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Abstract—TIn this paper we suggest a multiagent based middle-
ware architecture that is particularly suitable for supporting wire-
less sensor network deployments in industrial environments like
mines and chemical processing plants. Our intention is to make
the proposed middleware architecture to be as closely aligned
to the Foundation for Intelligent Physical Agents standards as
possible. The existing agent based solutions for wireless sensor
networks lack some important features that these standards
mandate and thus reduce their interoperability with other existing
or upcoming agent based systems. These standards that we choose
for our middleware have the potential of providing a more reliable
event reporting mechanism than the one supported by existing
agent based middleware.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of tiny
microelectromechanical devices with sensing and wireless
communication capabilities. Their use is on the rise in different
application scenarios since their introduction less than a decade
ago. As is true of any new technology, their rapid acceptability
is also occasionally marred by technical difficulties arising
due to the specific requirements posed by different application
scenarios. For instance, in industrial setups like underground
mines, it is very difficult to ensure the connectivity of the
deployed WSN due to the geometry of these underground
structures. This difficulty in wireless communication under-
ground, coupled with inherent problems of node failures due
to running on low battery power, results in partitions in the
deployed WSN. Additionally, in almost all industrial setups,
it is one of the basic worker safety issues to ensure a safe
working environment for them. Coming back to the scenario
of an underground mine, safety engineers might want all the
miners to know the average temperature and concentration of
other hazardous gases in close proximity to them. Similarly, in
a chemical processing plant, workers should be aware of the
environmental conditions around them and should immediately
be informed in case any chemical spills happen around their
workplace. Any WSN deployment in such industrial setups
should meet this Proximate Environment Monitoring (PEM)
[3] requirement of the users.

In addition to PEM, another requirement on such a deploy-
ment could be not only to detect hazardous gaseous mixtures
(or chemical fumes) but to track them too. This tracking should
be done while keeping the nearby miners informed about it.
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Additionally, some sort of actuation support might also be
required in most cases. These actuation decisions should be
performed in the network under very tight timing constraints
without going through a fixed base station, if there is any. On
top of that, one might also want the deployed WSN to be
shared by multiple applications performing different tasks like
detecting and tracking gas plumes, controlling mine lighting
system and monitoring the structural health of the mine.
Furthermore, achieving reasonable levels of fault tolerance in
WSN applications is almost always desired. However, these
high levels of fault tolerance are not always easy to achieve
especially in the event of frequent node failures and problems
related to wireless communication in the environmentally
challenged scenarios under consideration. All these require-
ments dictate having a middleware that allows dynamic and
proactive behavior. We argue that this behavior can best be
provided by Multiagent (MA) based middleware coupled with
mobile base stations to cope with the sparse WSN topology in
the environmentally challenged scenarios under consideration.
Since in literature the term agent based middleware and MA
based middleware has been used interchangeably, we use both
these terms in this paper. The term MA based middleware en-
compasses the other though. Since the middleware architecture
that we suggest in this paper is based on MA paradigm, it is
appropriate to present a brief introduction of agents first.

A. Agents and their Benefits in WSNs

According to [8], an agent is anything that can perceive its
environment through sensors and act upon that environment
through actuators. When such an agent tries to optimize some
performance measure it is called a rational agent. A MA system
consists of several such agents that can interact with each other
to achieve their assigned goal. One important characteristic
of an agent is that it can move from one node to another
in carrying out its assigned task. Consequently, there are two
types of agents in a MA system, namely, static and mobile.
Though this agent mobility concept has its roots in mobile
code paradigm, there is a slight difference between the two.
As opposed to simple mobile code, a mobile agent starts its
execution at each node from the same point at which it leaves
it in the previous node. For this purpose, mobile agents have to
carry their code, data, and state information across migrations.
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Agent based middleware for WSNs has the potential of
providing proactive reprogramming of the network along with
benefits like in-network decision making and actuation [4].
Some of the other most prominent benefits of agent approach
in WSNs include better energy usage of the network nodes by
doing in-network data aggregation; fault tolerance by avoiding
agent visits to the nodes that are running low on battery; and
suitability with the disconnected nature of WSNs by injecting
agents using handheld gadgets. Agent based approach also
allows multiple agents to run on a single node performing
different functions, thus effectively sharing network nodes for
multiple applications [4].

B. Problems with Existing Agent Based Approaches in WSNs

There are some successful implementations of agent based
middleware in WSNs like Agilla [4] and TinyLime [6], both
of which are based on the tuplespace paradigm [7]. Agilla is
an agent based middleware that uses agent mobility feature
to support scenarios like detecting and tracking wildfires.
However, the current agent based middleware for WSN, e.g.
Agilla, not only lack compliance to Foundation for Intelligent
Physical Agents (FIPA) standards [1] but also elaborate mech-
anisms to support reliable communication between agents.
Agilla has been developed on top of TinyOS [2] and its
agents communicate with each other using a shared memory
paradigm called tuplespaces. Though the tuplespace paradigm
provides a decoupled way for agents to communicate with
each other, it has its problems when it comes to reliable event
reporting between agents. Agilla has extended tuplespaces
with a mechanism called reactions. Reactions are a way for
agents to insert template tuples in the local tuplespace of a
node telling middleware to inform them if a matching tuple
is inserted by some other agent. However, these reactions
work only locally within a single node in Agilla, effectively
limiting event reporting to a single node. Agilla also provides
remote tuplespace operations that agents can use to coordinate
their activities. However, these operations require location
parameter to work. These remote tuplespace operations can
only work on tuplespaces of one-hop neighbors of a node, since
Agilla maintains neighbor-list on each node containing location
information of only one-hop neighbors of that node. All this
implies that when an agent detects an event its inserted tuple in
the local tuplespace can only trigger reactions on that particular
node. In case of a fire detection and tracking scenario, the
agent detecting the event fire would insert a tuple in the local
tuplespace of that node on which it is currently running. The
fire tracking agent has to be on the same node in order for
it to be informed about this event or both capabilities of fire
detection and tracking should be delegated to a single agent.
In the latter case, the size of the agent would become very
large, thus incurring high communication costs while migrating
node to node in the network. In our middleware architecture,
we have addressed this uncertainty problem by providing a
mechanism for agents to find the location of other agents.
Agents detecting an event can query the location of agents
interested in that event from Cluster Directory Agent (CDA)

maintained at the cluster head(explained in §III-A). This makes
them communicate with each other easily and removes the
uncertainty involved in event reporting process.

C. What is FIPA Compliance?

We strongly believe in standards compliance for agent
based middleware in WSNs, since it brings twofold advan-
tage. First, it provides wealth of knowledge that could be
utilized to build better systems. Second, different agent based
middleware for WSNs could be made interoperable, if they
follow FIPA standards. We believe that the next step in agent
based middleware approaches for WSNs is to move towards
standards compliance. Our middleware architecture is an effort
to achieving the same goal.

FIPA was established in 1996 as a standardization body for
developing standards for software agent technology [5]. It has,
since then, defined several standards that MA systems can be
made compliant to. Some of them are suitable for resource
rich environments and, we believe, some are also suitable
for resource constrained environments. We are focusing on
making our middleware architecture compliant to those FIPA
standards that are suitable for resource constrained environ-
ments. These standards mandate having an Agent Manage-
ment System (AMS), a Directory Facilitator (DF), and Agent
Communication Language (ACL) standard for communication
between agents in a MA system.

The rest of the paper is organized as follows. In Section
II, we mention some related work on agent based systems
and other related techniques in WSNs. Section III describes
our middleware architecture. Section IV describes a simple
mechanism of choosing a cluster head in our approach. Sec-
tion V describes one possible way for event detection using
our approach. Finally, Section VI provides some concluding
remarks.

II. RELATED WORK

There are several successful implementations of multiagent
based middleware in the traditional distributed systems like
JADE [12] and AGLETS [9]. Java Agent Development Frame-
work (JADE) is the most well known FIPA compliant open
source middleware platform in traditional distributed systems.
For WSNs, multiagent paradigm is relatively a recent idea
that has been attempted by few researchers. One such effort
is Agilla, also mentioned in the previous section, which is a
mobile agent based middleware developed on top of TinyOS
for WSNs. One specific application of this middleware, men-
tioned by its developers, is in fire fighting applications. They
show the flexibility of their approach in detecting and tracking
fires along with few other applications. This middleware not
only lacks compliance to FIPA defined standards that should
be present in a system for it to be interoperable with other
FIPA compliant agent based systems but also an unreliable
event reporting mechanism as explained earlier in Section I-B.

The use of agents has also been suggested for power man-
agement in WSNs in [10]. Authors suggest using interpolation
as a technique by the agents to decide the redundant nodes



which could be put to sleep in a WSN. Maté [11] introduces
the idea of writing WSN programs in TinyScript which is a
scripting language that is compiled into executable bytecode
for an application specific virtual machine. This allows a
program to be flooded in the network until all the nodes have
a copy of it. It is intended to retask a WSN with a single
program at a time. This limits its flexibility to some extent.
The MA based approach is more flexible than this in the
sense that agents in a multiagent system can be assigned to
different tasks. In [6], authors suggest an extension to Lime
middleware [7] for mobile and ad hoc networks and name
it TinyLime. TinyLime makes sensor data available through
tuplespace interface, thus, effectively providing an illusion
of shared memory between applications. Though it provides
notions of proximate and context aware settings for WSN
applications, its lack of support for multihop communication
and restriction that the mobile data collectors could only collect
data from the nodes within one hop range limits its flexibility.

In [13], authors suggest a multilayer cognitive agent frame-
work for hybrid distributed sensor networks. They claim
to present a FIPA compliant architecture but their notion
of sensors includes devices like palmtops, smart sensors,
laptops, single board computers and mobile robots. Region
Management Stations (RMS) and Application Agent Platforms
(AAP), that are connected to wireless mobile nodes and
wired network nodes respectively, are also powerful desktop
workstations. The four types of agents, namely, sensor agent,
service provider agent, application agent, and interface agent
that they suggest all run on either AAP or RMS.

Approaches like Couger [15] and TinyDB [14], that model
a WSN as a distributed database system, has the advantage
of providing easy to write declarative queries. These queries
provide the user with a very easy method of interacting
with a WSN without specifying any execution details. These
approaches normally develop a semantic routing tree rooted
at the base station that is used to disseminate queries in
the network as well as to collect the result back at the
root. Considering the mobile base station scenario like in an
underground mine, the cost of developing a new semantic
routing tree each time rooted at the current location of the
user and associated communication costs, both in developing
the routing tree and subsequently servicing the user’s query,
would be prohibitively high [3].

III. MIDDLEWARE ARCHITECTURE

In our middleware approach, there are two types of agents
in the system, namely, management agents and application
agents. The management agents are part of the middleware and
perform management tasks, whereas the application agents are
part of the application layer and perform user assigned tasks. In
addition to components modeled as agents in the management
layer, there are non-agent components also. These non-agent
components, namely, agent mobility manager and communi-
cation subsystem (see Figure 1), provide agent mobility and
message communication services respectively. Additionally,
two other components, namely, Neighbor List Manager (NLM)

Multiagent Based Application

Application Application Application Application
Agent Agent Agent Agent
Multiagent Based Middleware
T

‘ Agent Mobility Manager ‘

LSDAC

‘ Communication subsystem

Sensor Operating System

Sensor Node Hardware

Fig. 1. Middleware Components on Cluster Heads

and Local Sensor Data Acquisition Component (LSDAC)
are modeled as non-agent components. The reason behind
modeling some of the management components as agents is to
make our middleware more flexible. In the event of a cluster
head running on low battery, the agent mobility manager can
migrate these management agents on any of the neighboring
nodes thus assigning it the role of a new cluster head as
we explain in Section IV. Therefore, the components that are
responsible for managing a cluster are modeled as agents and
other components that are present on all nodes are modeled as
simple components.

Our middleware’s network topology is based on the concept
of clustering, which implies that the WSN is divided into
clusters each managed by a cluster head. Consequently, there
are some additional management agents on cluster heads that
are not present on cluster members. This approach helps
save on communication costs by facilitating more localized
communication between cluster heads and cluster members.

A. Middleware Components on Cluster Heads

The following are the management agents that are present
on cluster heads.

Cluster Management Agent: Cluster Management Agent
(CMA) acts as a controlling authority in a cluster. All the ap-
plication agents, present in its managed cluster, are registered
with it. It controls their life cycle and can create/activate or
terminate any of them. It shares its agent termination authority
with Node Management Component (NMC) that is present on
each member node of a cluster. The inclusion of the CMA
makes our middleware compliant to the FIPA standard that
mandates having an AMS in a MA system.

Cluster Directory Agent: All the application agents in a
cluster, along with the services they offer, are registered with
it. If an application agent needs a service offered by some other
application agent in the same cluster, it can query CDA. All
agents’ ids providing the desired service are returned to the
querying agent which can communicate with any/all of them.
Both CMA and CDA access the same repository maintained
on the cluster head. This arrangement is made keeping in mind
the constrained resources of wireless sensor nodes. It also
eliminates the need of synchronizing two different repositories,
if CDA and CMA were maintaining them separately. This



repository has a unique ID for each agent running in the
cluster. The uniqueness of this ID is ensured by CMA. Since
each application agent in our middleware architecture offers
just one service, it is easy to maintain just one record for
each agent. Example of a service offered by an agent could
be determining average gas concentration, average temperature
of a set of nodes, gas detection, gas plume tracking etc. The
inclusion of this agent makes our middleware compliant to the
FIPA standard that mandates having a DF in a MA system.

B. Middleware Components on Member Nodes

The following types of Components, except for the Node
Management Component (NMC), are present on all the nodes
including cluster heads.

Local Sensor Data Acquisition Component. The task of the
Local Sensor Data Acquisition Component (LSDAC) is to get
the local sensor data from the node. If a node has multiple
sensors, then it gets data from all the sensors on a periodic
basis. This component can be tasked to get data from different
sensors in a node at different rates. It makes this sensor data
available to application agents by placing it in a repository
that contains data freshness parameter also. This component
can also maintain a history of readings of sensors and can be
configured according to the application requirements.

Node Management Component: Each node, except for the
cluster head, has a Node Management Component (NMC)
whose task is to register the node with the CMA of the
cluster that it is part of. It is also responsible for reporting
the arrivals of application agents on a node. As soon as an
application agent arrives at a node, NMC registers it with
the CMA except for when it migrates from a cluster head
node to a member node. When an application agent migrates
from a member node of one cluster to a member node of a
neighboring cluster, then the NMC of the source node sends
a leave message to its cluster head and the NMC of the
destination node sends an arrival message to its cluster head.
There is no need to re-register application agents with the CDA
after each migration, since the service that application agents
offer stays the same across migrations. However, when an
application agent arrives at a node from a neighboring cluster’s
member node, then its offered service is also registered with
the CDA of the destination node’s cluster head. This service
registration message is combined with arrival message that is
sent to register the application agent with CMA of cluster
head. The NMC also shares the authority of removing an agent
to free up some resources for high priority agents running
on the node. When it does that then it needs to inform the
cluster head’s CMA and CDA by sending a single message,
so that they can remove that application agent’s record from
the repository that they maintain.

Neighbor List Manager: It keeps an updated list of all the
one hop neighbors of a node. As soon as an agent residing
on a node wants to migrate to any of the neighboring nodes,
it can get the neighboring node’s id from this list. The NLM
periodically updates this list so as to remove any neighbors
that might have died or moved out of one hop distance from

the node.

Agent Communication Language: FIPA standards provide an
Agent Communication Language (ACL) that agents can use
to communicate with each other. In our suggested middle-
ware architecture, agents communicate with each other using
an asynchronous communication paradigm. Each node has
a Message Queue (MQ), maintained by the communication
subsystem, containing messages for agents along with their ids.
When a message arrives at a MQ of a node, the corresponding
agent is informed by the communication subsystem of the
middleware. Agent communication can take place between
agents residing on a single node or between agents residing
on different nodes. Since messages are sent by agents after
getting the position of their communication counterpart agents
from cluster head’s CMA and/or CDA, the communication can
always be unicast and more reliable. However, there is also a
possibility of broadcasting a message to all one hop neighbors
of a node in case of some critical event detection. For the sake
of brevity, we don’t mention message primitives provided by
the FIPA ACL standard here.

IV. CHOOSING A CLUSTER HEAD

In our middleware architecture, cluster heads perform some
additional management functions than the member nodes of
a cluster. Therefore, the choice of cluster head is important
to ensure the longevity of the network. Initially, the role of
a cluster head is assigned at the time of deployment. During
operation of the network if the cluster head runs low on battery
at some point in time, it transfers the management agents and
associated repositories to one of its neighboring nodes that still
has more battery power. Since all the management agents are
modeled as agents, they can be migrated to other neighboring
nodes by the agent mobility manager. If all the nodes in the
neighborhood of the cluster head also run low on battery,
then the search for a node to act as a new cluster head is
extended to two hop neighbors and this process continues until
an alternate node for the role of cluster head is found or the
current cluster head dies due to low battery. If it dies due to low
battery, then the member nodes of that cluster have no other
option but to join other clusters. Their NMCs can broadcast
a fresh cluster joining request with progressively increasing
radio power. If they are unsuccessful, then they have no other
option but to serve the rest of their lives as standalone nodes
serving application agents, if they receive any.

V. EVENT DETECTION PROCESS

We elaborate the event detection process by giving an
example from an underground mining scenario (Figure 2).
Each mining team has at least one handheld device that acts as
a mobile base station. This mobile base station could be used
to inject Gas Detection (application) Agents (GDAs) in the
deployed WSN. Note that the use of mobile base stations can
help tackle the problem of connectivity of nodes with a fixed
base station, if there is one. The injected application agents
could be tasked to move proactively to the nodes observing
higher than usual gas concentration or to perform PEM. As



App. Agent App. Agent |
&Gas Delectionﬂ [ CDA J [ CMA J (Gas Tracking)
Gas Emission
Detection

Request for Gas

Tracking Agents Gheck for Gas
| Tracking Agents

opt: [ No Gas Tracking Agent Found]

Agent Creation Request,
<<create> | APP: Agent
Notify | (Gas Tracking)

Gas Tracking Agent IDs

Report Event

Gas|Plume  |Gas|Plume

[*Tracking [Tracking

Fig. 2. Gas Plume Detection and Tracking it

soon as an agent is injected in the network on a node, NMC
of that node registers it with the cluster head’s CMA and it’s
offered service with the CDA by sending a single message.
If the application agent needs some local data of the sensors
of that node, it can directly query the LSDAC and migrate to
any of the neighboring nodes after consulting the neighbor list
maintained on the node by the NLM. If an application agent
decides to search for some service that is offered by some other
agent in that cluster, it can query the CDA of the cluster head
remotely. Since each node is already registered with a cluster
head, agents present on either of them can easily communicate
with the other. Application agents can be terminated either by
the CMA or by NMC. In that case they are unregistered from
CMA and CDA both by sending a single message. This agent
termination feature is useful in those situations where resources
for high priority agents are needed.

Once emission of a gas is detected by any of the GDAs, it
requests the CDA for a list of all the Gas Tracking Agents
(GTAs) that are present in that particular cluster. If there
are any GTAs present in the cluster, the CDA provides this
information to the requesting agent. If there are not any GTAs
present in the cluster, the CDA requests CMA to create/activate
a GTA. After creation/activation of a GTA, the CMA notifies
the CDA about it. The CDA in turn communicates the ID of
the created agent to the requesting GDA that can communicate
the detected event to it. Then GTA can follow the body of the
detected gas by migrating to neighboring nodes and by cloning
itself. These GTAs can migrate to other nodes by querying
the neighboring nodes’” LSDACs. GDAs and/or GTAs on the
node(s) that have observed increased gas concentration follow
the same process to look for an actuation agent in the cluster,
for performing some action like turning on the ventilation fan
in the mine, by querying the CDA. Since it is very likely that
more than one GDA detect higher gas concentration and all of
them inform the corresponding actuation agent, it is very likely
that this redundancy will ensure a more reliable event reporting
to the actuation agent that can cause the desired actuation. Note
that having this cluster based strategy, along with management
agents like CMA and CDA present on the cluster heads, brings
twofold benefits in event detection process. First, it makes it
easier for an agent that has detected an event to communicate

it to the corresponding actuation agent. Second, it keeps the
communication among agents localized inside a cluster as
opposed to the case where agents have to communicate with a
fixed base station to get location information of other agents.

VI. CONCLUSION

We have suggested a MA based middleware architecture
with potentially a more reliable event reporting mechanism
than the one supported by existing agent based middleware.
We elaborated the use of our middleware with an example
scenario from a WSN deployment in an underground mine. A
subset of those FIPA standards that are suitable for the resource
constrained environment of WSNss is included in the suggested
middleware. It is an ongoing work and we are working on
developing the first prototype of this system.
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