
On The Performance Of Database Query Processing Algorithms
On Flash Solid State Disks

Daniel Bausch, Ilia Petrov, Alejandro Buchmann
Databases and Distributed Systems Group

Technische Universität Darmstadt
{bausch, petrov, buchmann}@dvs.tu-darmstadt.de

Abstract—Flash Solid State Disks induce a drastic change
in storage technology that impacts database systems. Flash
memories exhibit low latency (especially for small block sizes),
very high random read and low random write throughput, and
significant asymmetry between the read and write performance.
These properties influence the performance of database join
algorithms and ultimately the cost assumptions in the query
optimizer.

In this paper we examine the performance of different join
algorithms available in PostgreSQL on SSD and magnetic
drives. We observe that (a) point queries exhibit the best
performance improvement of up to fifty times; (b) range
queries benefit less from the properties of SSDs; (c) join
algorithms behave differently depending on how well they
match the properties of solid state disks or magnetic drives.

I. INTRODUCTION

Flash Solid-State Disks (SSDs) are revolutionizing the
storage technology and have the potential to change estab-
lished principles of DBMS architectures. Both Flash SSDs
(by “SSDs” we mean enterprise-class, Flash NAND SLC
SSD) and Hard Disk Drives (HDD) support the same block
device interface standards. This makes substitution easy.
SSDs exhibit low latency and very high random throughput,
both 10 to 100 times better than the respective HDD values.
The sequential throughput of an enterprise SSD is also high.
Therefore, one might be tempted to believe that all the
database performance issues are solved by simply replacing
HDDs by SSDs. However, an intrinsic characteristic of Flash
SSDs is strongly asymmetric throughput. This is especially
true for random operations and there is a strong block size
dependence. Furthermore, the random write performance
degrades over time. All that combined with the low Flash
SSD latency requires a re-evaluation of data processing
algorithms.

In this paper we study the performance impact of the Flash
SSD characteristics on different data processing algorithms
and query plans executing on data stored on flash storage.
We investigate past assumptions regarding the degree to
which existing algorithms match the characteristics of SSDs.
Some of these change, which clearly influences their cost
function. For example, in addition to the changing random-
to-sequential ratio, we need to account explicitly for random
read and random write operations.

There are several works that investigate similar aspects
in database query processing [1], [2], [3]. Graefe et al.
[2], [3] focus on the impact of SSD characteristics on
query processing in relational databases and especially on
join processing. [2], [3] explore the impact of new page
layouts – more suitable for SSDs and propose FlashJoin and
RARE-join algorithms. Do and Patel [1] perform significant
preliminary study on the influence of SSD performance on
join algorithms. They consider block nested-loop join, sort-
merge join, Grace Hash join and Hybrid Hash join on a
single threaded embedded storage manager. In addition, they
investigate the impact of the buffer size and page size on the
performance. In the present paper we pursue a similar goal,
however, we base our study on PostgreSQL and examine
several different types of queries (point, range, and different
join queries).

The contributions of this paper are: (a) we observe that
not all algorithms benefit equally from the characteristics of
Flash SSDs. Most of the algorithms for point queries have a
huge performance gain, while range queries benefit less; (b)
join algorithms exhibit a speed-up on SSDs of between five
and fifteen times; (c) finally, we observe that over the set
of join algorithms that was analyzed there is a non-uniform
improvement, i.e certain algorithms are relatively faster on
SSDs, while a few are relatively faster on HDDs.

The rest of the paper is organized as follows. We briefly
introduce some basic characteristics of Flash SSDs in the
next section. In Section IV we describe the experimental
search space. Sections III and V describe the benchmark
used and contain detailed discussions on the experimental
results, respectively. Section VI summarizes our findings

II. ENTERPRISE FLASH SSDS

The performance exhibited by Flash SSDs is significantly
better than that of HDDs. Flash SSDs are not merely a
faster alternative to HDDs; just replacing them does not
yield optimal performance. The performance of Flash SSDs
is characterized through: asymmetry, very high random
throughput; high sequential performance; low latency; low
power consumption. The basic characteristics of the Flash
SSDs are well documented [4], [5], [6]. These can be sum-
marized as follows: (a) asymmetric read/write performance



– the read performance is significantly better than the write
performance, up to an order of magnitude. This is due to
the internal organization of the NAND memory and FTL
algorithms. (b) excellent random read throughput (IOPS) –
especially for small block sizes (Figure 1(a). (c) acceptable
random write throughput – small random writes are 5x to
10x slower than the random reads. The random throughput
also deteriorates over the time. (d) very good sequential
read/write transfer. Although it is still commonly assumed
that HDDs have higher sequential throughput, however
newer generations of SSDs perform significantly better (Fig-
ure 1(b)). (e) IO Parallelism and Command Queuing (CQ)
allows several IO requests to be executed asynchronously
and in parallel.

101

102

103

104

105

4 8 16 32 64 128 256

R
an

do
m

T
hr

ou
gh

pu
t

[I
O

PS
]

Block Size [KB]

SSD read
SSD write

HDD read
HDD write

(a) Random throughput (IOPS)

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024

Se
qu

en
tia

l
T

hr
ou

gh
pu

t
[M

B
/s

]

Block Size [KB]

SSD read
SSD write

HDD read
HDD write

(b) Sequential throughput (MB/s)
Figure 1. Random and Sequential throughput of an Intel X25-E SSD and
a 7200 RPM HDD

III. BENCHMARK

The database created for these experiments contains two
tables, connected through a foreign key relationship. One
with random address records and one with pets that the
people in the first table own. For complete coverage of
the experimental search space, different layouts of the same
database are used, in which the key columns are indexed or
not. Unclustered B-Tree indices are used. The key values
of the primary key of table “addresses” are monotonically

increasing numbers. The values of the foreign key column
in table “pets” are created randomly. To put a reasonable
load on the system we created ten million address records
and five million pets amounting to 1.7 GB.

Database schema:
ADDRESSES( id, name, str, no, town );
PETS( id, owner, animal, name);
Three classes of queries are defined and executed against

the database (SQL in the appendix):
point query: This query computes a random value and

selects a single record from the ADDRESSES table with this
primary key. These keys were generated as SERIAL and can
be indexed (unclustered B+-tree) or not.

range query: This query selects full records for a
random range of foreign keys from the PETS table. These
were inserted as random values but may be indexed or not.
On average this returns 25% of the PETS tuples.

join query: This query selects all columns from both
tables where the pet is a dog—that is one third of the
pets. The tables are joined on the primary key of the
ADDRESSES table and the foreign key in the PETS table.
The join type is “inner join”.

IV. EXPLORING THE SEARCH SPACE

Our goal is to examine the performance of different data
processing algorithms. Unfortunately there is no direct way
to instruct PostgreSQL to execute a given algorithm. Our
methodology is to define representative types of queries:
point, range and join queries against a simple database (see
Section III).

We generate a plethora of different execution plans in a
controlled manner: the PostgreSQL configuration contains
nine boolean variables (named “enable *”), which can be
used to suppress the use of certain alternatives (such as
indexscan or seqscan) when set to “off”. Internally this
assigns a “high” cost value to the disabled algorithms.
A tool explores all the 512 enable bit combinations for
a given query. It utilizes PostgreSQL’s “EXPLAIN” SQL
command to query which plan it would choose and what
are its associated costs. The outcome of the selection process
depends on multiple factors, including the memory settings,
the concrete queries (including contained constants), the
presence of indices and the buffer sizes.

The complete search space, described by the 512 bit
combinations, is significant, however there is an inherent
room for reduction since not all bit-combinations result in
distinct plans. We reduce the complete set to a minimal set
of plans by employing the following criteria: (i) Group by a
hash value (md5) of the plan-definition. This identifies the
distinct plans. (ii) Minimize the estimated costs. That avoids
bit combinations containing “disabled” bits. (iii) Minimize
the number of enable bits switched to “on”. This raises the
correlation of the enabled bits and the selected algorithms,
and simplifies interpretation.



Table I
MINIMAL SET OF PLANS

# query se
qs

ca
n

in
de

xs
ca

n
bi

tm
ap

sc
an

so
rt

ne
st

lo
op

m
er

ge
jo

in

ha
sh

jo
in

cost
1 point • 9.370000×100

2 point • 9.360000×100

3 point • 2.485714×105

4 range • 2.767864×106

5 range • 1.089996×105

6 range • • 7.133092×104

7 range • 7.352792×104

8 join • • • 2.190674×106

9 join • • 7.405776×105

10 join • • 3.273128×107

11 join • • 4.723343×1011

12 join • • • • 7.526443×105

13 join * • • 1.003332×1010 *

14 join • • 1.909402×107

15 join • • • 1.453751×107

16 join • • 1.871930×107

17 join • • • 1.512598×107

18 join † * • • 1.000090×1010 *

19 join † * • • • 1.000074×1010 *

20 join † * * • 4.977020×1011 *

21 join ‡ • • • 1.191672×108

22 join ‡ • • * • 1.002026×1010 *

23 join ‡ * • • • 1.002016×1010 *

24 join ‡ * • • 1.001893×1010 *

25 join ‡ * * • 5.875931×1011 *

26 join ‡ • • • 1.263072×108

[•] enabled algorithm; [*] “disabled” bit used algo-
rithm(s); [†] only primary key of first table is indexed;
[‡] only foreign key in second table is indexed

The minimal set of plans comprises 26 experiments: 3
variants of the point queries, 4 variants of the range queries,
and 19 variants of the join queries. Table I shows the settings
along with the calculated costs.

Each row describes one experiment, with the cost value
being an average of multiple executions. The columns
marked with a bullet represent the elementary algorithms
that are enabled in this experiment originally. As Post-
greSQL does not guarantee that only these will be selected
perfectly, we have consulted the logged plans and marked the
additionally selected disabled algorithms with an asterisk.
The concrete plans used for each of the experiments are
listed in the appendix as they are printed by the PostgreSQL
“EXPLAIN” command.

V. EXPERIMENTAL RESULTS

The final result set of the preliminary experiments was
obtained on an Intel Core2Duo at 3GHz. As storage devices
we used a conventional desktop 7200 RPM hard disk and
an X25-E SSD from Intel. We use Ubuntu Linux with
kernel 2.6.27-17-server and PostgreSQL version 8.4 with

an I/O concurrency level of 8. Furthermore we repeated
the experiments with a PostgreSQL 9.0 release candidate.
Regardless of the extensions introduced there the present
subset of results is unchanged. We performed experiments
with varying amount of main memory and database buffer.
Out of space reason we report the experimental results with a
total of 384MB memory out of which 192MB were allocated
to PostgreSQL. Such configuration is very I/O-intensive and
loads the I/O subsystem, while correlating well to the total
database size.

As part of each experiment we execute ten queries with
randomized parameters for the point and the range query
classes. For each join algorithm we perform three execution
runs. Before each query run OS page cache is dropped. The
average run times of the real execution of the queries are
displayed in Table II and Figure 2.

All algorithms run faster on the SSD, but not all of them
benefit equally, as can be seen in Figure 4. This would not
influence the quality of the decision, as long as the best
algorithm for a given task stays the best. However, this is
not the case in this setup. For the range queries algorithm 5
is best for both HDD and SSD and for the point queries there
is only a marginal difference. However, for the join queries
algorithms 8 and 9 exchange their rank very prominently.
Figure 3 shows an excerpt of the most interesting instances
of such join algorithm behavior and their execution times
on linear scale.

Table II
AVG. EXECUTION TIMES AND SPEED-UP

# query algorithm HDD [s] SSD [s] speed-up
1 point bitmapscan 8.10×10−2 1.91×10−3 42.35
2 point indexscan 8.26×10−2 1.70×10−3 48.37
3 point seqscan 2.35×101 6.02×100 3.90
4 range indexscan 1.60×103 2.16×102 7.42
5 range seqscan 7.41×100 2.11×100 3.50
6 range bit/seq 3.22×101 1.30×101 2.48
7 range bitmapscan 3.94×101 1.78×101 2.21
8 join sort-merge 8.22×101 3.12×101 2.63
9 join hash 1.61×102 2.06×101 7.79

10 join nestloop 1.26×104 1.73×103 7.31
11 join nestloop t/o (> 4h) t/o (> 4h)
12 join sort-merge 1.39×102 7.97×101 1.74
13 join nestloop 1.26×104 1.63×103 7.77
14 join hash 1.02×104 1.04×103 9.85
15 join nestloop 2.64×104 2.09×103 12.60
16 join merge 1.09×104 1.48×103 7.37
17 join nestloop 2.64×104 2.09×103 12.60
18 join hash 2.45×102 2.27×101 10.79
19 join sort-merge 1.69×102 1.26×102 1.33
20 join nestloop t/o (> 8h) t/o (> 4h)
21 join nestloop 1.03×104 1.32×103 7.80
22 join sort-merge 1.01×104 1.42×103 7.10
23 join sort-merge 1.01×104 1.44×103 6.99
24 join hash 1.04×104 1.02×103 10.23
25 join nestloop t/o (> 8h) t/o (> 4h)
26 join nestloop 1.03×104 1.38×103 7.46



10−3

10−2

10−1

100

101

102

103

104

105

A
ve

ra
ge

Po
st

gr
eS

Q
L

ru
n

tim
e

[s
]

0102030405060708091011121314151617181920212223242526

point q. HDD
point q. SSD

range q. HDD
range q. SSD

join q. HDD
join q. SSD

Figure 2. Average run times for one query

0

50

100

150

200

250

08 09 12 18 19

A
ve

ra
ge

Po
st

gr
eS

Q
L

ru
n

tim
e

[s
]

join queries HDD join queries SSD

Figure 3. Close-up of the best join algorithms

5

10

15

20

25

30

35

40

45

50

Sp
ee

du
p

H
D

D
→

SS
D

0102030405060708091011121314151617181920212223242526

point queries range queries join queries

Figure 4. Speed-up of the average run times

Alternatively, consider algorithms 8 (sort-merge join) and
9 (hash join) in Figure 3. Both represent valid execution
plans for the join query. Interestingly enough on SSDs the
hash join execution plan (algorithm 9) has better perfor-
mance and a worse one HDDs, whereas the sort-merge join
(algorithm 8) has better relative performance on HDDs. We
call this phenomenon an exchange. Explanations for such
behavior will be given for the rest of the section. For reasons
of brevity whenever we say that an algorithm is faster or

slower we mean its relative performance depending on the
device.

Point Queries. Considering the execution times of the
point queries (Table II) we observe that the first two algo-
rithms (algorithms 1 and 2) are comparably fast and profit
by the use of the SSD with performance increases of over
40 times. The third algorithm exhibits a 5x performance
increase. These differ in that the former algorithms use an
index, while the latter (algorithms 3) performs a sequential
scan. Index lookups are random read accesses, for which an
SSD is a lot faster than an HDD, while the sequential reads
of the third algorithm are fast on an HDD as well.

Range Queries. As for the range queries the pure in-
dexscan (algorithm 4) logic is the slowest, but has the
highest speed-up on SSDs. Fastest plan for this query is
the sequential scan (algorithm 5) that ignores the index
completely. This holds for HDD and SSD equally. Therefore
while a single index lookup is much faster than a full
sequential scan, a large amount of index lookups is slower
than the full sequential scan.

Algorithms 6 and 7 use the bitmap index scan logic, which
is slower than the pure index scan for the point query. In
this case, however, the selectivity of the query is significantly
higher (25% return on average) and the values are distributed
randomly over the column. The pure index scan reads the
index sequentially and the corresponding data tuples where
the condition matches on the index producing a random read
pattern on the table. The bitmap index scan scans the index
and creates a bitmap in table order where matching tuples
are marked. After that the table is scanned by only accessing
marked tuples. Because of the high selectivity, this results
in a nearly full sequential scan of the table. The difference
of the runtimes between algorithms 5 and 7 is caused by
reading the index and the creation of the bitmap. Algorithm 6
is special because whenever both bitmapscan and indexscan
are enabled, the planner chooses based on the selectivity.
If the number of tuples expected to be returned exceeds
a certain level, it chooses a seqscan, otherwise it chooses
the bitmapscan. We think, this strategy should be indeed
better, but it depends on the choice of the threshold. The
seqscan should be superior for even lower selectivities than
the planner currently assumes.

Join Queries. The join query reveals 19 distinct plans.
PostgreSQL provides three fundamental ways to do a join:
nested loop join (nestloop), hash join (hashjoin) and (sort)-
merge join (mergejoin). These basic join variants are com-
plemented by the scan operators already discussed.

Nested Loop Joins. Considering the speed-up (Figure 4),
we distinguish two groups of nested loop joins; one with a
speed-up of about 7.5x (plans 10, 13, 21, 26), and another
with a speed-up of about 12.5 (plans 15 and 17). While
the latter two are more accelerated by the SSD, they are
still slower than the others. The former group accesses the
smaller “pets” table by index while the other group accesses



the bigger “addresses” table by index. Because of a bigger
tuple size in “addresses” this results in more cache misses
and therefore a greater number of random accesses, which
are accelerated more strongly by replacing the HDD with an
SSD. Unfortunately, PostgreSQL does not implement block
nested loop join, which conceptually and according to [1]
should exhibit a significant performance improvement.

Sort-Merge Joins. The merge joins can also be subdivided
into two groups. Group one consists of the plans 08, 12, and
19. This group sorts by the randomized “pets.owner” column
and accesses “addresses.id” by seqscan or indexscan, but
both variants result in sequential accesses as the data in
“addresses.id” was generated serially. As PostgreSQL does
not use the provided parallelism of the SSD, this results only
in a low speed-up. The other group consists of plans 16, 22,
and 23. These plans scan pets by the foreign key index what
results in random reads and so get accelerated by the use of
an SSD.

Hash Joins. The hash joins have all good speed-up of
about 8x to 12x. A first group of plans 9 and 18 performs
a seqscan on the “pets” table and is very fast compared to
another group (plans 14 and 24) which resort to an indexscan
and are about two orders of magnitude slower. This is again
caused by the random accesses from the foreign key scan.

The better performance of SSDs regarding random op-
erations is also the cause for the exchange of the best
algorithms. Hashjoin produces random writes which are
more efficiently performed on SSDs than on HDDs, boosting
the good plans of this algorithm in front of the good plans
of sort-merge join, whose write pattern is more sequential,
but which incorporate more expensive calculations.

VI. CONCLUSIONS

In this paper we examined the performance of different
join algorithms available in PostgreSQL on SSD and mag-
netic drives. Firstly, we observe that point queries exhibit
the best performance improvement of up to fifty times.
Secondly, range queries benefit less from the properties of
SSDs. The way they are evaluated at present takes little
advantage of the good random properties and parallelism
of SSDs. The best speed-up is observed from the indexscan
algorithm, although that remains the slowest. Finally, the
different join algorithms investigated here match the device
(SSD or HDD) properties to a varying extent. We observe
several algorithms having better relative performance on an
HDD but which exhibit lower relative performance on an
SSD or vice versa. For the tested query hash joins have
better relative performance on SSDs and an inferior on
HDDs, whereas the converse is true for sort-merge joins.
Even in absence of block nested-loop approaches, nested-
loop joins achieve a significant speed-up, if they incorporate
indexscan in their inner loop. Variants using seqscan in the
inner loop were still extremely slow, so we had to abort
those experiments. Future research should target achieving

more uniform speed-up across the different algorithms and
more realistic cost estimates.

ACKNOWLEDGEMENT

This work has been partially supported by the DFG project
Flashy-DB.

REFERENCES

[1] J. Do and J. M. Patel, “Join processing for flash SSDs:
remembering past lessons,” in Proc. DaMoN 2009, 2009.

[2] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe, “Query processing techniques for solid state
drives,” in Proc. SIGMOD 2009, 2009, pp. 59–72.

[3] M. A. Shah, S. Harizopoulos, J. L. Wiener, and G. Graefe,
“Fast scans and joins using flash drives,” in Proc. DaMoN
2008, 2008, pp. 17–24.

[4] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives,” in Proc. of SIGMETRICS ’09, 2009, pp.
181–192.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy, “Design tradeoffs for SSD perfor-
mance,” in USENIX 2008, 2008, pp. 57–70.

[6] V. Hudlet and D. Schall, “SSD != SSD – an empirical study
to identify common properties and type-specific behavior,” in
Proc. of BTW 2011, 2011, pp. 430–441.



APPENDIX

PLANS OF POINT QUERIES

Query: SELECT * FROM addresses WHERE id = ???;

01 bitmapscan Bitmap Heap Scan on addresses
Recheck Cond: (id = ???)
-> Bitmap Index Scan on addresses_pkey

Index Cond: (id = ???)
02 indexscan Index Scan using addresses_pkey on addresses

Index Cond: (id = ???)
03 seqscan Seq Scan on addresses

Filter: (id = ???)

PLANS OF RANGE QUERIES

Query: SELECT * FROM pets WHERE owner >= ??? AND owner <= ???;

04 indexscan Index Scan using pets_owner_idx on pets
Index Cond: ((owner >= ???) AND (owner <= ???))

05 seqscan Seq Scan on pets
Filter: ((owner >= ???) AND (owner <= ???))

06 bitmapscan

seqscan

Bitmap Heap Scan on pets
Recheck Cond: ((owner >= ???) AND (owner <= ???))
-> Bitmap Index Scan on pets_owner_idx

Index Cond: ((owner >= ???) AND (owner <= ???))
—or—
Seq Scan on pets
Filter: ((owner >= ???) AND (owner <= ???))

07 bitmapscan Bitmap Heap Scan on pets
Recheck Cond: ((owner >= ???) AND (owner <= ???))
-> Bitmap Index Scan on pets_owner_idx

Index Cond: ((owner >= ???) AND (owner <= ???))

PLANS OF JOIN QUERIES

Query: SELECT * FROM addresses JOIN pets
ON pets.owner = addresses.id AND species = ’dog’;

08 mergejoin

sort

seqscan

sort

seqscan

Merge Join
Merge Cond: (addresses.id = pets.owner)
-> Sort

Sort Key: addresses.id
-> Seq Scan on addresses

-> Materialize
-> Sort

Sort Key: pets.owner
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
09 hashjoin

seqscan

seqscan

Hash Join
Hash Cond: (pets.owner = addresses.id)
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
-> Hash

-> Seq Scan on addresses
10 nestloop

indexscan

indexscan

Nested Loop
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Index Scan using addresses_pkey on addresses

Index Cond: (addresses.id = pets.owner)
11 nestloop

seqscan

seqscan

Nested Loop
Join Filter: (addresses.id = pets.owner)
-> Seq Scan on addresses
-> Materialize

-> Seq Scan on pets
Filter: (species = ’dog’::animal)

12 mergejoin

indexscan

sort

seqscan

Merge Join
Merge Cond: (addresses.id = pets.owner)
-> Index Scan using addresses_pkey on addresses
-> Materialize

-> Sort
Sort Key: pets.owner
-> Seq Scan on pets

Filter: (species = ’dog’::animal)

13 nestloop
indexscan*

bitmapscan

Nested Loop
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Bitmap Heap Scan on addresses

Recheck Cond: (addresses.id = pets.owner)
-> Bitmap Index Scan on addresses_pkey

Index Cond: (addresses.id = pets.owner)
14 hashjoin

indexscan

indexscan

Hash Join
Hash Cond: (pets.owner = addresses.id)
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Hash

-> Index Scan using addresses_pkey on addresses
15 nestloop

seqscan

indexscan

Nested Loop
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
-> Index Scan using addresses_pkey on addresses

Index Cond: (addresses.id = pets.owner)
16 mergejoin

indexscan
indexscan

Merge Join
Merge Cond: (addresses.id = pets.owner)
-> Index Scan using addresses_pkey on addresses
-> Index Scan using pets_owner_idx on pets

Filter: (pets.species = ’dog’::animal)
17 nestloop

seqscan

bitmapscan

Nested Loop
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
-> Bitmap Heap Scan on addresses

Recheck Cond: (addresses.id = pets.owner)
-> Bitmap Index Scan on addresses_pkey

Index Cond: (addresses.id = pets.owner)
18 hashjoin

seqscan*

indexscan

Hash Join
Hash Cond: (pets.owner = addresses.id)
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
-> Hash

-> Index Scan using addresses_pkey on addresses
19 mergejoin

sort

seqscan*

indexscan

Merge Join
Merge Cond: (pets.owner = addresses.id)
-> Sort

Sort Key: pets.owner
-> Seq Scan on pets

Filter: (species = ’dog’::animal)
-> Index Scan using addresses_pkey on addresses

20 nestloop

indexscan*

seqscan*

Nested Loop
Join Filter: (addresses.id = pets.owner)
-> Index Scan using addresses_pkey on addresses
-> Materialize

-> Seq Scan on pets
Filter: (species = ’dog’::animal)

21 nestloop
seqscan
indexscan

Nested Loop
-> Seq Scan on addresses
-> Index Scan using pets_owner_idx on pets

Index Cond: (pets.owner = addresses.id)
Filter: (pets.species = ’dog’::animal)

22 mergejoin

indexscan

sort*

seqscan

Merge Join
Merge Cond: (pets.owner = addresses.id)
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Materialize

-> Sort
Sort Key: addresses.id
-> Seq Scan on addresses

23 mergejoin

sort

seqscan*

indexscan

Merge Join
Merge Cond: (addresses.id = pets.owner)
-> Sort

Sort Key: addresses.id
-> Seq Scan on addresses

-> Index Scan using pets_owner_idx on pets
Filter: (pets.species = ’dog’::animal)

24 hashjoin

indexscan

seqscan*

Hash Join
Hash Cond: (pets.owner = addresses.id)
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Hash

-> Seq Scan on addresses
25 nestloop

indexscan*

seqscan*

Nested Loop
Join Filter: (addresses.id = pets.owner)
-> Index Scan using pets_owner_idx on pets

Filter: (species = ’dog’::animal)
-> Materialize

-> Seq Scan on addresses
26 nestloop

seqscan
bitmapscan

Nested Loop
-> Seq Scan on addresses
-> Bitmap Heap Scan on pets

Recheck Cond: (pets.owner = addresses.id)
Filter: (pets.species = ’dog’::animal)
-> Bitmap Index Scan on pets_owner_idx

Index Cond: (pets.owner = addresses.id)

* originally disabled algorithm


