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Abstract. Embedded systems operating on high data workloads are
becoming pervasive. ECA rule engines provide a flexible environment
to support the management, reconfiguration and execution of business
rules. However, modeling the performance of a rule engine is challenging
because of its reactive nature. In this work we present the performance
analysis of an ECA rule engine in the context of a supply chain sce-
nario. We compare the performance predictions against the measured
results obtained from our performance tool set, and show that despite
its simplicity the performance prediction model is reasonably accurate.
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1 Introduction and Motivation

As software and hardware are becoming more complex, system engineers look
more at architectures that help them cope with the speed at which the business
logic changes. In architectures centered on rule engines [1], developers describe
the business logic in terms of rules composed by events, conditions and actions
(hereafter called ECA rules). These ECA rules are precise statements that de-
scribe, constrain and control the structure, operations and strategy of a business.

Business logic executes on multiple platforms with different capabilities rang-
ing from clusters, through workstations all the way down to small embedded
devices. To relieve developers from knowing in advance on which environment
rules will execute, it is convenient to offer a uniform ECA abstraction for all
of them. We have developed a complete ECA rule engine middleware [2] which
supports a uniform rule definition language across platforms. Our implemented
ECA rule engine offers a high level programming abstraction and thus achieves
a fast change of re-utilizable business logic.

This flexibility comes at a performance cost. Therefore, the study of this
tradeoff is crucial before migrating to an ECA middleware architecture. To avoid
overload and unexpected errors, it is important to know the processing limits
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and possible bottlenecks of a rule engine. However, evaluating reactive behavior
is not trivial, especially for embedded devices where resources such as processing
power, memory and bandwidth are scarce.

The main contribution of this work is an analytical performance model for
ECA rule engines. We discuss the difficulties in building a performance model of
an ECA rule engine and present one that, despite its simplicity, accurately pre-
dicts overall system utilization. The measurement and monitoring of the ECA
rule engine and its individual services are supported by our performance eval-
uation tool set. The model is validated against a case study based on SAP’s
intention to move business processing towards the periphery [2].

2 Background

2.1 ECA Rule Engines

An ECA rule engine is a software system that executes Event-Condition-Action
(ECA) rules [3]. ECA rules contain a) a description of the events on which they
should be triggered; b) an optional condition, typically referring to external
system aspects; and c) a list of actions to be executed in response. In general,
the structure of an ECA rule is ON <event> IF <condition> THEN <action>.
Events are relevant changes of state of the environment that are communicated to
the ECA rule engine via messages, possibly originated at heterogeneous sources.

Fig. 1. ECA Rule Manager architecture

Our rule engine, depicted in Figure 1, was designed as a set of independent
services, or bundles, managed by a service platform. For the embedded imple-
mentation we have chosen the Open Services Gateway initiative (OSGi) Service
Platform, because of its minimalist approach to service life-cycle management
and dependency checking. The services are decoupled from each other via a Pub-
lish/Subscribe notification service, for which we use a Rebeca [4] event broker
wrapped as a service. The ECA Manager service exposes a Rule Processor API
over which rules can be (un)registered and (de)activated. The rule execution is
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split and delegated to elementary services, namely Event Composition, Condi-
tion Evaluation and Action Execution. Conditions and actions invoke high level
functions exposed by other services such as the Local Repository service. This
plug-in mechanism allows to dynamically extend the set of operations.

2.2 Performance Analysis

Performance has been studied in the context of Active Database Management
Systems (aDBMS) [5,6,7,8]. These are complete “passive” DBMS extended with
the possibility to specify reactive behavior beyond that of triggers. ECA rule
engines, which stem from aDBMS, are more flexible in that they can interact with
any arbitrary system, but do not necessarily provide full database functionality.

The work in [9] identified requirements for aDBMS benchmarks. Important
aspects were the response times of event detection and rule firing, as well as the
memory management of semi-composed events. The BEAST micro-benchmark
[10,11] reported on the performance of various aDBMS available at the time, such
as ACOOD, Ode, REACH and SAMOS. BEAST does not propose a typical
application to test its performance. Konana et al. [12], in contrast, focus on
a specific E-Broker application which allowed the evaluation of latency with
respect to event arrival rate, among others. The experiments in [13] evaluate the
effects of execution semantics (e.g., immediate vs. deferred execution) by means
of simulation.

Previous work has focused on evaluating the performance of systems or pro-
totypes, rather than predicting it. This is due to the complex nature of ECA
rule engines and rule interactions.

3 Analytical Performance Model

In order to understand how a rule engine performs, we begin by defining relevant
performance metrics. These metrics, mostly stemming from [14], aim at a statis-
tical analysis of the rule engine and are not specific to ours, thus they can be used
for an objective comparison. In this paper we employ service time R, throughput
μ, CPU utilization U and queue length to model the system performance.

Building a performance model for an ECA rule engine requires an under-
standing of its rules and their relationships. An initial, straightforward attempt
to come up with an analytic performance model is to consider the entire rule
engine as a single black box. However, this approach is not convenient for our
purposes because it leads to inaccurate results.

At a finer granularity, the model could be unbundled into the event broker
and its individual rules as black boxes, each with a separate queue as depicted
in Figure 2. For the time being, we consider that rules are independent of each
other, i.e. each event can cause the triggering of only one rule. We are aware
that this condition is not the general case, and will be later relaxed. The first
step consists in obtaining the service time Rbroker , associated with the event
broker, and Ri (with i = 1, ..., n), associated with the n deployed rules. From
these service times, the average throughput μ can be obtained as follows:
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μbroker = 1/Rbroker; μi = 1/Ri with i = 1, ..., n

To calculate the CPU utilization U , the workload λ as well as the probability
for a certain event to occur pi (and thus the probability for a certain rule to be
executed) have to be specified:

U = Ubroker +
∑n

i=1 Ui = λ/μbroker +
∑n

i=1 pi ∗ λ
μi

(where
∑n

i=1 pi = 1)

In addition to the assumption of rule independence, this model presents the
problem that it does not allow loops, i.e., cases in which a condition or action
statement feeds an event to the broker and thus a service is visited twice (cf. the
lower dotted line in Figure 2 for rule Rn). In the worst case, under a constant
load, the number of events that revisit these services would grow infinitely. Next,
we present our approach to solve the preceding issues.

Fig. 2. Performance model with rules as black-boxes

3.1 A Simplified Model: Event Paths

The idea of the model is to consider all the possible paths that events may
cause and assign a queue to each (see Figure 3.a). A path is defined as the
sequence of ECA services an event goes through, possibly of different rules. The
simplest paths to be identified are those initiated by events (whether they are
simple or composite) that directly trigger a single rule and then exit the system.
These paths must be then distinguished if, depending on the event values, the
execution may conclude at the Condition Evaluation service or it may proceed
until the Action Execution service. Moreover, the path must be split if it involves
condition or action statements that differ in their service time under certain
situations (first-time invocations, warm-up, caching, etc.). Finally, if a statement
may generate another event which in turn triggers another rule, an extra path is
included with the additional services. This avoids having loops between queues
in the model (i.e., services are never visited twice).

In this approach, the service time Ri of each event path i starts at the time
of the entrance of the event at the rule engine, during its stay at all the involved
services, and stops at its final departure (this is exemplified in the interaction
diagram of Figure 3.b). Measuring each event path’s service time might require
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Fig. 3. a) event paths model, b) an actual event path for rule R1

a major effort. However, and as it is shown in Section 4.2, it is acceptable to use
the sum of the service times of the particular services an event path involves.

From the service time of each event path, their average throughput μi can be
obtained, as before, from μi = 1/Ri. To calculate the CPU utilization U for an
event path model, the service times of the event paths need to be measured. The
workload λ also must be defined, i.e., the probability pi for each path to occur is
needed. The CPU utilization for a model with m event paths can be calculated
as follows:

U =
m∑

i=1

Ui = λ ×
m∑

i=1

pi

μi
, with

m∑

i=1

pi = 1 (1)

The simplicity of this model is counterbalanced by the fact that the more rules
exist, the more complex the determination of all event paths gets. Note that this
is not an operational problem but needed for the proper performance analysis.
When the system must manage 100’s or 1000’s of rules, the number of paths
can grow large, thus the usefulness of the model can be restrictive. This is not a
major threat in embedded systems, since given their limited resources, the rule
sets are small. Lastly, the model assumes an understanding of the rules and their
relations.

3.2 Queueing Behavior

To calculate the length of a queue over time, both its service time Ri and the
workload at time t, λt, are needed. The queue size behavior is quite intuitive:
a queue grows (or shrinks) at a rate equal to the difference between the in-
coming events per time unit (λt) and the processed events per time unit (μ).
Mathematically, the queue length Q is recursively constructed with the formula:

Q(t) =
{

0 if t = 0;
max {0; Q(t − 1) + λt − μ} otherwise. (2)

3.3 Performance Evaluation Tool Set

The goal of the tool set is to support the testing phase of the software develop-
ment process by helping measure and monitor different performance metrics of a
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rule engine. The system supports the creation of test data, generation of events,
and different time measurements. Its architecture, depicted in Figure 4 on the
greyed area on the top left, is divided in two parts: one running on a server side,
and the other running on the embedded, target system, as OSGi bundles.

The Data Generator runs on the server side. Its function is to generate the
necessary test data for the performance evaluation. This includes the generation
of domain-specific data, as well as event properties, i.e., metadata describing
events. The user needs to describe each of the event types and provide the
probability of their occurence.

Fig. 4. Performance Evaluation Tool Set architecture

The Event Generator is concerned with generating and publishing at the cor-
rect points in time the necessary events the rule engine needs for a performance
evaluation. The workload parameters such as which events to generate, at which
time, with which frequency and the total run time, are obtained from the Data
Generator. Event generation can take two forms (illustrated in Figure 5). In
the constant mode, events are published following a constant rate ρ, during a
specified interval width �. The rate can be incrementally scaled by a Δ factor,
which is typically used to increase the event workload and stress the system.
In the impulse mode, events are published following a Gaussian function, which
better suits real world situations of bursty event sequences. This mode must be
parameterized with an interval width � and a peak a. Finally, both modes can
be configured to have a gap after each interval.

The Performance Tracker service is responsible for tracing service times and
queue lengths. There are two mechanisms to measure service times. The first
consists of adding code that starts and stops a timer in the particular compo-
nent methods that are to be measured, and then send the time observations
to the tracker. This mode is used when a measurement starts and stops in the
same component. The second alternative consists in starting a timer, let the
tracker initiate the process to be measured, and then stop it when the process
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Fig. 5. Different event generation patterns with � = 30 seconds and gap = 5 seconds

is finished. This mode avoids having to modify the system’s source code, but in-
cludes method invocation times, context switches, etc., which don’t necessarily
relate to the service to be measured, and thus is used to measure service times
of event paths. For both modes, the Performance Tracker attempts to measure
the average service time over multiple runs, and not the time an individual event
took. The time observations are stored in buckets. The granularity of the buck-
ets determines the accuracy of the measurements, but also affects the memory
requirement. With each new run, the buckets are flushed to disk for later analy-
sis, which enables their reuse. The queue lengths can also be traced over time,
normally in conjunction with the Event Generator in impulse mode. Since trac-
ing queue length over time requires large amounts of memory, the traces are
restarted with every new impulse.

Additionally, we have implemented a set of scripts which measure, monitor
and collect other metrics, e.g. CPU, which are provided by the OS.

4 Case Study

The selected scenario is part of a supply chain environment, where a supplier
ships goods stacked in pallets to a retail distribution center. These pallets have
RFID tags and wireless sensors attached to them. The supplier’s system sends
an Advance Shipping Notice (ASN) to the retailer. An ASN can be seen as a
document consisting of a list of Electronic Product Codes (EPCs) and optional
constraints about the good’s conditions, which imply the usage of sensors. On
the other end of the supply chain, the retailer’s enterprise application receives
the ASN. Once the shipment arrives at the destination, a comparison between
the delivered goods and the received ASN needs to be carried out.

The retailer’s system is organized in 4 layers (columns in Figure 6). The
inbound process is initiated at the destination when the retailer’s enterprise ap-
plication (1st column) receives an ASN {a}. The document is stored in an ASN
Repository for later use {b}. When a truck arrives at the distribution center,
a dock is assigned for unloading and the pallets are scanned while entering the
warehouse. When an EPC is obtained from a scanned RFID tag on a pallet
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Fig. 6. Advance Shipping Notice inbound process

{c}, the corresponding ASN is fetched from the ASN Repository {d} while (in
parallel) other tags are being aggregated {e}. Additionally, the Device Opera-
tion Layer can initiate sensor data validation of the attached sensor to check the
logged transport conditions {f} (e.g., in case of perishable goods, temperature
and humidity values are relevant, while for other goods shock, acceleration and
pressure values are of interest). Based on the fetched ASN, the accuracy verifi-
cation is carried out {g}. The result of the complete verification is sent to the
Business Process Bridging Layer {h}, where further business logic is applied.

The rule engine implements the functionality of the Device Operation Layer,
running on a Crossbow Stargate hardware platform. This is based on an Intel
X-Scale processor and offers multiple network connectivity options. The system
is bundled with Embedded Linux BSP, on top of which IBM’s J9 Java VM
for the ARM processor runs. The rule engine’s services run on Oscar, an open
source OSGi implementation. The sensor nodes used are Crossbow’s Mica2s. We
implemented a logging component in TinyOS that is able to be wirelessly queried,
analyze its data and answer with the required information. For this prototype we
also experimented with the Skyetek M1 Mini RFID reader attached to a Mica2’s
sensor board, which fed the rule engine with EPCs stored in ISO 15693 tags.

The business logic of the scenario was split into four ECA rules, which are sum-
marized in Table 1. The rule Incoming EPC (R1) listens for EPC events. Its condi-
tion part C1 uses the Local Repository service to search for an ASN containing the
received EPC. If there is no local cached copy, the Local Repository tries to fetch it
from the remote ASN Repository. If no matching ASN is found, an UnexpectedEPC
event is published and the action part of the rule is not executed. If a matching
ASN does exist, the action part of the rule, A1, is executed. First, the EPC is
checked as ‘seen’. Then, if the pallet carries a sensor node, it is queried for its
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Table 1. ECA rules for the supply chain management scenario

Rule ID Rule Name Services Reacts to

R1 Incoming EPC C1, A1 EPC
R2 Incoming Sensor Data E2, A2 SensorData | MoteTimeOut
R3 End of Shipment E3, A3 DataCollectionReady | ASNTimeOut
R4 EPC Exception A4 UnexpectedEPC

collected sensor data. Finally, if all the expected data for the ASN has been col-
lected, a DataCollectionReady event is published.

The rule Incoming Sensor Data (R2) is triggered either when a wireless node
sends sensor data (which occurs only when a sensor node is queried) or when
a timer (which is associated with the sensor node query) times out. The action
part A2 registers this incoming sensor data in the ASN at the Local Repository.
The rule End of Shipment (R3) reports the results of the ASN comparison back
to the Business Process Bridging Layer.

Finally, the rule EPC Exception (R4) is triggered when an incoming EPC
does not belong to any ASN. Its action A4 consists in reporting the EPC back
to the Business Process Bridging Layer, together with contextual information
such as date, time, and dock where it was read. Note that rules R1 and R4 react
to simple events, and thus don’t require the Event Composition service, while in
contrast, rules R2 and R3 react to composite events, in this case a disjunction
with a timeout.

4.1 Identification of Event Paths

In this section we analyze the ECA rules of the ASN scenario in order to identify
the event paths. The first step in modeling the ASN scenario with event paths
was to write down all sequences of ECA services that an event can take. Concern-
ing the execution of the rule Incoming EPC, it was very important whether the
corresponding ASN already exists in the Local Repository, or it had to be fetched
from the ASN Repository, since this distinction affected the service time. For that
reason, event paths containing C1 were split into two paths. The event paths were:

1. Event Path I: C1 → A1
Triggered by an EPC event, with no associated sensor data, where the corre-
sponding ASN document still has unchecked EPCs besides the one recently
read.
– I.1: The ASN document already existed in the Local Repository.
– I.2: The ASN document had to be fetched from the ASN Repository.

2. Event Path II: C1 → A1 → E3 → A3
Triggered by an EPC event, with no associated sensor data, where the corre-
sponding ASN document is now completed. A DataCollectionReady event
follows, which reports the ASN comparison results to the Business Process
Bridging Layer.
– II.1: The ASN document already existed in the Local Repository.
– II.2: The ASN document had to be fetched from the ASN Repository.



Performance Evaluation of Embedded ECA Rule Engines 57

3. Event Path III: C1 → A4
This path starts with an EPC event for which no ASN is found, thus is chained
with an UnexpectedEPC event which triggers the report to the server.

4. Event Path IV: C1 → A1 → E2 → A2
This path is similar to path I, except that the EPC has sensor data associ-
ated. The respective sensor node is queried, to which a SensorData event is
answered. This data is finally registered in the ASN document.
– IV.1: The ASN document already existed in the Local Repository.
– IV.2: The ASN document had to be fetched from the ASN Repository.

5. Event Path V: C1 → A1 → E2 → A2 → E3 → A3
This event path is similar to event path IV, aside from the fact that the ASN
does not have unchecked EPCs anymore, hence the ASN is reported back to
the ASN Repository.
– V.1: The ASN document already existed in the Local Repository.
– V.2: The ASN document had to be fetched from the ASN Repository.

4.2 Measured Service Times

This subsection summarizes the results on service times. For these experiments,
the Event Generator was used in constant mode, with ρ = 20 events / minute.
This low frequency ensured that events were not influenced by each other. The
experiments ran for 80 minutes, the first 30 being ignored as warm-up phase.

The service times of individual services and the event paths are summarized
in Table 2 and 3, respectively. We compare both approaches to measure service
times in Figure 7. The absolute (i.e., concrete) min., max. and avg. values for
both the sum of individual service times and event paths is shown in 7(a). Figure
7(b) contrasts the relative service time difference between the event path average
service time (middle greyed area, 100%) against the min., max. and avg. sum of
individual service times. The average deviation for these event paths was 9.25%.

4.3 Queueing Behavior

In this section we present the results about the queueing behavior. To study this,
it is necessary to have event bursts such that queues form, followed by periods
without events. For this purpose, the Event Generator was used in impulse mode,
with intervals of � = 30 seconds and a gap = 4.5 minutes (where no events
were sent). During the peak, the Event Generator published events with a peak

Table 2. Service times for the Event, Condition and Action services

Id Rule Note Event Condition Action

R1 Incoming EPC fetch ASN — 241.75ms 87.78ms
do not fetch ASN — 29.22ms 104.41ms
no ASN available — 192.05ms —

R2 Incoming Sensor Data 6.36ms — 41.47ms
R3 End of Shipment 6.50ms — 253.15ms
R4 Unknown EPC — — 53.83ms
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Table 3. Service times for event paths

Event Path Description Service time

I C1 → A1
I.1 do not fetch the ASN 174.15ms
I.2 fetch the ASN 383.59ms
II C1 → A1 → E3 → A3
II.1 do not fetch the ASN 352.93ms
II.2 fetch the ASN 575.87ms
III C1 → A4

fetch the ASN 239.99ms
IV C1 → A1 → E2 → A2
IV.1 do not fetch the ASN 197.50ms
IV.2 fetch the ASN 449.46ms
V C1 → A1 → E2 → A2 → E3 → A3
V.1 do not fetch the ASN 420.61ms
V.2 fetch the ASN 632.64ms
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Fig. 7. Service time measurements: absolute values (a) and relative difference (b)

a = 15 events/s. Once this 5-minute process finished, it was repeated again. For
the measurement of the queue length, the Performance Tracker service was used.
Each time the Event Generator started sending events for the 30 seconds period,
it also started the queue trace at the tracker, hence queue lengths of all observed
queues were recorded at every second. The queues to be observed were selected
by the Event Generator in the initialization phase.

Now we present the queueing behavior of the Condition Evaluation service
for the rule R1, i.e., C1. For this purpose, a test was carried out where the ASN
Repository stores 200 ASNs, each containing one EPC with no sensor data. The
queue length predictions were based on the service times for C1 from Table 2. The
Condition Evaluation service does not have its own queue. Indeed, events were
queued in the Event Broker service, waiting for being serviced by C1. The Event
Broker can be seen as the queue of the Condition Service because its service
time is negligible. The Event Generator split the � interval in five stages. The
event arrival rate at the Broker varied at these stages according to the workload
λt as defined in Equation 3.
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λt =
{

1 2
3 events/s if 1 ≤ t ≤ 6 or 25 ≤ t ≤ 30
5 events/s if 7 ≤ t ≤ 12 or 19 ≤ t ≤ 24
15 events/s if 13 ≤ t ≤ 18

(3)

From C1’s service time (where the ASN must be fetched), we obtained μ =
1/0.24175 events/s = 4.13 events/s. By using Equation 2, the queue length can
be calculated. For the measurement, the Event Generator ran for a period of
30 minutes, thus 6 queue traces were obtained. The comparison between the
predicted values and each of the 6 runs, presented in Figure 8, shows that the
calculations were considerably accurate.

Next, we discuss the more general case where multiple interacting services
operated sequentially on incoming events. For space reasons, we consider here
only the event path II.1, which involved the sequence of services C1 → A1 →
E3 → A3. The ECA rule engine was designed with a single real queue for all
the incoming events. The resulting behavior is difficult to calculate analytically.
Therefore, we wrote a small script that simulated it. On the measurements side,
the Event Generator was configured to run over a 40 minutes period. We compare
the simulated and empirical measurements in Figure 9 (a) and (b), respectively.

These two plots are considerably similar, except at t ≥ td. This difference
revealed a relation between the rules R1 and R3 which was unforeseen at the
time we designed the queue length simulator. The issue arises when an EPC
event for a particular ASN must wait too long in the Broker queue. When this
wait exceeds a predefined timer, an ASNTimeOut event is triggered, which sends
the (incomplete) ASN document back to the repository and thus has to be re-
fetched. This also explains the higher amount of events on the queues of R3.

4.4 CPU Utilization

We now present the results on CPU utilization. In this supply chain scenario, the
workload is distributed across 5 EPC types, to which we assigned a percentage
in Table 4(a). This selection covered the four rules of the scenario.

In order to calculate the CPU utilization using Equation 1, however, the prob-
abilities of each event path (and not the EPC types) are needed. For this purpose,
we fixed the number of EPCs per ASN for this experiments to 100 EPCs. With
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Fig. 9. Predicted (a) and measured (b) queue lengths for event path II.1

this consideration, the probabilities of each event path were shaped. First, the
25% assigned to Checked EPCs were mapped to event path I.1, I.2, II.1 and
II.2, because a Checked EPC always causes the triggering of R1, followed (some-
times) by R3 if the ASN document is completed. Second, the 10% of Unexpected
EPCs were mapped to event path III. Finally, the remaining EPC types (which
accounts for 65%) were mapped to event paths IV.1, IV.2, V.1 and V.2. These
probabilities are shown in Table 4(b).

The average service time can be calculated using the information from
Table 3 and the formula: μ =

∑
i∈paths pi ∗ μi = 222.63 ms, with

∑
i∈paths pi

= 1. The CPU utilization, in turn, is calculated from: Ut = λt/μ. The CPU uti-
lization was monitored using the standard Linux top command; a script piped
it to a file for later analysis. Both for the calculations and measurements, the
average number of incoming events started with ρ = 40 events/minute, and it
was incremented by a factor Δ = 0.5 every � = 10 minutes. The prediction and
the measurement were executed over a total of 65 minutes.

In Figure 10 we show a plot of the published events over time (right y axis),
together with the measured and predicted results (left y axis). It is easy to notice
that the utilization remained constant for 10 minutes and then increased slightly.
However, the measured utilization drifted significantly from the predicted one.
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Table 4. Settings for CPU utilization prediction and measurement

(a) Workload characterized according
to event types

EPC type: Assigned %

Checked EPC 25%
Checked EPC with 25%
sensor data
Checked EPC with 20%
missing sensor data
Checked EPC with 20%
infringing sensor data
Unexpected EPC 10%

(b) Event path proba-
bilities

Event Path %

I.1 ⇐ 23%
I.2 ⇐ 1%
II.1 ⇐ 0%
II.2 ⇐ 1%
III ⇐ 10%

IV.1 ⇐ 59%
IV.2 ⇐ 3%
V.1 ⇐ 0%
V.1 ⇐ 3%

At higher λ rates, the difference was about 15%, which turned the prediction un-
acceptable. The reason for this was that the ECA rules executed several actions
that were I/O bound, particularly blocking invocations with large roundtrips.
For instance, the fetching of ASN objects (i.e., XML documents) was imple-
mented by an RMI call which took about 160ms. Equation 1, though, relies on
the assumption that the CPU is kept busy all the time. Given this consideration,
we adjusted the service times by subtracting pure I/O operation times associ-
ated to each event path, and recalculated the average throughput. As a result,
the (adjusted) CPU utilization prediction, also plotted in Figure 10, resulted a
reasonable approximation of the observed one.
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Fig. 10. Measured and predicted CPU utilization using the event path model

5 Conclusions and Future Work

We presented a performance evaluation of an ECA rule engine on an embedded
device. This area has not been well explored because it deals with two complex
domains: the resource constraints of embedded devices and the complex reactive
nature of ECA systems.

The model we developed eliminates, to a certain extent, the problems of rule
independence and revisiting events. The proposed solution, based on identifying
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event paths, has shown to be reasonably accurate in predicting performance. Fur-
thermore, the presented work helped understand the entire system more deeply
and enhance it in different ways. Queueing behavior analysis exposed timing
dependencies between rules that were not evident before.

The model’s simplicity can be offset by the effort required to find manually all
event paths and obtain their probabilities. It might be useful to integrate a tool
that, by statically analyzing the ECA rules, automatically identifies the paths
that the events may take. By dynamically tracing incoming events, the relevant
paths could be identified and their probability determined by the frequency with
which the path was traced. Finally, we are working on developing a comprehen-
sive methodology for performance evaluation of ECA rule engines, independently
of the underlying platform under test. This requires the application of the steps
described in this paper to further projects to confirm the validity of the method
based on event paths.
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