
Towards a Generic Proxy Execution Service

for Small Devices

Roger Kehr, Andreas Zeidler
Darmstadt University of Technology
{kehr,az}@informatik.tu-darmstadt.de

Harald Vogt
T-Nova GmbH

vogth@tzd.telekom.de

FuseNetD Workshop Position Paper, October 1999

Abstract

Small devices such as PDAs, smartcards, or other gadgets with limited
resources in terms of memory size, communication bandwidth, and battery
consumption are becoming increasingly popular. Making these devices
network-enabled is an effort currently undertaken by academic as well as
commercial organizations.

Though these devices will grow in the near future to become even more
powerful computing machines, we believe that there will always be small
devices around with inherently limited resources. Since we expect that
future services will federate into an infrastructure for service discovery,
some of the devices will require special assistance from their environment
for this integration to be successful.

We propose a general proxy execution service that offers small devices
a platform for executing necessary proxy objects on a network node and
give a taxonomy of the different requirements. Our concrete research
prototype is a PDA which uses Infrared communication to send its device
proxy to an execution service running on a network node. This proxy
registers services running on the PDA in a Jini environment and acts as
the gateway between the PDA and the network.

1 Motivation

The need for an open proxy execution service is motivated by the lack of features
and capabilities of a large amount of devices. Figure 1 shows the design space
for devices concerning these capabilities according to three different dimensions.

The first dimension denotes the amount of processing power a device has.
Here we subsume the three main items CPU performance, memory size, and
size of persistent storage, into one singular dimension, since usually all three of
them grow at similar factors as devices get larger.

Along the second dimension we consider the ability to communicate as an-
other relevant factor. It includes bandwidth, the underlying communication



Computational
Power

Ability to communicate

Autonomy
(w.r.t. Infrastructure)

• CPU
• Memory
• Storage

• on- vs. off-line
• uni- vs. bi-directional

autonomous

dependantlow

high

highlow
• Bandwidth
• Comm. Technology

Figure 1: Design Dimensions of Small Devices

technology, and discrete issues, such as on- vs. off-line operation and support
for uni- vs. bi-directional communication.

The third dimension is autonomy, an indication of how dependant a device
is from support of the surrounding infrastructure. Obviously, autonomy usually
depends on the first two dimensions and is therefore not truly orthogonal. The
shaded regions are meant to indicate that the more powerful a device is along
the first two dimensions, the more the device is likely to be autonomous.

As an application of our design space we classify devices of interest. This
classification gives a rough impression of the character of these devices and the
kind of support they need from the infrastructure for proper operation.

Sensors
Sensor devices are equipped with only minimal computing power and
memory size. They have some communication facility based on technolo-
gies such as Infrared, or Bluetooth-based [Blu99] links. These devices are
pure information sources and cannot be controlled or managed from out-
side, thus have a uni-directional link. Additionally, they may send their
information in short time intervals.

Typical examples of such devices are the Infrared-emitters in the Active
Badge location system [WHFG92] or sensors in medical health-care sys-
tems.

To make use of these devices, appropriate receivers must be installed at
every location they are to be used at. Information processing occurs out-
side the devices somewhere in the infrastructure and/or at the application
level.

2



Sensors and Actuators
In contrast to simple sensors, these devices are able to receive commands
which can in turn control the device, or perform actions with the actuators,
if such exist. They implement a protocol that can be used to adjust
parameters such as rate of sensing, power management, etc. In our design
space these devices are probably located in the light grey shaded area
of Fig. 1. Many embedded systems probably fall into this category. An
example of such a device is the temperature sensor described in [SA99].

Since some of these devices may not be constantly on-line, e.g. for rea-
sons of battery consumption or aspects of mobility, interaction with these
devices will mostly happen via a proxy object for that device running
somewhere on a network node. This proxy knows about the on-line times
of the device and exchanges data in both directions. The device proxy can
be constantly on-line and accepts commands for parameter changes. The
proxy waits until the next time the device is on-line and then transmits
the control information to the device. It is up to the proxy to implement
a synchronous or asynchronous API for its clients.

Information-Processing Devices
For devices of this category we can assume that they offer enough compu-
tational power to perform most of the tasks including the integration into
an infrastructure on their own, though they still might lack enough mem-
ory or bandwidth to perform resource-intensive tasks. The dark shaded
area in Fig. 1 might be the place to find devices of this category.

State-of-the-art Handhelds and PDAs are likely to belong to this category.

The Device Driver Problem

From the rough categorization given above it should be clear that different de-
vices need different levels of support from the infrastructure, thus show different
levels of autonomy. Generally, devices are bound to a particular environment
with the help of software components, usually referred to as device drivers, that
implement a protocol to map a high-level API onto native device operations.

Besides software maintenance problems, the installation of a device driver is
generally unacceptable in an environment of spontaneously interacting devices.
In such scenarios the device owner transports her device into an environment
that is not under her own control. Consider a device, such as a smartcard, that
offers several different services its owner might use in an unknown environment.
Another option would be a PDA that is used as a client for different services
offered in an unknown network.

3



In general the question arises, how a) can devices physically interact with
other nodes in a network, b) can such devices be given access to services in
the network, and b) how can such devices offer services on their own? These
questions directly lead to the following problem domains:

Physical Link
Different technologies are available for interconnecting devices. For the de-
vices of interest at least the following technologies may play an important
role: Proprietary Infrared, IrDA [IrD99], Bluetooth, DECT, Ethernet, etc.

Transport Protocol
Different transport protocols are necessary to communicate with the de-
vice, ranging from TCP/IP to lower-level protocols based on the under-
lying link technology (e.g. IrDA session protocols IrObex, IrLan, etc.).
It is important to notice that the transport protocol should ensure that
the device is somehow addressable from the communication layer (e.g. by
assigning an IP address)

Infrastructure Integration
This topic essentially addresses issues concerning the kind of middleware
used for service description and discovery. Examples of such service-
trading middleware are Service Location Protocol [VGPK97], Jini [Wal99,
Sun99], and Universal Plug and Play [UPn99]. Protocol gateways might
be necessary to map between different kinds of technologies. Beyond pure
service-trading, the underlying communication middleware such as RPC,
CORBA, DCOM, or Java RMI adds another level of complexity for solving
the integration problem.

In an open environment that allows many kinds of devices with different capa-
bilities and technologies to seamlessly interact with each other, for each of these
problem domains suitable solutions must be found. Though a general, uniform
solution is unlikely to be found easily, it is obvious that an infrastructure for
connecting devices built on top of pre-installed device drivers will not be flexible
enough to fulfill the demands of those devices.

2 Research Outline

Beyond technological solutions we think that more fundamental research must
be done to find solutions to this problem. Based on the observation of the
device driver problem, we conclude that a better approach would be to invert
the paradigm of device drivers. We believe that device drivers need to be present
in the devices and that installation and activation of these drivers is not a task
that is performed once by an administrator, but isoccurs as often as a device is
linked spontaneously to a network. This activity should happen with as little
user intervention as possible and not require the skills of experts.

4



Additionally, we want to separate the device driver into a network-resident
device proxy and a device resident portion. Our basic claim is that devices
acting in spontaneous networks need to

a) publish enough information to enable the infrastructure to load and acti-
vate the proxy from the net, e.g. a URL, or

b) carry their device proxy with them, and are able to inject them into a
general execution platform in the infrastructure.

Common to both claims is the notion of code mobility which we consider fun-
damental for this kind of operation. Based on this claim, our current activities
include research that addresses the following questions:

• What level of support from the infrastructure is needed by different device
classes?
If there would be a system that enables devices to inject proxies into the
infrastructure, would that make manufacturing of devices much cheaper
than without?

• What are the necessary protocols for establishing bindings between a de-
vice and the execution platform?
Here the underlying transport protocols must be taken into consideration
and solutions must be found to enable devices to perform efficient link
level negotiation.

• How does discovery of an execution platform occur?
This includes issues of proxy upload, instantiation and activation, some-
thing that has already been addressed for legacy devices in [ADH+99].
One could, for example, implement an execution service as a Java vir-
tual machine running on a network node that offers a certain set of Java
classes. Device proxies could then consist of serialized Java objects and
an additional JAR-file containing the implementation of the device proxy.

• What does security mean in such an open environment?
Essentially, this includes further questions such as the choice of interpreted
languages, security issues (authentication, monitoring, code signing), etc.
Besides the technical aspects of this question, the more general problem of
security in spontaneous, ad hoc networking environments is fundamental
and needs to be addressed.

• What Internet background infrastructure is needed to make such a service
widely usable?
This includes questions like central directory services for proxies for (very)
small devices, versioning of proxies, etc.

• In what respect are such execution platforms comparable to agent plat-
forms?
Here it is necessary to cleanly separate both domains and on the other
hand identify similarities as well.

5



• How does integration into a service discovery infrastructure take place?

The architecture of a widely applicable system that offers solutions for the prob-
lems outlined above is an interesting research topic.

3 Conclusion

Based on our initial observation of the device driver problem in spontaneous
networks and a rough taxonomy of the design space of small devices that might
become (spontaneously) networked in the near future, we have stressed the
need for a general execution platform for small devices. This requires a general
architecture for the design of such a service with focus on the dynamics of
changes in device technologies and networks.

Our prototype, an execution service for PDAs communicating via Infrared,
aims at understanding the different issues that must be solved for an execution
service in a particular domain of interest. Based on these results we aim at
a more general framework for supporting a variety of services and integrating
middleware systems.

References

[ADH+99] Gerd Aschemann, Svetlana Domnitcheva, Peer Hasselmeyer, Roger Kehr,
and Andreas Zeidler. A Framework for the Integration of Legacy Devices into
a Jini Management Federation. In Tenth IFIP/IEEE International Workshop
on Distributed Systems: Operations & Management (DSOM ’99), October
1999.

[Blu99] Bluetooth Consortium. The Bluetooth Project Homepage. http://www.

bluetooth.com/, 1999.

[IrD99] Infrared Data Association. www.irda.org/, 1999.

[SA99] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security
Issues for Ad-hoc Wireless Networks. In Proceedings of 7th International
Workshop on Security Protocols, LNCS. Springer, April 1999. Available at
www.cl.cam.ac.uk/~fms27/duckling/.

[Sun99] Sun Microsystems Inc. Jini Architecure Specification – Revision 1.0, January
1999.

[UPn99] Universal Plug and Play Homepage. www.upnp.org, 1999.

[VGPK97] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service Location
Protocol (SLP). Internet RFC 2165, June 1997.

[Wal99] Jim Waldo. The Jini Architecture for Network-centric Computing. Commu-
nications of the ACM, 42(7):76–82, July 1999.

[WHFG92] R. Want, A. Hopper, V Falcao, and J. Gibbons. The Active Badge Loca-
tion System. ACM Transactions on Information Systems, 10(1), 1992.

6


