters from the host network.

4 Example
– An Authenticating SMTP Service for Mobile Users

To illustrate the idea of a Jini-based application level gateway consider a mobile
user who usually writes her mail off-line and in case she joins a host network,
e.g., in a hotel, at a customer, or her bureau, she wants to have her mail delivered
1 It is obvious that laptops running standard open operating systems like Linux which

incorporate such gateways in standard distributions are much easier to integrate into
the future open networks than devices using proprietary operating systems.



immediately to the Internet via the host network. This assumes that the mobile
user has some trust into the host network infrastructure, otherwise she would
refuse sending mail from a network until she joins a trusted network again.

For various reasons such as mail spamming, mail relaying, and billing for the
transmission the host network itself is likely to not allow anonymous sending of
mail from arbitrary mobile users that have joined the network. This is a major
difference to current practice in companies, universities, and other institutions
where the machines connected to the network are mostly under control of some
system administrator who is responsible for proper setup of the machines. Users
authenticate to the system at login time and are afterwards “known” to the
system. A mobile device, though, must first be considered to be not trustworthy
since it is unknown who is the responsible principal for that device.

Though the details of such authentication schemes for mobile users are topics
of current research, we can for the sake of simplicity assume that a mobile user
authenticates himself with a certificate that is publicly known or signed by some
authority of the host network that grants access to the services offered. For
example, a hotel might sign certificates of all the guests that check-in at the
reception. These certificates can be considered as “tickets” for using services, or
might itself issue certificates, e.g., in the form of smart-cards.

Institutions that provide a public SMTP (Simple Mail Transfer Protocol [14])
service will probably introduce another authentication scheme for mobile users
that are about to use the SMTP service. Surely, each institution is free to offer
enhanced services such as an authenticating SMTP (ASMTP) service that ex-
tends the SMTP protocol with some form of authentication. As an additional
requirement we are interested in providing a solution that enables to reuse exist-
ing components such as mail user agents (MUA) and mail transfer agents (MTA)
to offer a smooth migration path into a future world of Jini-based services.

The general architecture of the ASMTP infrastructure is shown in Fig. 3.
The client sends an e-mail to the application level gateway listening on the
standard SMTP port. After the appropriate Jini mail-proxy has been down-
loaded, the ASMTP proxy uses the security API to digitally sign the mail before
transmission. The digitally signed mail is then transferred together with the
client’s certificate to the ASMTP service.

The ASMTP server checks the digital signature with the client’s certificate
and additionally checks, by using some authorization database, whether the
client is allowed to use the ASMTP service. After authorization was success-
ful, the mail is handed over to the standard legacy SMTP service which then
routes the mail into the Internet.

One advantage of our approach is that on both ends we can simply reuse
existing applications such as the mail user agent on the client side and the
SMTP service on the server side. We basically introduce another intermediate
layer based on Jini that manages dynamic trading and implements additional
features such as authenticated communication.

Another advantage is that we explicitly make use of the code shipping fea-
tures of Java. The computation of the signature is initiated by the ASMTP proxy



AuthDB

ASMTP
Jini Proxy

Jini
Lookup-
Service

Internet

SMTP-Service
(wrapped) Delivery

ASMTP-Service
Jin

i P
ro

xy
 D

ownload

Registration

Application
Level
Gateway

Security API

Port

Authentication
+

Client Host Network

Fig. 3. Architecture for a Jini-based authenticating SMTP service

object but occurs entirely in the “trusted” environment of the client – seen from
the client’s perspective. Though the details of what degree of security can be
achieved is beyond the scope of this paper, new interesting applications of proxy
activities on the client side might arise.

5 Related Work

Recently, some new technologies were emerging aiming at the flexible and trans-
parent integration of mobile devices and consumer appliances into different net-
worked scenarios. Besides Jini there is ongoing work in the field of application
level integration such like Ninja [11], or Millenium [15] but also in the field of net-
work technologies, like Bluetooth [3], powerline networking [5, 9], or HAVi [4],
for instance. Being in their infancy, we believe there are several migration steps
in between – like ours – from todays configuration scheme to a fully automated
integration promised by some of the technologies mentioned.

There are different approaches for service trading which could be used in
general. We will briefly discuss selected examples:

– Service Location Protocol
SLP [21] is a protocol which aims at the location of arbitrary services within
an IP network. Its bootstrapping and trading facilities can be compared to
Jini but it only provides information in the form of name-value lists instead
of objects. In contrast to Jini, SLP can even be used in the absence of a
central service registry.

– Secure Directory Service (SDS)
SDS [6] is part of the ICEBERG project [8] located at the University of



Berkeley. Similar to the Lookup Service we use as part of Jini, the SDS acts
as a distributed and fault tolerant repository for service announcements.
XML is used for describing service properties and the matching of services
in a SDS lookup call.

– Universal Plug and Play (UPnP)
UPnP [20] is a recently announced service trading infrastructure built on
top of HTTP-based multicast-protocols. Services register their URL with a
central Simple Service Discovery Server together with an IETF-standardized
type description. Clients query this server to obtain URLs of the desired type.
Similarly to SLP, UPnP defines means for service trading without a central
registry.

– CORBA Trading Object Service
The CORBA Trading Object Service specified by the OMG [12] allows to
register and find particular CORBA objects by specifying an arbitrary set
of properties, such as type, name, location, costs etc. Compared to Jini,
matching of properties is not restricted to exact and static values but allows
for value ranges and dynamic property changes. A special language is defined
for the specification of requests. Additionally a distributed implementation
of the trading service is possible, which currently is not in the main scope
of Jini. This CORBA service seems to be a more powerful mechanism than
the Jini Lookup Service, especially with regard to scalability. However, in
contrast to Jini, CORBA lacks a convenient or even portable bootstrapping
mechanism, i.e., it is hard to obtain an initial reference of anything at all
when a client enters an unknown network.

6 Conclusion and Future Work

We have shown that Jini is a valuable technology for the integration of mobile
devices into arbitrary host networks, at least for stateless services or services
which do not depend on long term network connections such as telnet or ftp.
With our application level gateway it is not only possible to unburden the user of
a mobile device from the awkward and error-prone reconfiguration of client ap-
plications, but also to allow for value added extension of certain services. A main
advantage of our solution is to reuse both client and service implementations and
to enable a seamless migration to future distributed infrastructures.

In the future we are planning to define a standard API for secure services,
e.g., by using upcoming smartcard technologies like the Java Card API [10] for
authentication purposes. Currently we have a focus on the transparent integra-
tion of a mobile device into its host network. To gain location-awareness it is
possible to extend the connection service, e.g., in order to take full advantage of
available services or contents. The big picture is an open network infrastructure
integrating legacy devices and services (see [1]) as well as future component-
oriented distributed applications. We believe that Jini is a well-suited enabling
technology for our vision.



Acknowledgements

We would like to thank Friedemann Mattern for discussing an early draft of this
paper.

References

[1] Gerd Aschemann, Svetlana Domnitcheva, Peer Hasselmeyer, Roger Kehr, and
Andreas Zeidler. A Framework for the Integration of Legacy Devices into a Jini
Management Federation. In Proceedings of Tenth IFIP/IEEE International Work-
shop on Distributed Systems: Operations and Management (DSOM’99), October
1999.

[2] Gerd Aschemann and Roger Kehr. Towards a Requirements-based Information
Model for Configuration Management. In Proceedings of 4th International Con-
ference on Configurable Distributed Systems (ICCDS’98), pages 181–189. IEEE
Computer Society Press, May 1998.

[3] Bluetooth Consortium. The Bluetooth Project. http://www.bluetooth.com/,
1999.

[4] HAVi Consortium. The HAVi Specification: Specification of the Home Au-
dio/Video Interoperability Architecture Version 1.0 beta, November 1998.

[5] Nor.Web Consortium. Nor.web’s digital powerline solution. http://www.nor.

webdpl.com/, 1999.
[6] Steven Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony Joseph, and Randy Katz.

An Architecture for a Secure Service Discovery Service. In Fifth Annual Inter-
national Conference on Mobile Computing and Networks (MobiCom’99), Seattle,
WA, August 1999. Draft version, accepted for publication.

[7] DeleGate Home Page. http://www.delegate.org/.
[8] ICEBERG Project Home Page. http://iceberg.cs.berkeley.edu/.
[9] Siemens Inc. Powerline Communication. http://www.siemens.de/, 1999.

[10] Java Card Technology. http://java.sun.com/products/javacard/.
[11] Ninja Project Home Page. http://ninja.cs.berkeley.edu/.
[12] OMG. CORBA Object Trader Service, December 1997. Available at http://www.

omg.org/.
[13] Charles E. Perkins. Mobile networking in the internet. Mobile Networks and

Applications, 3(4):319–334, 1998.
[14] J. Postel. Simple Mail Transfer Protocol. Internet RFC 821, August 1982.
[15] Microsoft Research. The Millenium Research Project. http://research.

microsoft.com/sn/Millenium/, 1998.
[16] Squid Internet Object Cache. http://squid.nlanr.net/Squid/.
[17] Sun Microsystems Inc. Jini Architecure Specification – Revision 1.0, January

1999.
[18] Sun Microsystems Inc. Jini Discovery and Join Specification – Revision 1.0,

January 1999.
[19] Sun Microsystems Inc. Jini Lookup Service Specification – Revision 1.0, January

1999.
[20] Universal Plug and Play Homepage. http://www.upnp.org/, 1999.
[21] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location Protocol

(SLP). Internet RFC 2165, June 1997.


