
Mobility Support with R EBECA

Andreas Zeidler Ludger Fiege
Databases and Distributed Systems Group

TU Darmstadt, Germany
{az,fiege}@dvs1.informatik.tu-darmstadt.de

Abstract

Publish/subscribe (pub/sub) proliferates loose coupling
and is touted to facilitate mobility. The inherent loose cou-
pling even allows existing applications to be transfered to
mobile environments, if an appropriate infrastructure sup-
port is available. However, existing pub/sub middleware
are mostly optimized for static systems where users as well
as the underlying system structure is rather fixed. In this
paper, we analyze the necessary steps to support mobile
clients with publish/subscribe middleware. TheREBECA

content-based pub/sub service is extended to accommodate
to physically mobile clients, offering a location transparent
access to the middleware without degrading the previously
guaranteed quality of service. The transparent access al-
lows existing applications to be seamlessly transferred from
a static to a mobile scenario without having to adapt client
applications.

1 Introduction
Publish/Subscribe Systems.The pub/sub communication

paradigm is increasingly used in many application domains
and areas of computer science. It allows processes to ex-
change information based on message content rather than
particular destination addresses. Information about some
event is published via notifications, which are conveyed by
the underlying pub/sub notification service. A consumer
registers its interest in certain kinds of notifications by is-
suing subscriptions, and it gets notified by the notification
service about any newly published notification that matches
at least one of its subscriptions. Theloose couplingof pro-
ducers and consumers is the prime advantage of pub/sub
systems.

Mobility support in pub/sub middleware.Unfortunately,
up to now research is mainly focused on using pub/sub
middleware in rather static, non-mobile environments, i.e.,
systems where clients (producers and consumers) do not
roam and the infrastructure itself stays rather fixed or is
only changing slowly during the system’s lifetime. Con-

sequently, most pub/sub infrastructures (e.g., SIENA [3],
JEDI [5], REBECA [11], to name a few) have optimized al-
gorithms for information delivery in those settings. Support
and optimizations for mobile clients are no built-in features
of the infrastructure; it is left to the applications to adapt or
reissue subscriptions.

Roaming clients.Obviously, the first step towards mo-
bility is to make the pub/sub middleware mobility-aware.
Therefore, we need to add support for roaming clients and
their needs, e.g., buffering of notifications when discon-
nected, or rerouting and replay of messages to different
locations. Making use of the inherent loose coupling, we
should be able to continue to use existing, successfully de-
ployed applications that are based on the pub/sub paradigm
without having to rewrite them (“legacy” applications). As
a first step and basis for future developments, applications
should not need to be aware of mobility.

Location-awareness.A further step is making a pub/-
sub system aware of the client’s location, usually called
location-awareness. An example could be a so-called
location-based service, like a “free parking space service”
or a restaurant guide. The basic idea is to express a generic
interest in information depending on where the client is by
using a special marker which is resolved to an appropriate
set of valid information by the infrastructure itself. The ad-
vantage is that a client, while moving around, does not have
to adapt its location-dependent subscriptions every time it
changes location.

Related Work. We are not aware of many pub/sub
systems offering mobility support. Huang and Garcia-
Molina [8] provide a good overview of possible options for
supporting mobility, but fail to investigate a concrete relo-
cation protocol. In contrast to the work presented in this
paper they sketch a solution relying on broker replication to
meet similar quality of service requirements as in the non-
mobile case. An extension of Elvin exists that allows for
disconnectedness using a central caching proxy [14]. Ob-
viously, this introduces a potential performance bottleneck
and cannot exploit effects of locality as a distributed solu-
tion might do. CEA [1] and JEDI [5], too, tackle problems

of mobility. JEDI uses explicit moveIn and moveOut oper-
ations to relocate clients. Hence, mobility is controlled by
the application, which is not transparent and even unreal-
istic since clients usually can only reactafter having been
moved. Interim notifications are stored in the meantime at
the old location for later delivery. If the client reconnects
elsewhere a valid address of the storage must be known
to directly request the notifications from the new location.
However, under certain circumstances notifications may get
lost. Moreover, the fetched and newly arrived notifications
must be merged raising problems of duplicate detection and
ordering. The mobility extensions of SIENA [2] are very
similar to the JEDI approach. Explicit sign-offs are required
and stored notifications are directly requested from the old
location, too. A rather complex leader election and group
management protocol for dynamic dispatching trees is pro-
posed in [4], which needs some further investigation of the
inherent complexity.

2 Content-Based Publish/Subscribe
The following discussion is based on the REBECA noti-

fication service [11, 7], which we use as basis for the pro-
posed mobility support.

2.1 Architecture

Processes of a system based on pub/sub communication,
which is also called anevent-based system, can act both as
producers and consumers, they are clients of the underly-
ing notification service. The communication interface to the
service is rather simple and consists ofpub, sub, unsub, and
notifycalls only; the last one is an output function called on
the registered client to deliver a notification. Anotification
reifies and describes an occurred event. Notifications are not
published towards a specific receiver, but conveyed by the
underlying notification service to those consumers that have
registered a matching subscription. We assume that produc-
ers issue advertisements that describe the notifications they
are about to publish in the same way as subscriptions do for
receiving notifications; advertisements are used to optimize
notification routing in the underlying infrastructure.

Filters are boolean functions over notifications and a
common way of implementing subscriptions. The most
flexible scheme for specifying these filters is content-based
filtering, which utilizes predicates on the entire content of a
notification [10].

The service implementation is distributed to meet the
mobility scenario and scalability considerations. The com-
munication topology of the pub/sub system is given by
a graph, which is assumed to be acyclic and connected
(Fig. 1). The graph consists of brokers and clients. The
edges are communication links that are point-to-point and
assumed to be error-free for now, a common assumption
that can be relieved later. Furthermore, messages are re-

Figure 1. The router network of REBECA.

quired to be delivered in FIFO order on each link. Bro-
kers are processes that route the notifications along multiple
hops to the appropriate clients. Three types of brokers are
distinguished:Local brokersconstitute the clients’ access
point to the middleware and are part of the communication
library loaded into the clients; they are not represented in
the graph, but only used for implementation issues. A local
broker is connected to at most one border broker.Border
brokersform the boundary of the distributed communica-
tion middleware and maintain connections to local brokers,
i.e., the clients.Inner brokersare connected to other inner
or border brokers and do not maintain any connections to
clients.

2.2 Possible Routing Strategies

Each broker maintains a routing table that determines
in which directions a notification is forwarded. Each table
entry is a pair(F,L) containing a filter and the link from
which it was received, denoting that a matching subscrip-
tion is to be forwarded alongL; this is a widely used data
structure [3, 5]. The routing decision is assumed to be an
atomic operation so that the end-to-end sender FIFO char-
acteristic holds. The routing tables are maintained to corre-
spond to the available information about active consumers
and their subscriptions. Each broker forwards these infor-
mation according to the routing algorithm used.

The simplest form of routing issimple routing: active fil-
ters are simply added to the routing table according to the
link they belong to. Obviously, this is not optimal with re-
spect to the routing table size. A first improvement is to
check and combine two filters if they are equal. More gen-
erally, thecoveringrouting strategy [3] tests whether a filter
F1 accepts a superset of notifications of a second filterF2,
and in this case replacesF2 in the routing table and is for-
warded instead, significantly decreasing the table size. In a
second step, if no cover can be found in a given set of filters,
mergingcan be used to create new filters that are covers of
existing ones [10]. Only the resulting merged filter is for-
warded to neighbor brokers.

3 Publish/Subscribe Systems and Mobility
In this section we analyze and discuss the basic issues

involved when adding mobility support to a pub/sub infra-
structure like REBECA. The analysis leads to the identifi-
cation of two orthogonal forms of mobility: physical and
logical mobility; the former is suited to blend out some un-
wanted effects of mobility for existing applications, the lat-
ter facilitates location-aware applications.

3.1 Mobility Issues in Pub/Sub Middleware

A first step towards mobility is to enhance existing pub/-
sub middleware to allow for roaming clients so that exist-
ing applications can be used in mobile environments and
mobility-aware applications are relieved from dealing with
mobility on a lower level. This means that the interfaces
for accessing the middleware and the applications on top
are not required to change. More importantly, the qual-
ity of service offered by the middleware must not degrade
substantially. Näıvely, location transparency is what makes
existing applications mobile, e.g., stock quote monitoring
seamlessly transferred from PCs to PDAs, and mobility-
aware applications easier to implement. A prominent ex-
ample for mobility related problems isdisconnectedness: a
mobile client usually gets disconnected from the network
sometimes, reconnecting to it again later. This might be
to save energy or because of geographical or administra-
tive reasons while roaming, e.g., different network cells or
changing responsibilities. Often, the access point, that is
the border broker of the broker network, has changed after
reconnection. For example, the border broker at home is
(physically and administratively) not the same as the border
broker at the office (cf. Fig.2(a)). For the stock quote mon-
itoring application the change of location should be trans-
parent.

However, future applications might not want complete
transparency, but rely on awareness of mobility. More
specifically, mobility support should not only blend out un-
wanted phenomena, like disconnectedness, but should also
facilitate wanted behavior, like handling of the location-
awareness in location-based services. Announcements of
location changes are conveniently conveyed by the notifica-
tion service. Yet if they have to be taken up by the applica-
tion to adapt the active subscriptions manually, we miss an
appropriate support. The notification service is required to
support location-dependent subscriptions, enabling the in-
frastructure to adapt to location changes automatically and
to draw from delivery localities it would otherwise have no
knowledge about. Consequently, extending the interface of
the pub/sub middleware to facilitate location-awareness (or
even context-awareness [13]) is a promising open issue. At
this stage we distinguish between:
Physical mobility. A client that is physically mobile is dis-
connected for certain periods of time and has different bor-

Broker at Home Broker at Work

Broker Network

Roaming User

Office Floor
Broker "Logical Mobility"

Figure 2. (a)Physical and (b)Logical Mobility.

der brokers along his itinerary through the infrastructure (cf.
Fig. 2(a)). The main concern of physical mobility isloca-
tion transparency.
Logical mobility. While a client that is logically mobile
stays connected to the same broker (cf. Fig. 2(b)), its move-
ment is reflected in and mapped to changing subscriptions
only1. The main concern of logical mobility is automated
location awarenesswithin a defined environment. Due to
space limitations we refer to [6] for further details.

Physical and logical mobility are two orthogonal aspects
of mobility: while the former deals with rerouting subscrip-
tions to new locations, the latter automates the adaption of
subscriptions. While the former is bound to the granularity
of the broker network, the latter can be used, e.g., as re-
finement to allow for mobility within the scope of a single
broker, as shown in Fig.2(b).

3.2 Physical Mobility

Physical mobility is similar to what in the area of mo-
bile computing is calledterminal mobilityor roaming. A
client accesses the system through a certain number ofac-
cess points(GSM base stations, WaveLan access points, or
border brokers). When moving physically, the client may
get out of reach of one access point and move into the reach
of a second access point. In general, we cannot expect to
have ubiquitous access to the broker network. More likely
is that the broker network is accessible only from certain lo-
cations on the daily route of a user, e.g., at home or at office.
Obviously, from the viewpoint of “legacy” applications the
phases of disconnectedness must be made transparent by
the pub/sub infrastructure without loosing expressiveness.
They rely on theimpressionto be non-mobile. The required
quality of service of physical mobility as experienced by the
client can be summarized as follows:

1Note the difference to the logical mobility as defined in LIME [12]
where it denotes code mobility.

• Interface. No change of interface between pub/sub
middleware and application for mobile or non-mobile
uses.

• Completeness. Over phases of disconnectedness,
eventually the pub/sub middleware delivers all notifi-
cations for a client eventually2.

• Ordering. As we guaranteed FIFO ordering with re-
spect to the sender in Section 2 we have to guarantee
this for a mobile application as well.

• Responsiveness.It should be clear that a pub/sub mid-
dleware is obliged to deliver notifications for a cer-
tain client as soon as possible in the mobile as well as
the non-mobile case. However, as the broker network
takes some time to adapt to a client at a new border
broker a lag in notification delivery might be experi-
enced due to reconfiguration.3

3.2.1 Possible Solutions:

One solution would be to rely on Mobile IP [9] for con-
necting clients to border brokers, hiding physical mobil-
ity in the network layer. The drawback, however, is that
the communication is also hidden from the pub/sub mid-
dleware, which is then not able to draw from any notifica-
tion delivery localities or routing optimizations. Such an ap-
proach might be desirable if the physical and logical layout
of a given system is completely orthogonal. Otherwise, a
solution that can by design draw advantages from localities,
i.e., physical locations which are close by in the real world
have brokers “close” by in the broker network, is highly su-
perior in terms of responsiveness and number of messages
sent. The same arguments can be applied to a solution using
a central caching proxy (e.g., [14]).

A different, näıve solution to implement physical mobil-
ity on top of a pub/sub system would be to use sequences
of “sub-unsub-sub” calls, simply registering a client at a
new broker. When a client moves from border brokerB1

to B2, it simply unsubscribes atB1 and (re-)subscribes at
B2, without any support in the middleware. Please note that
this is a rather complicated situation. Since a mobile client
usually cannot predict a change of broker before leaving its
range, e.g., because it is just leaving a wireless network cell,
it can only react to the new situation. So, even a “roaming-
aware” client cannot unsubscribe to a producer at the old
border broker, and hence, mobility in a pub/sub system is

2Note that in general it is not possible to fulfill this requirement in all
cases due to limited buffers (cf. next section).

3Intuitively, physical and logical mobility are comparable to mobile
telephony: on the one hand, after power-on the network takes some time
until messages are forwarded to your new location, while on the other hand
roaming within a single cell should not involve time consuming hand-overs
or disconnected calls. This is in a sense the quality of service physical and
logical mobility try to approximate.

Figure 3. Missing notifications in a flooding
scenario.

more likely a sequence of subscribe operations than a se-
quence of subscribe-unsubscribe-subscribe operations.

Without proper support relocating clients might miss
several notifications or get duplicates, even if notifications
are flooded in the network and location changes are instan-
taneous. The problem is that the time notifications are in
transit through the network depends on the number of hops
between issuer and receiver of a notification. As we can-
not assume that location changes a user makes correspond
to the delivery path of a notification in the broker network,
named phenomena might occur (see Fig. 3): (i) a user mov-
ing fromB1 toB2 after a notification is delivered at location
B1 but not yet atB2 receives a duplicate, (ii) a user chang-
ing from B2 to B3 before delivery atB2 and after delivery
at B3 misses a notification. Hence, this solution violates
the requirement of completeness and possibly even FIFO
ordering.

4 Notification Delivery with Roaming Clients
In this section we introduce an algorithm for extend-

ing standard REBECA brokers to cope with mobile clients,
maintaining their subscriptions as well as guaranteeing the
required quality of service that was described in the pre-
vious section. Apart from guaranteeing uninterrupted no-
tification delivery, our algorithm also ensures that the old
border broker will eventually receive an equivalent to an ex-
plicit sign-off from the client even if an explicit unsubscribe
was not possible.

By design, the mechanism we use introduces a natural
way of distributed caching, which seems in general prefer-
able to a potentially problematic central caching proxy.

4.1 Prerequisites

The solution sketched in this section can be used in every
environment that meets the following requirements. First,
border brokers have to install and maintain a buffer for all
notifications that are not yet delivered for a certain period of
time in order to deal with disconnects. Second, the under-
lying routing infrastructure uses advertisements. Although
not strictly necessary, the relocation effort is reduced sub-
stantially in that they guide the search for the old delivery
path. Simple routing is assumed as routing strategy for now
and extended later. Finally, border brokers or clients must

have some means of detecting the new configuration that a
client has entered the range of the broker. Some form of
beacon or heartbeat is presupposed and we do not go into
the details here.

4.2 Algorithm Outline

We use a stepwise refinement of traditional subscription
processing as described in Section 2 to devise the algorithm:

1. When reconnecting to a broker, subscriptions are au-
tomatically reissued so that clients do not need to re-
subscribe manually.

2. The broker network configuration is updated to accom-
modate to client relocation rather than handling an in-
dependent new (re-)subscription from a new location.

3. Notifications forwarded to the old location have to be
replayed to the new one in order to bridge disconnect-
edness.

4. Delivery of new notifications has to be postponed until
the replay is replay is finished. In this way, moving
does not influence the per-sender order of notifications,
fulfilling the ordering requirement.

Consider the scenario of Fig. 4(a). ClientC is moving
from brokerB6 to brokerB1 (step 1 in the figure). The local
broker, which resides on the client, e.g., in form of libraries,
is informed by the new border broker about its relocation,
according to the prerequisites. It then reissues active sub-
scriptions, which were previously forwarded through and
recorded in the local broker anyway. By avoiding manual
re-subscriptions of the client application, the first require-
ment of mobility transparency (cf. Sect. 3.2) is achieved,
i.e., the interface to the middleware is not changed.

In the second step, we enable the pub/sub middleware to
relocate the client. The goal of the relocation process is to
update the routing configuration and redirect the old deliv-
ery paths toC to the new destination. During this process,
the reissued subscription is propagated as usual in the di-
rection of any received advertisement throughB2 andB3

to brokerB4, setting up their routing tables. AtB4 the old
and new path from producerP to clientC meet (dotted and
dashed line, respectively). BrokerB4 is aware of the junc-
tion because an entry of the old path of this subscription/-
client is already in its routing table.4 When the routing table
in the junction is updated, new published notifications will
be delivered to the relocated client. Without assuming any
knowledge about the old location of the moving client, the
system is able to draw from localities in that only a por-
tion of the delivery path is changed. Changes are limited to
the smallest subgraph necessary for diverting routing paths,

4Subscriptions can be identified if simple routing is used. For covering
and merging cf. Section 4.4.

C
C

1

2

6

87

3
5

4

Virtual World

Real World

1. move
2. new

4. Relocate!

3. Re−

Junction

Old Path
New Path

NewBorder Broker
Old

Border Broker

P

Moving
Client

Producer of
Notifications

5. fetch!

subscription(C,F,123)

 location!

6. Replay&
 clean up

(a) Single Producer

C
C

1

2

6

87

3
5

4

Virtual World

Real World

1. new location
2. "new
location!"

4. Relocate!

3. Re−

Junction

Old Path
New Path

NewBorder Broker
Old

Border Broker

P

Moving
Client

Producer of
Notifications

P

9

6. Replay&
clean up

5. fetch!

subscription(C,F,123)

(b) Multiple Producer

Figure 4. Moving client scenarios with one
and multiple producers

facilitating the timeliness/efficiency requirement which is
only available with inherent middleware support.

The third step ensures completeness over phases of dis-
connectedness during movement. The junction brokerB4

sends a fetch request along the old path toB6 following the
routing table entries for the given subscription. All brokers
along this path update their routing tables such that they
are pointing into the direction the fetch originates from, i.e.,
B4. Border brokerB6 as last recipient replays all buffered
notifications. If delivered notifications are annotated with
sequence numbers by the border broker, reissued subscrip-
tions can in turn carry the last received number to qualify
the replay. Note that replays are forwarded only in the direc-
tion of a specific subscription and do not mingle with other
clients’ data. After replaying the path from the old broker to
the junction can be shut down by deleting the subscription’s
routing table entries as long as advertisement and routing
entry point into the same direction; thereby excluding and
stopping at the junction. In this way the notifications that
passed the junction broker before its update are collected
and sent towards the new location, ensuring the required
completeness.

The last extension finally reorders the notifications so
that the sender FIFO condition remains valid after reloca-
tion. The new border broker has to block and cache all in-
coming notifications that are to be delivered to the given
client (not impeding communication of other clients) until
the replay is finished. Of course, additional mechanisms
like timeouts have to ensure that delivery is not delayed in-
definitely. As with all buffering, consistency can always
only be guaranteed for a predefined, finite amount of time
or space.

4.3 Algorithm for Roaming Clients

We now give the details of the algorithm for roaming
clients. The algorithm itself is given in two figures: Fig. 5
gives the algorithm for a border broker to which moving
clients are connected. Fig. 6 gives the algorithm for an

{ upon recv sub(C, F, num) v i a l i n k L C do }
i f ((C, F) not in rTable) then {

a l l o c a t e new e n t r y i n rTable
i n i t i a l i z e e n t r y w i t h (F, C, LC)
i n i t i a l i z e cache(C, F)
i f (num > 0) then {

s e t b l o c k i n g f l a g on e n t r y(F, C, LC) i n rTable
}
send (C, F, num) to a l l n e i g h b o r i n g b r o k e r s we

have r e c e i v e d a match ing a d v e r t i s e m e n t from
} e l s e {

send cache (C , F) t o C
}

{ upon recv fetch(C, F, num, Bprod) f rom Bj do }
i f (# A d v e r t i s e m e n t s match ing F i l t e r F> 1) then {

upda te e n t r y i n rTable t o(F, C, Bj)
/ / t h i r d parameter Bj a l s o d e n o t e s t h e l i n kLBj

} e l s e {
d e l e t e e n t r y i n rTable w i t h(C, F, ∗)

}
send replay(fetch(C, F, num, Bprod), [e1, ..., en]) to Bj

{ upon recv replay(fetch(C, F, num, nil), [e1, ..., en])
f rom Bj do }

prepend n o t i f i c a t i o n s[e1, ..., en] to cache (C , F)
u n s e t b l o c k i n g f l a g on e n t r y(F, C, Bj) i n rTable
send a l l n o t i f i c a t i o n s to c l i e n t C

Figure 5. Actions of a border broker receiving
a message from a client C

inner broker made aware of moving clients and receiving
messages from neighboring brokers.

A client C connecting to a border broker sends a sub-
scription(C,F, num) wherenum is the sequence number
of the last notification it got (see first block of statements in
Fig. 5). It is zero if the client just started and the broker has
to update its local routing tablerTable , and in order to ad-
here to the requirement of completeness, it has to instantiate
a newcachefor the client (we use a ring buffer data struc-
ture to limit the maximum number of cached notifications
together with a Time-to-Live (TTL) mechanism for opti-
mizing the utilization of buffer space). If the last received
sequence number conveyed in the subscription is not zero
the corresponding entry is marked as blocked to postpone
new notifications until the replay is finished (third block of
statements in Fig. 5). If the client re-appears at its previous
location due to temporary communication break-downs, it
simply gets the notifications cached in the meantime.

If the subscription is new, normal processing of the un-
derlying pub/sub infrastructure is applied by forwarding it
to the next brokers with matching advertisements to set up
the new delivery path (block 1 of Fig. 6). The junction is
reached if the received subscription of clientC is already
registered in the routing table, then the fetch phase starts
by sending out a fetch request to the old destination. While
forwarding this request towards the old location, the routing
table is updated to point into the new direction so that the
replay can be routed through the pub/sub network later on,
without requiring a communication link between otherwise
not directly connected border brokers. Moreover, the near-
est branch is recorded in the request from where a different
producer sends notifications (block 2 of Fig. 6). When re-

{ upon recv o f s u b s c r i p t i o n(C, F, num) f rom Bj do }
i f ((C, F) not in rTable) then {

a l l o c a t e new e n t r y i n rTable
i n i t i a l i z e e n t r y w i t h (F, C, Bj)
send (C, F, num) t o a l l n e i g h b o r i n g b r o k e r s we

have r e c e i v e d match ing s u b s c r i p t i o n s from
} e l s e {

brokeroldnext = get(rTable, C, F)
upda te e n t r y i n rTable t o(F, C, Bj)
send fetch(C, F, num, Bcurrent) t o
brokeroldnext

}
{ upon recv o f fetch(C, F, num, Bprod) f rom Bj do }

brokeroldnext = get(rTable, C, F)
upda te e n t r y i n rTable to (F ,C ,Bj)
i f (# A d v e r t i s e m e n t s match ing F i l t e r F> 1) then {

send fetch(C, F, num, Bcurrent) t o
brokeroldnext

} e l s e {
send fetch(C, F, num, Bprod) t o

brokeroldnext

}
{ upon recv o f replay(fetch(C, F, num, Bprod), [e1, ..., en])

f rom Bj do }
brokernext = get(rTable, C, F)
i f (Bprod ! = n i l) then {

i f (Bprod == Bcurrent) t hen {
send replay(fetch(C, F, num, nil), [e1, ..., en])

t o brokernext

} e l s e {
d e l e t e e n t r y i n rTable

w i t h (C, F, ∗)
send replay(fetch(C, F, num, Bprod), [e1, ..., en])

t o brokernext

}
}

Figure 6. The algorithm for an inner-network
broker receiving a message from broker Bj .

playing the old delivery path/routing table entries are dis-
carded until the recorded branch is reached (block 3).

Replay is started when the fetch request reaches the old
border broker (block 2 of Fig. 5). The size of the replay is
constrained by the sequence number contained in the fetch
request, if any. Since the client is typically not able to un-
subscribe at its old location, receiving the fetch request is
the explicit sign-off.

4.4 Extensions

Covering. If covering instead of simple routing is used
to establish the routing tables, the fetch phase of the algo-
rithm has to be extended. Now, the junction is reached if an
entry with a covering subscriptionF ′ ⊃ F is already reg-
istered. At this point the delivery path to the new location
is correctly built up, but we do not know whether the old
location lies in the direction ofF ′ or in the direction of the
advertisements. The fetch phase is extended in that fetch re-
quests are sent towards all advertisements and all covering
subscriptions; it is a kind of flooding in the overlay network
of matching producers and consumers of similar interests.
Only one of the fetch requests will not get dropped and
finally reach the old border broker. The replay has to be
flooded in the same overlay network if no tunneling mech-
anisms, internal or external, are used.

Merging. The previously denoted extensions can also
cope with a broker network that is based on merging. Only
the number of potential covers increases, and hence the size
of the flooded overlay network. Both covering and merging
promise to increase routing efficiency, but on the other hand
aggravate relocation management.

Movement Speed. For simplicity reasons we assume that
the client’s movement speed is not too fast for the relocation
process to terminate before the client moves again, i.e., the
process always terminates at the correct broker. However,
if re-subscriptions of the local broker are annotated with a
relocation counter, which is reset after a successful replay,
concurrent relocation processes can be identified and con-
trolled in the middleware, avoiding the speed limit.

Cache Management. Even if storage constraints in the
border brokers are not of concern, mobile clients may be
disconnected for a long period of time in which more
missed notifications are cached than the client can handle
during replay. The possibly limited resources of mobile
clients must be taken into account when designing cache
sizes or limiting the replay by semantic filtering [8].

5 Conclusion

In this paper we presented an approach to support mo-
bility in existing publish/subscribe middleware. We have
analyzed the problem of mobility from the viewpoint of the
event-based paradigm and have identified two separate fla-
vors of mobility: physical and logical mobility, the latter
being considered a refinement of the former.

A relocation algorithm is presented that facilitates phys-
ical mobility with location transparency, offering the possi-
bility to transfer existing event-based applications to mobile
scenarios as well as supporting mobility-aware applications.
The algorithm seamlessly extends an existing content-based
routing infrastructure, the REBECAnotification service, to
support non-interrupted, sender-FIFO ordered delivery of
notifications to moving clients, which need not be aware
of this extension. No central repository or control nor
any communication outside of the pub/sub infrastructure is
needed. On the other hand, applications can still benefit
from the service’ inherent benefits, like advanced routing
algorithms. To our impression, the presented solution for
mobile clients in pub/sub systems transfer the characteris-
tics of the pub/sub, or event-based, paradigm to mobile sce-
narios in an appropriate way. Loose coupling and drawing
from notification delivery localities is explicitly supported.

Acknowledgments
We gratefully acknowledge the contributions of Oliver Kas-
ten and Felix G̈artner to the mobility discussions, and Gero
Mühl’s essential work on the REBECA system.

References
[1] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil,

O. Seidel, and M. Spiteri. Generic support for distributed
applications.Computer, 33(3):68–76, 2000.

[2] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal anal-
ysis of clients mobility in the siena publish/subscribe mid-
dleware. Technical report, Department of Computer Sci-
ence, University of L’Aquila, Oct. 2002.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service.ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[4] G. Cugola and E. Di Nitto. Using a publish/subscribe mid-
dleware to support mobile computing. InProceedings of
the Workshop on Middleware for Mobile Computing, Hei-
delberg, Germany, Nov. 2001.

[5] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of the OPSS WFMS.IEEE Transactions on Software Engi-
neering, 27(9), 2001.

[6] L. Fiege, F. C. G̈artner, O. Kasten, and A. Zeidler. Support-
ing mobility in content-based publish/subscribe middleware.
In Middleware 2003, 2003.

[7] L. Fiege, G. M̈uhl, and F. C. G̈artner. A modular approach
to build structured event-based systems. InProceedings of
the 2002 ACM Symposium on Applied Computing (SAC’02),
pages 385–392, Madrid, Spain, 2002. ACM Press.

[8] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mo-
bile environment. InProceedings of the 2nd ACM Inter-
national Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE01), Santa Barbara, CA, May 2001.

[9] D. Johnson. Scalable support for transparent mobile host
internetworking.Wireless Networks, 1:311–321, Oct. 1995.

[10] G. Mühl. Generic constraints for content-based publish/-
subscribe systems. In C. Batini, F. Giunchiglia, P. Giorgini,
and M. Mecella, editors,Proceedings of the 6th Inter-
national Conference on Cooperative Information Systems
(CoopIS ’01), volume 2172 ofLNCS, pages 211–225,
Trento, Italy, 2001. Springer-Verlag.

[11] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt University of Technology,
2002.

[12] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A
Middleware for Physical and Logical Mobility. In F. Gol-
shani, P. Dasgupta, and W. Zhao, editors,Proceedings of
the 21st International Conference on Distributed Comput-
ing Systems (ICDCS-21), pages 524–533, May 2001.

[13] B. Schilit, N. Adams, and R. Want. Context-aware comput-
ing applications. InIEEE Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, US, 1994.

[14] P. Sutton, R. Arkins, and B. Segall. Supporting disconnect-
edness – transparent information delivery for mobile and
invisible computing. InFirst International Symposium on
Cluster Computing and the Grid, pages 277–287, Brisbane,
Australia, May 2001. IEEE/ACM.

