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Abstract. This paper presents a framework for warehousing selected Web
contents. In this framework, a hybrid (partially materialized) approach and
extended ontologies are used to achieve Web data integration. This hybrid
approach makes it possible to integrate DW data with Web-based information
resources as they are needed. The Ontologies are used to represent domain
knowledge related to Web sources and the logic model of data warehouses.
Moreover, we define the mapping rules between Web data and attributes of data
warehouses in the ontologies to facilitate the construction and maintenance
requirements of data warehouses.

1� Introduction

Building data warehouses (DW) and efficiently implementing decision support or
OLAP on them have become important tools for knowledge management and business
intelligence. External data, such as, new product announcements from competitors,
weather conditions at business activity location, and currency exchange rates may be
needed to carry out meaningful OLAP. Ignoring this influence may cause the results to
be incomplete, inexact or even totally incorrect [12, 15]. As Web technology develops,
a vast amount of external data is already offered on the Web. If OLAP can take
advantage of them, the resulting functions will be more powerful.
�����But warehousing Web data is a huge challenge. Some reasons are:
�����In a data warehousing environment, data is materialized in a DW and all queries are
applied to the warehouse data to achieve a good query performance. Data in the DW is
historical and nonvolatile. But most Web data is updated frequently, and the
maintenance of a data warehouse that depends on Web data is more difficult compared
with conventional data warehouses based on company-internal data. In contrast to the
data warehousing approach, some Web data integration systems [1, 5, 6, 8, 10, 11, 19]
adopt a virtual approach. In this approach, data remains at Web sources. When a query
is posed, related data is integrated on the fly to give a reply. One of advantages is that
data is not replicated, thereby guaranteeing to be consistent at query time. On the down
side, the quality of Web data may not be as tightly controlled as that of the DW data.
Moreover, since Web sources are autonomous, more sophisticated query optimization
and execution methods are needed.
      In order to reduce query response time, an appropriate set of Web data must be
selected for materialization. On the other hand, some queries might not be answered
only with materialized data in the DW. In order to support wider analyses on the DW, a
virtual approach can be adopted to integrate needed Web data for producing a reply.
     To integrate dynamically Web data with DW data, additional challenges must be
overcome:



•� The paradigm of the Web is radically different from the paradigm of the data
warehouse. Data on the Web is mostly unstructured or semistructured, while a data
warehouse is in most cases based on structured data in the relational or
multidimensional data models.

•� The process of integrating external (e.g. Web) data and internal warehouse data
exacerbates a number of problems, such as, data format inconsistency, and
semantic inconsistency.

     In order to tackle these difficult problems, we have made the following efforts in
our framework:
•� Adoption of a hybrid approach. We select a set of nonvolatile or frequently

queried Web data to materialize in the DW. With the aid of the virtual approach,
some queries can be answered using Web data that is not materialized in the DW,
or using a combination of warehouse data and Web data.

•� Selection of the MIX model (Metadata based Integration model for data X-change)
[3,4] as an internal data representation. This model represents data together with a
description of their underlying interpretation context, and uses domain-specific
ontologies to enable a semantically correct interpretation of the available data and
metadata. Ontologies as a common interpretation basis can help to resolve the
semantic inconsistency problem.

•� Definition of mapping rules in a system-specific ontology to generate
transformation codes semiautomatically. If Web data changes, e.g. because of the
introduction of the Euro among the currencies, the ontology can be extended, the
transformation rules can be modified, and mapping codes can be generated again,
which relieves the maintenance task of data warehouses.

2� Related Efforts

In the Squirrel project [16] and the Lore system [20], the hybrid approach has already
been discussed. The Squirrel project concentrates only on relational or object-oriented
data sources. Its goal of using a hybrid approach is to develop a general and flexible
mediator framework. Lore is a DBMS for managing semistructured information.
Lore’s external data manager provides a mechanism for dynamically fetching and
caching external data, and integrating them with data resident in the Lore system to
answer a user’s query. The integrated external data is up-to-date. There are some
important differences between our work and theirs. First, we integrate Web data in a
DW, rather than an object repository. Compared with an object repository, a data
warehouse based on a relational data model will introduce many different issues on the
Web data transformation, the query performance requirement, or the warehouse
maintenance. Second, in our framework, the partially materialized approach helps to
answer queries that could not be answered based on DW data alone, and the
dynamically integrated Web data is still historical and nonvolatile.
     Among the systems for information integration that use an ontology, the
DataFoundry project [9, 10] is similar to our research. It is based on a mediated data
warehouse architecture with an ontology infrastructure, which is used to reduce the
maintenance requirements of a warehouse. But some remarkable differences exist
between our work and theirs. First, we focus on the Web data. Compared with data in
scientific databases, Web data is unstructured or semistructured and has no explicit



schema. Second, DataFoundry caches the most frequently accessed data to reduce
query response time. In our framework, nonvolatile and frequently queried Web data is
materialized in a DW.
     The DWQ project [7, 8] also integrates information sources in the data warehousing
environment. They consider two critical factors for the design and maintenance of
particular data warehouse applications, which are conceptual modeling of the domain
and reasoning support over the conceptual representation. This approach provides a
system independent specification of the relationships between sources and between a
source and an enterprise model at the conceptual level. By using an explicit conceptual
model, the design phase and the maintenance phase of the information system can be
facilitated. However the DWQ project focuses only on those sources that possess a
schema. In our framework an extended ontology is used at the conceptual level, and
also a metadata based object-oriented data model is used for the logical level. This
makes it possible to integrate the Web data correctly and to generate transformation
processes semiautomatically.
     The rest of the paper is organized as follows. Section 3 gives a motivating example.
The framework of the system is introduced briefly in Section 4. The ontology and a
mediated data model are discussed in Section 5. Section 6 analyzes mapping
mechanisms from the Web data to a star schema. The process of using an ontology to
deduce transformation processes is discussed in Section 7. Section 8 will give the
conclusion and discuss our future work.
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We define our example in a tour offer application. To simplify the problem description,
we consider only tour packets for international city visits when the travel medium is
aircraft. Using a tour offer data warehouse, the following inquiries are often analyzed,
such as: Which city is the favorite choice in which month? What kind of hotel is
booked most? What kind of influence does the local weather or currency exchange
rates have on tour offers? Among inquired data, the weather data and the currency
exchange rates probably lie outside the business data of a travel agency, but can be
easily acquired from the Web.
     In our framework, we select the past average weather data and the most common
currency exchange rates for materialization in a DW. Fig.1 is the example of average
weather data of Paris in 1998.
     Sometimes, we also need to analyze, for example, why the monthly sold amounts of
a tour offer to Spain dropped from September 1998 to January 1999. Perhaps the
Spanish Peseta during that time became expensive. If we have no Peseta exchange rates
in the DW, we could not answer such a query. Fortunately, the Federal Reserve Bank
of St. Louis already offers historic monthly average exchange rates on the Web. We
can use a virtual approach to integrate them, and then to recompose them with
aggregation tour offer data from the DW to give the user a reply. Fig. 2 shows monthly
currency exchange rate of Spanish Pesetas to one US$ on the Web.
     A star schema of the tour offer data warehouse and a weather dimension table are
defined in Fig.3.



Fig. 1.  Paris’ average weather data in 1998

Fig. 2. The exchange rates of Spanish Pesetas to one US$

Fig. 3.  The tour offer data warehouse

4� The Framework for Warehousing Web Data

Our framework showed in Fig.4 is based on a federation manager and a set of
wrappers, which are introduced in [5]. In the framework, the federation manager (FM)
uses a global mediated data model (MIX model) to represent data from Web sources.

Note: Dew point is a humidity measure in Fahrenheit degrees;
Wet days are days with rain or melted snow or ice totaling 0.01 inches

Paris, France, 1998                                                                                                                Temps 

Month    Average H igh    Averag Low  Warmest Temp   Coldest Temp    Average dew point    Wet days

Jan             42                      34                    57                        1                         33                             20
Feb            44                       34                    59                       14                        32                            17
Mar           51                       38                    75                       21                        37                            19
April         57                       41                    79                       26                        39                            16
� � �

01/06/99-Updated 06:19 PM ET

Date EXSPUS
... ...
1998.08 151.72
1998.09 144.33
1998.10 139.23
1998.11 143.05
1998.12 142.08
1999.01 143.55
1999.02 148.52
...

Average of daily figures, Noon buying rates in New
York.
Source: Federal Reserve Bank of St. Louis and
Federal Reserve Board of Governors
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The transformation processor (TP) transforms the data in the MIX model to the data in
the DW, and loads the data into the DW. The task of the Incremental Maintenance
Processor (IMP) is to calculate the incremental parts when Web data is updated. At
first, the FM will integrate the updated Web data, the IMP will compare new MIX
objects with the old copies and calculate the incremental parts. The incremental parts
will also be transformed and loaded in the DW. The Query Processor (QP) provides the
interface for querying the data warehouse. Upon receiving a query, the QP first
determines the query on materialized data in the DW or on virtual data from the Web.
If the query needs virtual data, the QP will decompose original queries, rewrite queries
related to virtual data, and send them to the FM. After the replies are obtained from the
Web and the DW, the QP recomposes them and sends the final answer to the user. The
above process will be transparent to the user. The ontology repository consists of a
domain-specific ontology, which conceptualizes domain knowledge related to the
selected Web sources, and system-specific ontologies, which describe the data
warehouse logical schema and define the relationship between the mediated model and
the star schema of the DW. The Ontology Engine (OE) is an ontology processor,
whereat concepts in the ontology can be implemented as classes, and relationships or
functions in the ontology can be implemented as methods.

Fig. 4.   The structure of  warehousing Web data
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Fig. 5.  The weather ontology

Fig. 6.  The integrated weather data represented based on MIX

Weather Ontology

(define-class CityName ( ?cityname)
“ A cityname is the name of a city.”
:def ( and (format ?cityname FullCityName)
                 (String  ?cityname)))

 (define-class YearString ( ?yearstring)
“Yearstring is a kind of date notation, and is expressed as String.”
:def ( and (format ?yearstring “YYYY”)

                                  (string ?yearstring)))
(define-class YearNumber ( ?yearnumber)

“Yearnumber is a kind of date notation according to ISO 8601specific year format, and is
                 expressed as the number of years A. D.”

:def ( and (format ?yearnumber  YYYY)
  (integer-range  ?yearnumber)
             (= (i-lower-bound ?yearnumber) 0)
             (= (i-upper-bound ?yearnumber) � )))

(define-class  AverageHighTemperature ( ?averagehigh)
“An averagehigh is monthly average high temperature related to a city in a country. ”
:def (and (subclass-of  AverageHighTemperature  Weather-Temperature)
               (or(unit ?averagehigh Fahrenheit)
                    (unit ?averagehigh Celsius ))

                                      (float ?averagehigh )))
(define-function Fahrenheit-to-Celsius (?TF) : -> ?TC

“ A fahrenheit-to-celsius convert a temperature value in fahrenheit unit to the temperature
value in celsius unit, according to equivalence TC =( TF -32)*5/9. ”

:def (and (member ?TF  Weather-Temperature )
                (unit ?TF  Fahrenheit)
                (member ?TC  Weather-Temperature)
                (unit ?TC  Celsius)

                                  (= (/ (* (- TF 32) 5) 9) TC )))
���

CompSemObj=
 <Weather, {

<CityName, “Paris”,        {< CityNameCode, “FullCityName”>}>,
<CountryName, “France”,        {< CountryNameCode, “FullCountryName”>}>,
<Year, 1998,        {< YearFormat, “YYYY”>}>,
<MonthlyAverageData,{

<Month, 01,        {< MonthFormat, MM>}>,
<AverageHigh, 42,            {< AverageHighTempByMonth,  “Fahrenheit”>,<Scale, 1>}>,
<AverageLow, 34,        {< AverageLowTempByMonth,  “Fahrenheit”>,<Scale, 1>}>,
<Warmest, 57,        {<WarmestTempInMonth,  “Fahrenheit”>,<Scale, 1>}>,
<Coldest, 1,        {<ColdestTempInMonth,  “Fahrenheit”>,<Scale, 1>}>,
<AverageDewPoint, 33,    {<AverageHumidityByMonth, “Fahrenheit”>,<Scale, 1>}>,
<WetDay, 20        {<TotalWetDayInMonth, “Day”>,<Scale, 1>}>}>

<MonthlyAverageData,{
<Month, 02,        {< MonthFormat, MM>}>,
<AverageHigh, 44,        {< AverageHighTempByMonth, “Fahrenheit”>,<Scale, 1>}>,
 ...  }>

   ...  }>



5� The Ontology and the Mediated Data Model

Web data comes from various knowledge domains. These Web sources are developed
independently and work autonomously. When we integrate Web data into a data
warehouse, the inconsistencies exist not only between internal business data and
external data on the Web, but also among Web data. Among these inconsistencies,
semantically correct understanding and interpretation of related metadata is a key issue.
A common ontology [13] serving as an agreement to use the shared knowledge in a
coherent and consistent manner can help to tackle this problem. Fig. 5 is an example of
the weather domain ontology, which is represented using Ontolingua [13], a knowledge
representation language. Ontolingua definitions are Lisp-like forms that consist of a
symbol, an argument list associated with the symbol, a documentation string, and a set
of KIF [14] sentences labeled by keywords.
     The MIX model is a self-describing object-oriented data model and based on the
concept of a semantic object, which represents a data item together with its underlying
semantic context. In MIX, in order to support the interpretation of the available data
and metadata, each semantic object has a concept label associated with it that specifies
the relationship between the object and the real world aspects it describes. These
concept labels must be taken from a domain ontology. The MIX model may represent
structured and semistructured data in a uniform way and on a common interpretation
basis. In MIX, simple semantic objects (SemObj) represent atomic data items.
Complex semantic objects (CompSemObj) represent objects consisting of multiple,
possibly heterogeneous data elements, each of which describes exactly one attribute of
the represented phenomenon.

     An example of SemObj is:
< CityName, “Paris”, {<CityNameCode,”FullCityName”>}>

     An example of CompSemObj is:
<MonthlyAverageData, {<Month, 01, {<Month Format, MM>}>, <...>,...}>

     Fig.6 shows an example of the MIX model. More detailed definitions and
explanations can be found in [3,4].

6� Mapping MIX Objects to the Attributes in the Star Schema

The MIX Model is an object-oriented data model, while the DW in our framework is
based on the relational data model. Therefore, mapping MIX semantic objects to the
data warehouse tables is roughly similar to mapping objects into relational tables [2,
17, 18, 21]. But a remarkable difference is that data in the DW is divided into facts in
fact tables and descriptive attributes in dimension tables. Since business transaction
data, which typically form the basis of the fact tables, will not be taken from the Web,
we concentrate on mapping Web data to dimension tables. Between data values in MIX
objects and attribute values in dimension tables, there could be one-to-one, one-to-
many, many-to-many relationships. In the example of Section 3, the relationship
between Web data values and attribute values in the dimension table is one-to-one. In
some more complex cases, data values must at first be calculated, and then mapped to
attribute values.



     A MIX model consists of attributes and methods (conversion functions). Its
attributes are either simple or complex objects. Therefore there exists a one-to-many
composite aggregation relationship among parent object and children objects. In basic
object-relational model mapping, we can map each complex object to a table, and
implement composite aggregation in the parent table using foreign keys, which point to
each child table. But in our example, weather dimensional table is redundant with city,
country and year. Therefore, each complex object to a table can not be adopted in data
warehousing. We map the root CompSemObj to one table in a way similar to One-
Inheritance-Tree-One-Table approach. All equal ontology concepts are mapped to one
column name, and all different concepts are mapped to separate column names. The
physical representation of a value is mapped to an attribute value based on related
column names. Semantic context associated with a semantic object can be separated
from the database and stored to a metadata repository. These mapping processes can be
done recursively.
     The MIX model can also support inheritance, which is reflected in the inheritance of
concepts in the domain ontology. Each MIX object only represents concrete integrated
data values. Therefore, in the mapping we need not consider the inheritance
relationship.
     In the MIX model each object is identified through single or multipart key
attributes, which is similar to the relational model. When an object is implemented in
Java, a unique OID can be automatically assigned by the system. In a data warehousing
environment, the primary key in a dimensional table can be an intelligent or non-
intelligent key. In practice, unless we are absolutely certain that the identifiers will not
be changed or reassigned in the future, it is safer to use non-intelligent keys. These
non-intelligent keys can be automatically generated by the system. Therefore, when we
map MIX objects to a dimensional table, we design an additional column in this table
as primary key, one unique key value for each row can be generated by the system.
     To map a nested complex semantic object structure to a table structure, we can first
replace each CompSemObj with all its subobjects. This replacement will be processed
recursively until there is no CompSemObj in the structure except the root
CompSemObj. After the preprocessing, the mapping rules described as above are
applied to this enlarged root complex semantic object.
     When a semantic object occurs more than one time, a multiple attribute problem
arises. For example, a book can have more than one author. But most relational
databases do not support multi-valued attributes. To cope with this problem, we use
separate rows to store each value of multi-valued attributes in dimensional tables.

7� Using Ontologies to Perform Transformations

In our framework, the ontology repository consists of the domain ontology and the
specific ontologies about the description of the logical schema of the DW and mapping
rules. The OE is an ontology processor, whereat concepts in the ontologies are
implemented as classes, and relationships or functions in the ontologies are
implemented as methods. The TP works under the guide of the schema of the DW and
the mapping rules. Using ontologies, the transformation codes can be generated semi-
automatically. As additional Web data is integrated, or when selected Web data is
updated, the things we need to do are adding new concepts into the domain ontology,
modifying mapping rules, then regenerating transformation codes.



     Between data from Web sources and attributes in data warehouses, there are one-to-
one, one-to-many, many-to-many relationships. These relationships also exist between
the values in the MIX objects and the attributes in the data warehouse. In the mapping
rules ontology, the correspondences are explicitly described, and the conversion
functions are defined respectively. Fig. 7 is an example of the mapping rules ontology.
�����After the ontology has been defined, the OE can implement classes, relations and
functions as Java classes and methods. By using mapping rules ontology,
transformation methods can be deduced. The TP reads data represented in MIX objects
and uses transformation methods to construct tables, generate column names and
attribute values in the data warehouse. The process includes essential conversion of
data type, data format, unit, etc.

Fig. 7.  Mapping rules definition ontology

8� Conclusions

In this paper we present a novel framework of integrating information contents from
the Web for DSS and OLAP. Moreover, we also discuss how to use extended
ontologies to transform the Web data for integration into data warehouses and to
facilitate the maintenance requirements of the data warehouse.
������At present, we are improving our framework and doing further research on the
hybrid approach in a Web Warehousing environment. Some interesting issues we are
currently looking into include how to select an appropriate set of Web data for
materialization, the optimization problem of the Query Processor in the hybrid

 Mapping Rules Definition Ontology

(define-relation CityMapping (?city ?cityname)
“Mapping cityname to city. The cityname is a member of the CityName class in the Weather Ontology,  the
city is an attribute name of the WeatherSchema in the Weather Dimension Table Descriptions Ontology.”

:def ( and  (member ?city Weather-Dimension-Table-Descriptions-Ontology)
 (member ?cityname Weather-Ontology)

(= (?city ?cityname))))

(define-relation YearMapping (?year ?yearstring)
“Mapping yearstring to year. The yearstring is a member of the YearString class in the Weather Ontology,
the year is an attribute name of the WeatherSchema in Weather Dimension Table Descriptions Ontology. ”

:def ( and  (member ?year Weather-Dimension-Table-Descriptions-Ontology)
                  (member ?yearstring Weather-Ontology)
                                   (member ?yearnumber Weather-Ontology)
                                   ((Year-Number-of  ?yearstring) ?yearnumber  ))
                                   (= (?year ?yearnumber))))

(define-relation AverageHighMapping (?average-ht ?averagehigh)
“Mapping averagehigh to average-ht. The averagehigh is a member of the AverageHigh-Temperature class
in the Weather Ontology, the average-ht is an attribute name of the WeatherSchema in the Weather
Dimension Table Descriptions Ontology.”

:def ( and (member ?average-ht Weather-Dimension-Table-Descriptions-Ontology)
                  (member ?averagehigh Weather-Ontology)
                                   (= (?average-ht ?Averagehigh))))
� �
�



approach, the influence of Web data quality on a DW, and the further use of ontology
and KR techniques in the design and maintenance of the data warehouses.
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