
Semantically Meaningful Data Exchange in Loosely Coupled Environments
C. Bornhövd, A. P. Buchmann

Dept. of Computer Science, Darmstadt University of Technology
64283 Darmstadt, Germany

ABSTRACT

When the Internet is used as a global infrastructure for
data exchange between autonomous participants, the ques-
tion of what a data object really means becomes crucial.
Unfortunately, many of the underlying assumptions about
the meaning of a given data object are given only implic-
itly. Thus, for a semantically meaningful data exchange, we
need to make these assumptions explicit by providing se-
mantic metadata. To be of any use this metadata has to be
based on commonly agreed upon vocabularies. In this paper
we present a framework for a meaningful data exchange be-
tween previously unknown participants, and the integration
of data from different providers. It is based on the use of
shared vocabularies, or ontologies, as a common interpreta-
tion basis for data and metadata. We present a fairly simple
representation for these vocabularies which uses Java as a
description language.

Keywords: semantic metadata, ontology, data integration

1. INTRODUCTION

The Internet may be seen as a global information carrier
used by consumers and providers to exchange data from
a wide range of topics. However, the combination of
data from independent, perhaps previously unknown partic-
ipants, is problematic because of heterogeneities in struc-
ture and meaning of the data. Thus, we need to map avail-
able data to a common representation model for further
electronic processing. In many business-to-business ap-
plications the overhead of point-and-click interaction out-
weighs the cost of this mapping.

In addition, many sources offer data in semistructured form,
such as SGML/XML, or HTML documents. They provide
no explicitly specified schema on which meaningful data
processing can be based. Even if data is made available
via relational or object-oriented database systems many of
the underlying modeling assumptions are only given implic-
itly, that is, they are in the minds of the designer, are spec-
ified in text documents not available externally, or are re-
flected in local applications. This context information [15]
is lost when data is exchanged across institutional bound-
aries. Thus, to exchange and process data from independent
participants in a semantically meaningful way, we need ex-
plicit information about its intended meaning. We use se-
mantic metadata to represent this additional information.

For example, travel information is made available by a
travel agency as HTML pages depicted in Figure 1. Given
this data, it is not clear what terms exactly mean, what time
format is used – is flight LH 400 to take off at 8:35 in the
morning, or 20:35 in the evening, what do the abbreviations
used for Meal mean, and so on. Without explicit informa-
tion about these implicit assumptions the available data is
of limited use.

To describe context information in an unambiguous way,
we use domain-specific ontologies [18, 16]. An ontology
provides an agreement about a shared conceptualization of
a given subject domain [10, 11]. The concepts specified
in the ontology provide a common vocabulary for which
no further negotiation concerning their meaning is neces-
sary. In addition, the ontology provides information about
the representation of the data described on the basis of the
model. In this way, the ontology can serve as a common ba-
sis for the interpretation of context information as metadata,
and thus enable a semantically meaningful data exchange.

In an ideal situation, all participants that make use of data
and metadata from a given domain should adhere to the cor-
responding ontology. In an imperfect real world, the model
must be extensible to allow ontologies on the consumer side
tailored to specific needs. Ontologies should follow exist-
ing description standards (such as SI standard units, or EDI-
FACT [13] for travel information) as much as possible to en-
hance acceptance by other participants. Domains for which
no such standards exist require new concepts to be speci-
fied. Depending on the subject domain at hand, this can be
done following a top-down approach as proposed in [5], or
a bottom-up approach as introduced in [20]. By providing
a way to add metadata and extend the ontology, we believe
that we can claim a reasonable combination of rigor and
flexibility that makes our model applicable in many real-life
situations.

In the next section we present an ontology-based framework
that supports semantically meaningful data exchange. In
Section 3 we show how ontology concepts are represented
using the Java programming language. Section 4 describes
how domain-specific ontologies are structured and orga-
nized in MIBIA. Section 5 gives a short comparison of
our system with existing prototypes. Finally, Section 6
provides conclusions.

1



Figure 1. Travel Data as Available on the Internet

2. THE MIBIA FRAMEWORK

We have implemented an ontology-based Java framework,
called MIBIA (MIX Based Integration Architecture), that
provides a platform for a semantically meaningful data ex-
change, and the integration of data from different providers.
Implicit assumptions about the meaning of the data to be ex-
changed are made explicit by mapping it to a common rep-
resentation model called MIX (Metadata based Integration
model for data X-change) [3]. MIX is a self-describing data
model since information about the structure and semantics
of the data is given as part of the available data itself, thus
allowing a flexible association of context information in the
form of metadata.

MIX is based on the concept of a semantic object. A se-
mantic object represents a data item together with its under-
lying semantic context, which consists of a variable set of
meta-attributes (also represented as semantic objects) that
explicitly describe implicit modeling assumptions.

In addition, each semantic object has a concept label as-
sociated with it that specifies the relationship between the
object and the real world aspect it describes. These concept
labels are taken from a commonly known ontology. Thus,
the concept label and the semantic context of a semantic ob-
ject help to describe the supposed meaning of the data. An
example of how data is represented using MIX is given in
Figure 3.

Our framework follows the classical mediator approach in-
troduced in [22], and is shown in Figure 2. For the time
being, components such as federation manager, and wrap-
per and ontology servers are colocated with the application
processing the data. However, it is feasible to view these
as generic Internet services that may be located remotely in
the future.

The bottom layer of the architecture consists of autonomous
data sources that provide data from a common subject do-
main, without sacrificing their autonomy. The available
data sources can be of different types, as long as a wrapping
component that maps local data to the common represen-
tation model is provided. The current prototype provides
mapping components for relational databases and XML
documents.
Data wrappers map local data structures and terms of a
source to concepts specified in the common ontology, and

add context information. This makes explicit the relation-
ships between data of a source and the real world aspects
being modeled. Thus, heterogeneities in the organization
and the terms used are resolved, and differences in the
underlying semantics are made explicit as far as possible.
Because the meaning of the data is usually known only
locally, it is preferable if the mappings are specified by
the institution owning the data. If the interpretation is not
provided at the source, the receiver can cast his or her own
interpretation as metadata for future use.

Data Wrapper Data Wrapper

Wrapper Server

Ontology Server

Repository

Data Wrapper

Ontology

Metadata

XML

Wrappers
Data

DB

Application

DB

Federation Manager

Figure 2. The MIBIA Framework
In MIBIA, data wrappers are implemented as Java classes
that are registered with the federation manager and can be
loaded by it to transfer data from the corresponding source.
Since data wrappers are instantiated on the same machine
as the federation manager, semantic metadata is added on
the machine of the federation manager and does not need to
be transferred from the machine on which the data resides.

By dynamically loading wrapper classes, it is possible for
the federation manager to keep only those classes in mem-
ory it actually needs to answer a data request. Wrapper
classes not available can be loaded from a designated wrap-
per server and are cached at the federation manager. This
allows for the flexible management and use of a huge num-
ber of data sources that may change frequently.

A wrapper server manages the wrapper classes for a
set of data sources. Because the federation manager can
download wrappers from wrapper servers, the storage and
management burden of the federation manager is lowered.
Keeping all wrapper classes for a given source at the same
wrapper server simplifies their use by different federation
managers, and eases wrapper maintenance because there is
only a single copy of each wrapper class.

2



The federation manager manages the available data
sources by keeping a metadata repository. This repos-
itory includes information about the concepts for which a
given source provides data, as well as access information
for this data, i.e., information about the required wrappers.
When it receives a data request, the federation manager uses
this information to load the appropriate wrapper classes and
route requests to them. To lower access costs, the feder-
ation manager caches all recently used wrapper classes in
main memory.

The wrapper classes return semantic objects represented on
a common description basis, and with additional context in-
formation to the federation manager. However, these ob-
jects may still be, dependent on the respective source, rep-
resented with relation to different semantic contexts, i.e.,
on the basis of different units of measure, derivation for-
mulas, coding conventions, or naming schemas. Therefore,
based on the explicit description of the underlying context
the federation manager tries to resolve these semantic het-
erogeneities by converting the data to a common context
using appropriate conversion functions. This common con-
text can be specified by the receiver of the data; see [3] for
details of the integration process.

The federation manager then returns the unified semantic
objects in the form of Java objects. The application views
the available data on the level of concepts from a domain-
specific ontology without being aware of their local organi-
zation.

An ontology server stores and manages the domain-
specific vocabulary, or ontology, underlying the federation.
An ontology describes a single domain and provides a way
to describe the concepts in that ontology independent of
any application or data source. Concepts are given as pre-
compiled Java classes (see Section 3) that can be down-
loaded and used by wrappers and applications.

The common vocabulary provides the extensible descrip-
tion basis to which data providers and consumers refer. On
this basis an explicit description of the meaning of the data
is given by mapping the local data to appropriate concept
classes. A mapping of data objects from different sources
to the same ontology concepts makes clear that they repre-
sent objects of the same class of real world phenomena. In
contrast, semantic differences are made explicit by mapping
data objects to different concepts whose semantic discrep-
ancies are described in the ontology.

If no corresponding concepts exist in the vocabulary, new
concepts have to be introduced by the corresponding data
source or the consumer of the data, and must be registered
with the ontology server. To ensure the consistency of the
ontology, new concepts have to be introduced by extend-
ing or specializing existing concepts in a predefined way to
avoid ambiguous specifications or homonyms. The consis-

tency of a given concept specification is ensured through the
language constructs of Java.

To request data, an application builds an SQL-like query
using concepts of the common ontology, and passes it to
the federation manager. The federation manager returns the
requested information in the form of semantic objects, i.e.,
objects augmented with metadata giving additional infor-
mation about their meaning. The application can then use
these objects without any further processing.

Wrappers and application programs are connected to the
ontology at compile time by using a specific pre-compiler.
This tool analyzes import statements of the given Java
classes and loads the necessary concept classes into the
respective local directory path.

3. REPRESENTING ONTOLOGIES IN JAVA

The use of ontologies as a common vocabulary for meta-
data, i.e., as “meta-metadata”, requires an agreed upon de-
scription basis on which ontologies can be specified. If no
such description basis exists we would need additional in-
formation for the interpretation of the available ontology.
Therefore, all participants should refer to the same specifi-
cation language as a common description basis for the spec-
ification of ontology concepts and their relationships. Such
a common specification language determines fundamental
language constructs for which no further negotiation con-
cerning their syntax and semantics is necessary.

Most specification languages used in AI may be broadly
classified as entity-relationship- and frame-slot-based lan-
guages. Entity-relationship-based languages depend on en-
tities and their attributes to specify concepts. Semantic
dependencies between different concepts are described by
introducing relationships between entities. In the case of
frame-slot-based languages, concepts and the relationships
between them are represented as so called frames. Different
aspects of a concept are specified as slots of the correspond-
ing frame. Even if the underlying language constructs are
relatively simple, ontologies specified using languages such
as KL-ONE, LOOM, KIF, or CLASSIC become quite com-
plex, and in general are difficult to understand and use by
an inexpert user.

Specification languages in AI, which could be used in
MIBIA, contain many features that are needed for inferenc-
ing support. Because in MIBIA, determining what concept
a given piece of data represents is most important and sup-
port of inferencing is of minor relevance, such languages
are needlessly complex and we can use a different, simpler
specification language.

For this reason, we use Java as the specification language
for ontologies. Because of its object-oriented language con-
cepts Java provides a description basis well suited for con-
cepts and their relationships.

3



Representing Ontology Concepts
In our common representation model, MIX, we distinguish
between simple and complex semantic objects. Simple se-
mantic objects represent atomic data items, such as simple
number values or character strings, with its underlying se-
mantic context. In contrast, complex semantic objects can
be understood as heterogeneous collections of semantic ob-
jects, each of which describes exactly one attribute of the
represented phenomenon. These subobjects are grouped un-
der a corresponding ontology concept. The semantic con-
text of complex semantic objects is determined by the sum
of the context information of their subobjects.

The attributes of a complex semantic object are divided
into those used, similar to a set of key attributes in the
relational model, to identify an object of a given concept,
and additional attributes that might not be given for all
objects of the concept. Identifying attributes make it
possible to determine if two semantic objects represent the
same real world phenomenon.

< OneWayFlight, {
< FlightSegment, {
< FlightNumber, 400 >,
< AirlineIdentifier, “LH”, {<AirlineCode, “TwoLetterCode”>} >,
< DepartureDate, “Jun 06 1998”,{<DateFormat, “Mon DD YYYY”>} >,
< DepartureTime, “08:35”, {<TimeFormat, “HH:MM”>} >,
< DepartureAirport, “FRA”, {<AirportCode, “ThreeLetterCode”>} >,
< ArrivalAirport, “JFK”, {<AirportCode, “ThreeLetterCode”>} >,
< ArrivalTime, “11:00”, {<TimeFormat, “HH:MM”> } >,
< Service, “L”, {<ServiceCode, “OneLetterCode”>} >

} > } >
Figure 3. Representation of Flight Data in MIX

For example, the first flight described in Figure 1 may be
represented as a complex semantic object of the ontology
concept OneWayFlight as depicted in Figure 3. Each flight
is identified by its constituting flight segments. In turn,
flight segments are identified by flight number, airline, and
departure date. Additional properties, such as departure
time, or meal services are not required to identify a flight
segment and might not be given for all flight segments. The
semantic objects on the right side of Figure 3 provide the se-
mantic metadata, or context, needed to interpret the values
of the concepts on the left side. A formal and more detailed
presentation of the MIX model is given in [3].

In our Java representation concepts are defined by classes,
as shown in Figure 4. Each class contains an informal de-
scription (in English), and a formal computer interpretable
specification of the concept and its semantic relationships
with other concepts, i.e., generalization/specialization (is-
a), and aggregation (is-part-of). In addition, concept speci-
fications may contain concept-specific functions, e.g., com-
parison operators, or conversion functions.

For classes used by simple semantic objects, the formal
specification consists of the set of concepts inherited from,
a slot to keep the actual data value, and a list of semantic
objects representing the semantic context of an object of

this concept. Since the aspects to be specified in the context
are not determined by the concept, the context information
may vary between objects of the same concept.

...

...

...
Semantic Context

Functions

Class for a
Simple Semantic Object

Textual Description

Textual Description

Functions

Attributes

Value

extends i

Class for a
Complex Semantic Object

Class Classextends j

Identifying Attribute1

2Identifying Attribute

Identifying Attribute3

Class

Additional

Class

Figure 4. Representing Ontology Concepts in Java

For concept classes used by complex semantic objects,
the formal specification consists of the set of concepts
inherited from, slots for identifying attributes, and a list of
non-identifying attributes. The concepts of these attributes
can be understood as being in an is-part-of relationship
with the concept of the complex semantic object, i.e., they
describe properties or constituents. The non-identifying
attributes in a complex semantic object may vary between
different objects of the same concept. Figure 5 shows how
the semantic object from Figure 3 is represented in Java.

A OneWayFlight
represents a ...

FlightSegment

OneWayFlight FlightSegment

FlightNumber

AirlineIdentifier

DepartureDate

A FlightSegment
is a ...

DepartureTime

DepartureAirport

ArrivalAirport

ArrivalTime

Service

Additional Attributes

DepartureDate

"Jun 06 1998"

DepartureDate
specifies ...

DateFormat

Semantic Context

Figure 5. Java Representation of a OneWayFlight

Even if this approach does not provide such a mathemati-
cally handy representation, and is not as powerful in sup-
porting inference mechanism as languages like KL-ONE,
LOOM, KIF, or CLASSIC, it provides a less complex
and easier to understand representation of ontologies bet-
ter suited to our scope of application – providing a com-
mon interpretation basis for semantically meaningful data
exchange and integration.

In particular, using Java classes to represent ontology con-

4



cepts has two main advantages. First, by mapping local
constructs to the corresponding concepts we specify how
local data is mapped to Java objects which can be used by
an application program, according to the semantics of the
concept associated, without any additional translation, thus,
avoiding any impedance mismatch between programming
language and ontology specification language.

Second, concepts can be made available as precompiled
Java classes via an ontology server. Using Java as the
representation language for concepts allows their shipping,
as well as that of the corresponding semantic objects,
between different platforms without requiring any further
transformations.

4. ORGANIZATION OF ONTOLOGIES

When conceptualizing a given subject domain, we can
profit from subdividing the modeling task in separate
portions. Ontologies in the MIBIA framework support this
by being composed from separate modules, or theories,
which consist of closely related concepts. An ontology
concept is understood here to be an abstraction of a set
of real world phenomena which from the perspective of
the model are uniform. In this way, ontologies in MIBIA
consist of sets of specific theories that provide sets of con-
cepts belonging closely together, such as metric systems,
classification schemata, or nomenclatures. In contrast, an
ontology always provides a self-contained and consistent
conceptualization of a given domain from the application’s
point of view.

1Theory AOntology

7 Theory

Theory

4

Theory 8

6Theory
Theory 3

11

Ontology

Theory10

C

Ontology B

Theory

based on
5Theory

Theory

2

Theory 9

Figure 6. Modularizing Ontologies

Theories can be built on the basis of concepts from more
fundamental theories, as depicted in Figure 6. If a given the-
ory Tsub imports a more basic theory Tsuper , then all con-
cepts specified in Tsuper are also available in Tsub, and their
respective ontologies are in a corresponding relationship.
For example, because B includes all theories from A, A and
B are in a subset/superset relationship. That means, the sub-
ject domain of ontology B includes all aspects formalized in
A. In contrast, C and B are not in a subset/superset relation-
ship because they provide only an intersection of common
theories. However, this conceptual intersection indicates
that the domains modeled by B and C, are semantically re-
lated.

In addition to being a more natural and easier way to com-
prehend the organization of ontologies, the modularization
of ontologies and the use of an inclusion mechanism to
compose them from different theories provides the basis for
an easier extensibility of ontologies. In addition, it supports
the efficient exchange and use of ontologies because we can
assemble a minimal ontological basis, including only theo-
ries necessary for the cooperation task at hand.

In the MIBIA framework, theories are organized as Java
packages. Packages support a modular organization of on-
tologies as packages or sub-packages. Concepts (classes)
from more fundamental theories (packages) can be referred
to in a theory (package) with a Java import statement. Java
packages also provide a hierarchical name space. Thus,
naming conflicts between ontologies or theories specified
in different packages are impossible.

Representation and Domain-specific Ontologies
According to the semantics of theories or concepts, we
may distinguish between representation ontologies and
domain-specific ontologies [9]. A representation ontology
is domain-independent – that is, it contains only concepts
like numeric value or character string, for the represen-
tation of (domain-specific) concepts. An example of a
representation ontology in this sense is provided by the
Frame ontology developed in the Ontolingua project [5].
In contrast, domain-specific ontologies refer to a concrete
subject domain, and provide a consistent conceptualization
of this subject area.

Java-specific Representation Ontology

Representation Ontology Outside of Java

Domain-specific Ontology

Java Representation Language

Figure 7. Ontologies Based on Java

The distinction between representation and domain-specific
ontologies results in a clean separation of facts from a pre-
definition of their representation in the ontology. Thus, the
specification of a common representation ontology enables
the exchange and reuse of concepts from different ontolo-
gies developed independently.

The dependencies between representation and domain-
specific ontologies are illustrated in Figure 7 based on Java
as the underlying representation language. The language
constructs in Java, such as class, extends, static variables
provide the description basis for the specification of con-
cepts in Java. They are extended by a set of more pow-
erful representation concepts in the form of language spe-
cific classes as given in the java.lang package, e.g., Integer,
Float, or String. Based on this, language independent rep-
resentation concepts, such as generic container classes can
be specified; these can be used to specify domain-specific
concepts like OneWayFlight in Figure 3.

5



Integrating Ontologies from Different Domains
To use data from different domains in combination we have
to correlate different ontologies that may overlap, i.e., de-
scribe the same real world aspects, but use different con-
cepts to model the same phenomena. This poses the ques-
tion of how to resolve such differences on the ontological
level, and how to integrate ontologies from different do-
mains.

The basic requirement for integrating data from overlap-
ping subject areas is to expose and explicitly describe the
semantic relationships between the corresponding ontolo-
gies. In the literature several possible approaches for doing
this have been suggested. For example, in [21] the follow-
ing approaches have been discussed.

1. Concepts and their relationships common to the dif-
ferent ontologies are collected and given to a commit-
tee to resolve any differences by defining mutually-
agreed-upon terms. These are documented and the re-
sults distributed to all participants, who are expected
to adjust their usage to conform to the common terms
[17, 19].

2. All participants initially assume that all concepts are
used in a unique way. In the case of obvious dis-
crepancies, the corresponding terms are explicitly sep-
arated by using source- or domain-specific prefixes
[12]. Over time, the process of exchanging data – en-
couraged by the availability of the joint ontology – will
result in a convergence concerning a common under-
standing of concepts, although at no time complete co-
herence can be guaranteed. This approach, requires a
relatively stable set of concepts.

3. All participants assume that all concept names refer
to different real world aspects until they are explicitly
shown to refer to the same real world aspect. These re-
lationships are then explicitly codified as equivalence
rules, which form an explicit knowledge base that can
be managed by representatives of the different subject
areas. This approach, a similar form of which is found
in [16], is in the center of discussion in [21].

All of these approaches depend on the existence of a cen-
tral controlling instance or require participants to adjust to
the resulting ontology. This may sacrifice their autonomy,
and may need to be repeated for each participant entering
the federation. Thus, these approaches seem to be unsuit-
able for a cooperation of autonomous, perhaps previously
unknown participants in a worldwide and loosely coupled
environment like the Internet.

In MIBIA the following approach for integrating concep-
tually overlapping ontologies is used. It is similar to the
one followed by the Ontolingua project [5] concerned in
developing a suitable infrastructure for the common use of
knowledge bases on independent systems.

As a basis for the formalization of each subject area, a com-
mon pool of ontologies, organized as a graph of theories, is
available to all participants. Organizing theories and ontolo-
gies as Java packages, such a common concept pool may
be organized as a globally accessible directory service. The
underlying conceptualization of a data source or application
can be mapped independently of others to the correspond-
ing concepts.

If the ontology pool does not contain a needed concept, it
has to be enlarged. That is, a new concept has to be intro-
duced by supplementing or specializing an existing theory.

Accordingly, an extension of the existing ontology pool by
ontologies from new domains can be performed by succes-
sively adding the corresponding concepts. Thereby, the in-
tegration of new ontologies into the existing ontology graph
is guaranteed through the reuse of concepts and theories in
existing ontologies as much as possible. Multiple ontolo-
gies may share the same theories without affecting each
other. Because of such sharing, there is little risk of in-
troducing multiple concepts for the same real-world phe-
nomenon. The semantic relationships between affected on-
tologies are made explicit as follows: Common or closely-
related theories in two ontologies indicate semantic similar-
ities in both conceptualizations. For example, synonymous
concepts can be resolved to a single concept, which is then
used by all ontologies. Homonymous concepts can be dif-
ferentiated through different names, or by using ontology-
specific prefixes. Hyponyms and hypernyms are made ex-
plicit through the specification of corresponding general-
ization and specialization relationships between concepts in
the pool.

Any differences in the view or intended use of a real world
phenomenon in different ontologies are reflected in the exis-
tence of multiple concepts for that phenomenon, whereat it
is assumed that each concept has a different meaning. How-
ever, it is possible to compare concepts and to discover se-
mantic relationships between ontologies because all ontolo-
gies are represented on the basis of a common representa-
tion ontology.

The main difference of our approach to those discussed
above is that semantic relationships between different on-
tologies, such as synonym-, hyponym-, or hypernym-
relationships between their concepts, are explicitly de-
scribed in the integrated ontology pool. Here the modu-
larization of ontologies is important, as it supports the reuse
of concepts, makes it easier to create new ontologies, and
reduces the risk of overlap. In contrast, the approach de-
scribed in (3) specifies these dependencies through the in-
troduction of an additional description level.

The extension of the common concept pool by independent
participants makes it possible to independently intro-
duce new concepts and makes the existence of a central

6



controlling instance superfluous for many application
domains. The MIBIA prototype shows that it provides a
suitable solution for domains where common, compara-
tively stable conceptualizations can be reached, such as
travel services, an application domain which motivated the
current research and on which the prototype has been tested.

5. RELATED RESEARCH

Due to space limitations we discuss here only three ap-
proaches closely related to MIBIA.

Carnot [4] supports the development of applications op-
erating on heterogeneous data sources in an enterprise1.
It uses the Cyc ontology [14], which provides knowledge
from different subject areas, to make explicit the semantics
of the available data. Logical integration of a data source
can be performed independently from others by specify-
ing a bidirectional translation between local structures and
concepts from Cyc. Carnot allows uniform access to data
through the global view given by the source-independent
ontology of Cyc.

MIBIA does not provide a homogeneous view of the data
right away, but provides a framework for correctly inter-
preting data. Structural/schematic heterogeneities and dif-
ferences in terminology are resolved by appropriate wrap-
pers. However, differences in describing same real world
aspects by using different concepts, e.g., different units of
measure, scaling factors, or name schemas, are resolved at
query processing time. Thus, MIBIA allows to resolve se-
mantic heterogeneities dependent on the respective receiver
of the data. Carnot uses equivalence equations to specify
the relationships between local structures and Cyc concepts
that leave open what physical representation type the result-
ing data items correspond to. This makes their uniform pro-
cessing more difficult. In contrast, concepts in MIBIA are
represented as Java classes and data objects are given as
class instances. Finally, Cyc provides a monolithic model
for data in an enterprise. The situation of a much larger
set of autonomous sources from varying domains as they
are typical for the Internet requires extensibility of the com-
mon vocabulary. This is supported by a modular approach
as described in Section 4. Thus, in the MIBIA framework
we begin with a set of interrelated ontologies from different
domains.

OBSERVER [16] provides a framework for query process-
ing in distributed, heterogeneous systems. The content of
each source is described on an intensional level using ex-
isting ontologies. These descriptions function as an ab-
straction from the specific representation of a source to the
source-independent view of the ontology. Data objects are
seen as instances of entity types represented in CLASSIC.

1The InfoSleuth project [1, 6] investigates the use of Carnot technolo-
gies in a dynamically changing environment, such as the Internet.

OBSERVER allows the use of different ontologies for the
same domain to support the reuse of existing ontologies and
the scaling of the system. Since ontologies are not inte-
grated, semantic relationships, e.g., synonyms, hypernyms,
and hyponyms, have to be specified and managed by a sep-
arate component, and additional translation steps between
different ontologies are needed during query processing.

In contrast, MIBIA uses a unified set of ontologies from
different domains. Synonyms are avoided by modularizing
ontologies and reusing theories in different ontologies. Hy-
pernyms and hyponyms are made explicit by specializing or
generalizing concepts from other ontologies. Thus, the se-
mantic relationships between different ontologies are spec-
ified in the integrated ontology model, which makes their
management easier.

The COIN project [2] deals with the development of tech-
nologies to support uniform access to information from het-
erogeneous sources. The resolution of semantic hetero-
geneities is a major concern. Integration follows the context
interchange approach [7], which does not require static res-
olution of semantic heterogeneities, but resolves them dur-
ing query processing by comparing their contexts made ex-
plicit as metadata. To allow a meaningful comparison of
this metadata it has to be described using a common vocab-
ulary. Thus, COIN is based on the use of ontologies from
different domains which have to be integrated.

The main differences between MIBIA and COIN are the
ways in which ontologies and metadata are represented.
In COIN, a logic-based representation in the form of
horn clauses is used for ontology concepts and their
relationships, and the semantic context of a source. Context
information is given on the intensional level. In contrast,
concepts in MIBIA are represented as Java classes, and the
representation of semantic metadata is on the extensional
level, i.e., as part of the data objects. Thus, MIBIA supports
the integration of semistructured sources that provide
no explicitly specified schema to which metadata could
refer. In addition, metadata can be used directly, by the
application, without any further processing since it is
accessible as additional attributes of the data.

6. CONCLUSION

To allow a semantically meaningful data exchange between
independent participants we need commonly agreed upon
vocabularies to describe data and metadata. In this paper we
have shown how ontologies are used in the MIBIA project
to provide such a common interpretation basis.

In contrast to most approaches discussed in the literature
that represent context information on an intensional level,
we provide a more flexible approach to represent additional
information on the extensional level which is well suited
for the description of semistructured data. In addition, most

7



prototypes for the integration of data from autonomous
sources use logic-based specification languages for the de-
scription of ontologies. Instead, we use Java to specify on-
tology concepts and their relationships, thus avoiding any
impedance mismatch between programming language and
ontology specification language, and allowing the shipping
of ontology concepts between different platforms without
requiring any further transformations.

Our approach is not claimed to be applicable for every sub-
ject area. However, it provides a fairly simple and pragmatic
solution for many application domains, like travel informa-
tion, or brokering of products and services. The present
research was motivated by a request from a major travel
agency to help them extract data from the web and prepare
it for further automatic processing. Our prototype has been
proven feasible in this context.

Current work concerns the development of tools to support
the creation of wrappers for the mapping of different source
types to the common representation model, and for the
management of ontologies in MIBIA. We evaluate the use
of MIX and MIBIA technologies in the WE-trade project,
an EU sponsored international trade center to promote
East-West business-to-business e-commerce in which
multilingual product and service offers are brokered.

Acknowledgments: We gratefully acknowledge the
contributions of Ronald Bourret for his suggestions and
helpful comments regarding an earlier version of this paper,
and Michael Watzke for his help in implementing the
prototype.

REFERENCES

[1] Bayardo, R.J.; Bohrer, W.; Brice, R.; et al.: The InfoSleuth
Project, SIGMOD Int’l Conf. on Management of Data,
Tucson, Arizona, USA, 1997

[2] Bressan, S.; Goh, C.H.; Fynn, K; et al.: The Context
Interchange Mediator Prototype, SIGMOD Int’l Conf. on
Management of Data, Tucson, Arizona, USA, 1997

[3] Bornhövd, C.: Semantic Metadata for the Integration of
Web-based Data for Electronic Commerce, Int’l Workshop
on E-Commerce and Web-based Information Systems,
Santa Clara, CA, 1999

[4] Collet, C.; Huhns, M.; Shen, W.: Resource Integration
Using a Large Knowledge Base in Carnot, IEEE Computer,
Vol. 24, No.12, Dec. 1991

[5] Farquhar, A.; Fikes, R.; Rice, J.: The Ontolingua Server:
A Tool for Collaborative Ontology Construction, 10th
Knowledge Acquisition for Knowledge-Based Systems
Workshop, Alberta, Canada, 1996

[6] Fowler, J.; Nodine, M.; Perry, B.; Bargmeyer, B.: Agent-
Based Semantic Interoperability in InfoSleuth, SIGMOD
Record, Vol. 28, No.1, March 1999

[7] Goh, C.; Madnick, S.; Siegel, M.: Context Interchange:
Overcoming the Challenges of Large-Scale Interoperable
Database Systems in a Dynamic Environment, In: Proceed-
ings of the 3rd International Conference on Information and

Knowledge Management, Gaithersburg, Maryland, 1994
[8] Gruber, T.; Olsen, G.: An Ontology for Engineering

Mathematics, 4th Int’l Conf. on Principles of Knowledge
Representation and Reasoning, Bonn, Germany, 1994

[9] Gruber, T.: A Translation Approach to Portable Ontology
Specifications, Technical Report KSL 90-53, Knowledge
Systems Laboratory, Department of Computer Science,
Stanford University, California, 1993

[10] Gruber, T.: Toward Principles for the Design of Ontologies
Used for Knowledge Sharing, In: Int’l Journal of Human-
Computer Studies, Vol. 43, No.5/6, 1995

[11] Guarino, N.: Formal Ontology and Information Systems,
Int’l Conf. on Formal Ontology in Information Systems,
Trento, Italy, 1998

[12] Humphreys, B.L.; Lindberg, D.A.B.: The Unified Medical
Language Project: A Distributed Experiment in Improving
Access to Biomedical Information, MEDINFO’92, North-
Holland, 1992

[13] International Organization for Standardization / Inter-
national Electrotechnical Commission: Electronic Data
Interchange for Administration, Commerce and Transport
(EDIFACT), International Organization for Standardization
/ International Electrotechnical Commission, 1988

[14] Lenat, D.; Guha, R.: Building Large Knowledge-Based
Systems: Representation and Inference in the Cyc Project,
Addison-Wesley, Reading, Mass., 1990

[15] Madnick, S.E.: From VLDB to VMLDB (Very MANY
Large Data Bases): Dealing with Large-Scale Semantic
Heterogeneity, 21st Conf. on Very Large Data Bases,
Zurich, Swizerland, 1995

[16] Mena, E.; Illarramendi, A.; Kashyap, V.; Sheth, A.:
OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across
Pre-existing Ontologies, Distributed and Parallel Databases,
Vol. 8, No.2, April 2000

[17] Morris, K.C.; Mitchell, M.; Dabrowski, C.; Fong, E.:
Database Management Systems in Engineering, Encyclope-
dia of Software Engineering, John Wiley and Sons, 1994,
S.282-308

[18] Moulton, A.; Madnick, S.E.; Siegel, M.D.: Context
Mediation on Wall Street, In: Proceedings of the 3rd
IFCIS International Conference on Cooperative Information
Systems, New York, 1998

[19] Porter, J.H.; Henshaw, D.L.; Stafford S.G.: Research
Metadata in Long-Term Ecological Research (LTER), 2nd
IEEE Metadata Conf., Silver Springs, Maryland, 1997

[20] van der Vet, P.E.; Mars, N.J.I.: Bottom-Up Construction
of Ontologies, IEEE Transactions on Knowledge and Data
Engineering, Vol. 10, No.4, 1998

[21] Wiederhold, G.: Interoperation, Mediation, and Ontologies,
Int’l Symposium on Fifth Generation Computer Systems,
Workshop on Heterogeneous Cooperative Knowledge-
Bases, Tokyo, Japan, 1994

[22] Wiederhold, G.: Mediation in Information Systems, ACM
Computing Surveys, Vol. 27, No.2, 1995

8


