
Engineering Event-Based Systems with Scopes

Ludger Fiege�, Mira Mezini, Gero Mühl�, and Alejandro P. Buchmann

Department of Computer Science
Darmstadt University of Technology, D-64283 Darmstadt

{fiege,gmuehl}@gkec.tu-darmstadt.de
{mezini,buchmann}@informatik.tu-darmstadt.de

Abstract. Event notification services enable loose coupling and they are
therefore becoming an essential part of distributed systems’ design. How-
ever, the development of event services follows the early stages of pro-
gramming language evolution, disregarding the need for efficient mech-
anisms to structure event-based applications. In this paper, the well-
known notion of scopes is introduced to event-based systems. We show
that limiting the visibility of events is a simple yet powerful mechanism
that allows to identify application structure and offers a module con-
struct for the loosely coupled components in event-based systems. We
are able to customize the semantics of scoped event notification services
by binding meta-objects to the application structure that reify important
aspects of notification delivery, like interface mappings and transmission
policies. The scoping concept facilitates design and implementation by
offering encapsulation and adaption of syntax and semantics of event-
based systems.

1 Introduction

The focus of this paper is on abstractions for structuring event-based systems.
The event-based architectural style has become prevalent for large-scale dis-
tributed applications [6] due to the inherent loose coupling of the participants.
This loose coupling carries the potential for easy integration of autonomous, het-
erogeneous components into complex systems that are easy to evolve and scale.
Traditional request/reply approaches, such as remote procedure calls (RPC),
exhibit crucial scalability problems in data-centric environments [16]. The use
of event-based dissemination as an alternative approach is superior in these sce-
narios [15].

The notion of event-based style used in this paper is basically the one defined
in literature, e.g., [6]. In an event-based style components communicate by gen-
erating and receiving event notifications. An event is any transient occurrence
of a happening of interest, i. e., a state change in some component. The affected
component issues a notification that describes the event. An event notification
� Supported by the German National Science Foundation (DFG) as part of the PhD

program “Enabling Technologies for Electronic Commerce” at Darmstadt University
of Technology.

B. Magnusson (Ed.): ECOOP 2002, LNCS 2374, pp. 309–333, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

310 Ludger Fiege et al.

service conveys the notifications between the components of an event-based sys-
tem. A component in such a system can act both as producer and consumer of
events.

Producers are components that publish notifications about internal events
originating within that component. The output interface of a producer is de-
scribed by advertisements specifying the kinds of notifications it will publish. A
notification is not addressed to any specific (set of) receivers, it is rather dis-
tributed by the event service to consumers which have specified their interest
in that kind of notification. Consumers issue subscriptions that describe the
notifications they want to receive, i.e., their input interface. Hence, in the event-
based cooperation model producers have no knowledge about any receivers—in
particular, they do not anticipate any specific reaction on the receiver side.

A component’s implementation in event-based systems is ‘self-focused’ in that
it only publishes changes in its state and/or reacts on incoming notifications,
resulting in a very loose coupling. However, it is mandatory to identify the
role of an administrator1 who assembles and orchestrates simple components.
In the context of open systems, architecture references define a multitude of
views of the system in addition to producers and consumers [23], including an
administrator’s role. It is her task to combine components in order to accomplish
a common application functionality. Unfortunately, current work on event-based
systems disregards this important role and do not provide any support therefor.

The potential of an event-based communication style has been recognized
both in academia and industry. A number of event-based middleware infrastruc-
tures were developed [7,11,43,46] as well as the integration of corresponding ser-
vices in modern component platforms based development such as CCM [35] and
EJBs [44]. The prevalence of the event-based paradigm in the design of today’s
systems has not hindered, but rather encouraged, us in considering event-based
systems from a critical point of view. The observation that we make is that
while a considerable amount of work is done in the area of scalable event no-
tification services, most effort is spent on implementation efficiency, thoroughly
disregarding design, engineering and administration issues. Typical implemen-
tation techniques of publish/subscribe systems [38] concentrate on efficient no-
tification dissemination algorithms and overlook the need for effective support
of appropriate programming abstractions.

Software engineering research early identified information hiding and abstrac-
tion [39] as basic principles that have influenced the development of structured
programming, modules, classes, and components, all of which provide mecha-
nisms to structure software systems. While being an integral part of request/
reply-based distributed systems, e.g., Corba [34], comparable hierarchical struc-
turing mechanisms are missing in event-based systems. As a result, event-based
systems are generally characterized by a ‘flat design space’: Subscriptions se-
lect out of all published notifications without discriminating producers. Any
further distinctions are necessarily hard-coded into the communicating compo-

1 Currently, assemblers and administrators are not distinguished, like it is done in
Sun’s EJB model [44], for example.

Engineering Event-Based Systems with Scopes 311

nents, mixing application structure and component implementation. The very
feature of event-based systems is thereby defeated: loose coupling.

What we are missing is the notion of a module for bundling several com-
ponents into a higher-level component. Such a module construct would localize
the relationships between components outside of the components themselves,
playing a mediator role in the vein of Sullivan and Notkin [42]. The modules
should themselves be first-class components, with their own input and output
interfaces, so that they can be composed into higher-level modules much the
same as objects can be composed into higher-level objects in an object-oriented
system. This is to enable a hierarchical structuring of event-based systems.

In this paper, we analyze a set of engineering requirements for event-based
systems and introduce the notion of scopes aimed at serving the needs. A scope
bundles several components either (a) according to application structure, or
(b) according to the structure of activities therein. The visibility of events is
constrained in the sense that notifications are only delivered to consumers within
the same scope but are a priori invisible otherwise. By being itself a component,
a scope can recursively be composed into a larger scope. As a bundling unit and
module, scopes represent application structure and are the appropriate location
to refine and customize notification delivery semantics. In delimited parts of
an application, syntax of the distributed notifications and even the semantics
of delivery can be varied, while any modifications are encapsulated and do not
interfere with the remaining system. Scopes provide a module construct as an
abstraction for handling heterogeneity as well as for integrating security and
transmission policies that deviate from the standard broadcast to all eligible
consumers.

The remainder of this paper is organized as follows. In Section 2, design and
engineering demands of event-based systems are discussed. Section 3 introduces
the notion of scopes in event-based systems and describes their features with
the help of a running example. An outline of implementation issues is given in
Section 4. Related work is discussed in Section 5. The paper concludes with a
summary and an outlook on future work.

2 Engineering Event-Based Systems

In this section, we discuss some requirements on engineering event-based systems
and how they are supported by today’s technology. Two main observations are
made. The first is that event-based systems do not seem to imply other require-
ments for designing and engineering than those already known from engineering
request/reply systems. The second observation is that while supporting abstrac-
tions are available for the latter they are missing for event-based systems. This
makes them difficult to maintain, e.g., the effects of newly instantiated produc-
ers or of publishing a certain notification are not easy to determine, let alone
control.

312 Ludger Fiege et al.

2.1 Illustrative Example

A stock trading application will be used as an illustrative example throughout
the paper. This example shall not outline a perfect implementation but underline
the requirements of engineering event-based applications.

Assume there is an Internet infrastructure which (also) utilizes events instead
of the request/reply-oriented style of the Hypertext Transfer Protocol (HTTP)
in order to facilitate the creation of the respective web-services and applications.
Nearly all parts of a stock trading application are inherently event-based. The
dissemination of stock quotes from the central trading floor (or its computerized
equivalent) to the market participants is an accepted and plausible example of
applying event notification services. The following components can be identified
to constitute a stock market (see Fig. 1):

Trading
Floor

DB

MatchingC1

C2

C3

Customers Market

Fig. 1. An example stock trading application

– Customers monitoring quotes and issuing orders to buy or sell shares.
– A database logs the generated data to ensure consistency and persistence.
– A central matching engine implements the matching algorithm.

Database and matching engine are composed into the virtual trading floor,
a component which consumes orders and publishes notifications carrying share
prices of successfully executed trades.

2.2 Engineering Requirements

Four requirements posed by the engineering of event-based systems are identified:
bundling of components, heterogeneity, flexible configurations, and support of
activities.

Bundling Related Components

A fundamental requirement is that it should be possible to bundle individual
components into higher-level syntactical and semantical units, offering higher
levels of abstraction and reusability. From the syntactic point of view such a

Engineering Event-Based Systems with Scopes 313

bundle should be a collection of existing components delimiting the visibility of
the events produced by them. The bundling mechanism should be orthogonal
to the subscription mechanisms so that the composed interfaces need not to
be changed. This is important to support drawing event deliver localities not
only based on the described interests of receivers but also on other criteria, such
as the organizational and geographical constraints of a company or some other
application-specific semantics.

From the semantical point of view, we require component bundles to be
themselves components with well-defined interfaces and own semantics. That is,
the bundles should not only delimit visibility, but also publish themselves events,
resulting from notifications produced within the bundle that signify an important
state change of the bundle as a whole, or consume events from the outside by
further propagating them to their internal locality. This opens the possibility to
recursively bundle component compositions into higher-level components, and
hierarchically structure the design of an event-based system.

Locality, encapsulation, and composing existing units into higher-level units
are well-known concepts for mastering complexity and support evolution [39].
These concepts are used in request/reply systems, but they are as important
here and should therefore be available to the engineers of event-based systems
as well. To motivate the requirement, consider our running example. The virtual
trading floor in the stock trading application would be a first example of a com-
ponent bundle. One can imagine a ‘verbose’ matching engine producing detailed
notifications about the progress of the matching algorithm, of which the major-
ity is only relevant for logging purposes (e.g., to support later traceability of the
system operations) and only a few are relevant for customers. Hence, it makes
sense to constrain the visibility of most of the events to the DB component and
to allow only a few of them to pass the boundary of the trading floor bundle.

The next reasonable structuring step would be to bundle a trading floor and
a set of customers (i.e., the participants in the market described in Fig. 1) into
a higher-level syntactical and semantical market component. In this way mul-
tiple trading floors would be supported without having customers that observe
quotes in a system with only a single trading floor receive duplicate and incon-
sistent quotes if an additional exchange is instantiated. Such duplication cannot
be avoided in a flat design space where all components in the system are visible
to each other. The absence of market bundles would require to encode knowledge
about the market structure into the subscriptions of individual components, ren-
dering them less reusable since more sensible to the structure of the application
and changes to it.

Mastering Heterogeneity

A single uniform event notification service with uniform syntax and semantics
will hardly be able to cope with the requirements of all parts of large distributed
systems operating in heterogenous environments. An event service that, e.g.,
relies on some notion of a global naming scheme is not scalable and impedes
system integration. Furthermore, the semantics of notifications will likely vary

314 Ludger Fiege et al.

in heterogeneous environments [9]. In large distributed systems, there are in-
evitably different event models and representation schemes in use, ranging from
hardware-dependent differences to application-dependent syntactical and seman-
tical differences.

From the observations above, we draw the requirement that bundling of re-
lated components should not only encapsulate functionality but also delimit
common syntax and semantics. This requires mechanisms to support adapting
data crossing boundaries of component bundles by mapping event content and
representation. To motivate the requirement consider again our running exam-
ple. For efficiency reasons it would make sense in such a system to distinguish
between low-volume external representations in XML versus more efficient, opti-
mized internal representations. The matching and the database component may
use such an internal representation in our example. Hence, mapping from an
external XML representation to the efficient internal representation would be
needed for notifications crossing the border of a virtual trading floor composite.

Flexible Configuration

Similar to the diverse requirements regarding data representation in heteroge-
neous environments, a static definition of notification transmission semantics is
not adequate either. Application-specific needs often require that notifications
are only delivered to a specific subset instead of the default broadcast to all
eligible consumers. For example, an 1-of-n policy realizes load balancing fea-
tures within a bundle of components in this way. In our stock application, the
matching engine might be replicated to distribute processing load over multiple
instances using a delivery policy that routes orders to instances dedicated to the
respective share.

Furthermore, other delivery policies might be applicable and the whole event
service is subject to customization: API, syntax and semantics of subscriptions,
security policies, and implementation techniques of notification dissemination
may vary to adapt to and fit differing needs in different parts of a complex sys-
tem. For example, if the structure of the bundles are not static, some policy
must control who is allowed to join. The trading floor component may be com-
promised if everyone is able to join and issue notifications which influence the
matching engine; whereas getting prices of successfully executed trades need not
to be controlled. Similarly, the implementation of the trading floor will likely use
any broadcast features of a local area network while the dissemination of price
information on the Internet has to use other techniques.

Supporting Sessions and Activities

The engineering of complex systems not only benefits from bundling related
components according to application structure but also from identifying sessions
of interdependent activities. This is especially important in event-based systems,
where the identity of peers is unknown and communication is a priori stateless
in the sense that consecutive notifications cannot be interrelated. By relating

Engineering Event-Based Systems with Scopes 315

notifications, components are enabled to participate in multiple, distinguishable
sessions and activities made up of interrelated notifications can be modeled as
well-defined structures drawing on locality just as it is possible for application
structure.

An example for the first goal is a stockbroker who listens to a specific share
traded on two stock markets. Obviously, notifications distributed in one market
must, generally, be invisible in the other. However, our broker should be able
to observe and distinguish both. In abstract terms, the issue is that it should
be possible for individual components to be simultaneously engaged in multi-
ple sessions involving components from structurally disjoint application parts.
Hence, it should be possible to identify such sessions and to delimit them from
each other in order to support session state. Otherwise, a component involved
in multiple sessions would only be able to maintain changes of its own state, not
being able to sustain dependencies on other components.

The second requirement of supporting bundling of events in activities ad-
dresses the dynamic aspects of event-based systems in a similar way as the
requirement for bundling components did in the previous discussion about the
slowly changing structure of an application. In general terms, activities should
be structured and it should itself be a component with well-defined semantics,
determining when (parts of) the ‘internal’ notifications are to be made visible to
the outside. This will help to prevent side-effects, to build structured, hierarchi-
cal sessions, and to customize and orchestrate them. An analogy to the activity
concept from the world of request/reply-based systems would be a simplified
version of the notion of transactions [20].

2.3 Engineering Support

In request/reply-based distributed systems, like the Corba platform [34], so-
lutions exists for all of the outlined requirements. Components and classes ac-
cording to an object-oriented programming paradigm are used for decomposi-
tion, encapsulation and bundling of components. Heterogeneity is addressed by
standardized interconnection protocols (e.g., CORBA-IIOP, SOAP [4] based on
XML). Bundling of activities is facilitated by transaction services [37,2] and se-
curity services are available, e.g., Kerberos [32]. Appropriate support is easily
provided since the identity of each component is known.

But how can the above mentioned requirements be realized in event services?
Existing services recognizes and addresses them only partially. A first approach
would be to build new features on top of the existing ones. For example, one
could make use of content-based filtering mechanisms [30,8] to simulate a de-
composition abstraction for event-based systems in which sets of components
are bundled and delimited from each other. To achieve this goal, subscriptions
of individual components have to be adapted to encode additional constraints
on the decomposed structure.

This approach of modifying application components has a significant draw-
back. It disregards the administrator’s role by compiling all configuration in-
formation into the components themselves. Knowledge about the application

316 Ludger Fiege et al.

structure is put into the components, contradicting the idea of components be-
ing loosely coupled and self-focused. Furthermore, the structure is not explicitly
enforced by the system and all components are eligible receivers if they have
subscribed accordingly: ‘hacked’ filters may compromise security measures, and
reflection, i.e., investigation and change [27], is restricted.

The following section will introduce a second approach of tackling the engi-
neering requirements by introducing a scoping mechanism as an integral part of
a design methodology and of an event service implementation.

3 Scoping in Event-Based Systems

In order to satisfy the requirements discussed in the previous section our ap-
proach introduces the concept of scope for decomposing event-based systems, a
unifying concept to address the described requirements. A scope is an abstrac-
tion that bundles a set of producers and consumers and it can recursively be
a member of other scopes. It offers a powerful structuring mechanism to group
constituent components which belong together according to some criteria derived
from the application structure and/or semantics. Vice versa, it defines locality
that can be used to customize semantics in a discriminated part of the system
and that provides an encapsulated module whose interaction with the remaining
system can be explicitly controlled.

Formally, scoped event-based systems are modeled by a directed, acyclic
graph G = (C, E) (see Fig. 2) that describes the superscope/subscope rela-
tionship. The set of nodes C is comprised of simple components C and complex
components S, i.e., scopes. The edges E are a binary relation over C. An edge
from node c1 to c2 in G stands for c2 being a superscope of c1. Next to being
acyclic, the relation E must also satisfy the property that a simple component
cannot be a superscope of any node in G.

Scope

Simple component

U

R

X Y Z

S T

Fig. 2. A graph of components/scopes

The scope concept comes with three different flavors: standard scopes harness-
ing visibility and interfaces, advanced scopes that apply mappings and transmis-
sion policies, and session scopes which use the previous features. A more formal
treatise on visibility, interfaces, and mappings is published in [14].

Engineering Event-Based Systems with Scopes 317

C2 C3
C1

N
N

C4

SAPSAP
IBM

TF PC
PC PCAgent

DB ME

M2M1

Private

Professional

...

...

...

...

Fig. 3. The graph of the stock application

3.1 Controlling Visibility

Encapsulation is a prerequisite to system evolution [39] and the notion of visi-
bility is widely used in software engineering as structuring technique in order to
determine the impacts of changing parts of the system. The need for an equiv-
alent notion for event-based systems was discussed in Section 2.2. The scope
construct plays this role in our model in that the visibility of notifications pub-
lished by a producer is confined to the consumers belonging to the same scope
as the publisher.

Using the graph of scopes G given above, we define the visibility of compo-
nents as a reflexive, symmetric relation v over C. Informally, component X is
visible to Y iff X and Y have a common superscope. For a component X, let
super(X) = {X ′ | (X, X ′) ∈ E} denote the set of scopes that are direct super-
scopes of X. Formally, we recursively define

v(X, Y) ⇔ X = Y

∨ v(Y, X)
∨ v(X ′, Y) with X ′ ∈ super(X)

In the graph in Fig. 2, for example, v(Y, U) holds but not v(X, U).
A notification is delivered to a consumer if (a) the producer and the con-

sumer are visible to each other, and (b) the notification matches one of the
subscriptions previously issued by this consumer. Hence, the semantics of noti-
fication delivery is now not only based on the subscription mechanism but also
on the visibility relation, with both dimensions being orthogonal in that they
are employed independently of each other.

The visibility of notifications from different markets is restricted in a stock
trade system designed with scopes (Fig. 3). The circles denote composed scopes
in the figure, while rectangles represent simple components. There are two main
scopes in which the simple components are organized, M1 and M2, denoting two

318 Ludger Fiege et al.

different stock markets. Within each market customers are bundled into sub-
scopes based on some criteria, e.g., in private and professional customers. Each
customer is permanently represented by one of the scopes C1, C2, etc., which
remain connected in the graph of scopes even if customers are not personally
logged in. They group a customer’s PCs, cellular phones, or agents running on a
remote server. An example ‘agent’ would be a limit watcher which continuously
monitors a share’s price and issues a customized notification when a specific
share deviates from the overall market performance. Newly and externally pro-
vided limit notifications can thereby be integrated into the application without
changing existing components—one of the obvious benefits of event-based sys-
tems.

For the sake of simplicity, interest for at most one share is indicated in the
figure below the rectangles representing the customers’ PCs. The figure illus-
trates the scenario when the trading floor TF participates in the stock market
M1 and issues a notification concerning SAP quotes. Although both consumers
C3 and C4 have subscribed for notifications on SAP quotes, this notification will
only reach C3, because C4 is not visible from the trading floor and C1 subscribed
to a different share. On the other hand, consumer C3 listens to both markets and
receives ‘duplicate’ SAP quotes (the implied problems are addressed in Sect. 3.6).

3.2 Interfaces

So far, visibility can be mapped to an only two-level hierarchy that is induced by
the top-most superscopes of the graph G. Any two components are either able
to see all of their published notifications or no at all. In order to overcome this
problem and to improve the structuring ability, the basic mechanism provided
by scopes is refined beyond the visibility relation by assigning input and output
interfaces to scopes.

Input and output interfaces for simple components are defined by filters that
determine the set of notifications allowed to cross a component’s boundaries. A
filter F ∈ F := {f | f(e) = e ∨ f(e) = ε} is a mapping function over the set of all
possible notifications N plus the empty notification ε. Often, filters are defined
as boolean functions returning true if a notification matches. In our model, we
use a generalized form of filters that are allowed to pass matched events in an
unchanged form. A notification n is either mapped to itself or to ε, indicating
that n is matched or blocked, respectively. Allowing filters to pass matched events
in an unchanged form facilitates filter composition: (F1 ◦ F2)(e) = F1(F2(e)).

A simple consumer component describes its input interface by issuing sub-
scriptions that contain filters. A notification passes such a set of filters if it
matches at least one of them. On the other hand, a producer has to issue adver-
tisements that define the set of notifications it is able to publish. Advertisements
also contain filters and serve as a specification of a component’s output interface.

We associate similar sets of filters with the input and output interfaces of
scopes, describing the set of notifications which are allowed to cross the scope
boundary. Only those notifications matching one of the scope’s output filters
are forwarded up into its superscopes and only those that match at least one

Engineering Event-Based Systems with Scopes 319

of its input filters are forwarded into the scope. Filters for scope interfaces are
expressed in the language used for specifying subscriptions and advertisements
for simple consumers and producers. With the introduction of interfaces for
scopes, a notification is delivered only if producer and consumer are visible to
each other, the notification is allowed to pass all interfaces along the path of
visibility in the graph, and one of the receiver’s subscriptions match.

Attaching interfaces to scopes allows to view scopes as ordinary produc-
ing and/or consuming components. The relationship between scopes and simple
components is shown in the upper part of the UML class diagram in Fig. 4 which
presents a simplified meta-model of our model.

Component

SimpleComponent Scope

Component
Interface *

*

2

Session
Scope

Transmission
Policy

Security
Policy

Interface
Mappings

Fig. 4. The Meta-Model of the Scope Model

To illustrate how scope interfaces help in structuring event-based applica-
tions, let us consider the interfaces of the components in our running example
as summarized in Table 1.

Table 1. Interfaces of the Components in the Example Application

Component Description Input Output
M1, M2 The Stock Markets – –
Private scope of all private customers – Trade
Prof scope of all professionals Order Accept, Quote(delayed)
Ci Customer representation Accept Order
TF Trading Floor Order Accept, Quote
ME Matching engine Order Accept, Quote

OrderBook
DB The logging database Order, Quote

Customers send out notifications of type Order which contain a share identifi-
cation, the number to be sold or bought, and potential price limits. The trading
floor TF listens to these orders, issues acceptance notification, and sends out
Quotes, informing about successfully executed orders. The trading floor itself is

320 Ludger Fiege et al.

composed of the matching engine ME and the database DB. The matching engine
maintains a list of open orders and executes the matching algorithm, while the
database logs all Orders and Quotes, and it issues acceptance notifications (Ac-
cept). Additionally, the matching engine publishes an orderbook summary with
price and volume of the 10 best bid and ask orders. The summary is only visible
within the trading floor, because the interface of TF prohibit further distribution.
Based on this data, additional services may be integrated into the trading floor,
like market makers ensuring that there is always at least one buy and one sell
order open.

3.3 Advanced Features

In addition to standard scope features discussed so far, the presented model also
supports advanced scope types that customize the event service’s functionality,
both within the scope and with respect to other scopes. They enable dynamic
adaptability of event systems by virtue of associating meta-objects [24] which
reify important runtime semantics of event-based systems. Software engineering
research has established the notion of meta-object protocols as a very flexible
technique to implement and adapt communication between objects. With our
approach similar externally provided techniques can now be applied in event-
based systems, too. With scopes as first class citizens, an administrator is enabled
to easily group unmodified components and tailor the composed functionality
with the help of such meta-objects.

The advanced features of the scope concept are shown on the right part of
the meta-model shown in Fig. 4. Currently, the following aspects of the runtime
semantics are reified. Other aspects of the runtime semantics might be reified as
well, resulting in other types of scopes.

– Event reception and publication, allowing the administrator of an event-
based system to attach event transformers at scope interfaces. This is aimed
at coping with heterogeneity in event-based systems and is described in
Sect. 3.4.

– Event transmission policies, allowing the administrator to configure each
scope with a strategy to be used for traversing the scope hierarchy and for
delivering notifications to consumers and superscopes (see Sect. 3.5).

– Security policies attached to a scope control membership management.
Scopes are a proper place to implement these policies but we do not fur-
ther investigate this issue here.

3.4 Event Mappings

In large systems, it is rather unlikely that a single uniform event model is used
throughout the system. Different parts will use different representations and
semantics of events. Constraining the visibility of notifications is the basis for
dealing with heterogeneity issues and different administrative domains. Conse-
quently, we extend the scoped event system model to include event mappings that

Engineering Event-Based Systems with Scopes 321

IFn

IM1

IF2

IMn

IF1

......

OFn

OM1

OF2

OMn

OF1

...

OM2

Fig. 5. Scopes with Event Mappings

transform notifications at scope boundaries. This extension clearly addresses the
heterogeneity requirements stated in Section 2.2 and facilitates construction and
maintenance of large systems. The structure of a scope with event mappings is
schematically presented in Fig. 5.

Event mappings convert notifications from an external to an internal repre-
sentation, and vice versa. They are attached to individual edges in the graph
of scopes and are applied when a notification enters or leaves a scope, i.e., it
travels down against or up along an edge, respectively. The mappings are a gen-
eralization of both the visibility v(X, Y) and the scope interfaces [14] in that
a published notification may be visible in a different, mapped representation,
or not at all if it was blocked, i.e., mapped onto the empty notification ε. The
set of filters F used for subscribing is a subset of the set of event mappings
M ⊆ {m | m : N ∗ → N ∗} usable in the system. With this definition, a uniform
way of filtering and transforming notifications is achieved, and conceptually, fil-
ters and general mappings can be concatenated at scope boundaries. Figure 4
distinguishes interfaces and mappings in order to emphasize their independence:
interfaces and filters have to be declared in a language that depends on the
underlying transmission technique while mappings are part of the scope imple-
mentation.

The interface of a scope is strictly separated from its implementation, i.e., its
constituent components. Only boundary-crossing events are considered without
interfering with internal communications. This separation offers great flexibility
in controlling and adapting interface access at runtime. For example, by attach-
ing mappings to individual edges in the graph, a scope may be visible with
different interfaces in different superscopes.

Returning to the stock exchange example from the previous section, quota-
tions are typically given in a local currency which need to be transformed at the

322 Ludger Fiege et al.

boundary of the local scope in order to achieve comparability. As another exam-
ple for the usefulness of event mappings consider XML languages like FIXML [33]
that standardize financial data exchange. These languages are used to connect
external partners, but they are typically too expensive for internal represen-
tations due to efficiency reasons. Also, most likely, different representations of
events will be used inside the consumers, within the market, and within the
trading floor, e.g., Java objects, XML financial data, and EBCDIC mainframe
text fields. Event mappings are installed at the consumers and at the trading
floor to map between serialized Java objects and their XML representation and
between XML and EBCDIC, respectively.

Event mappings offer a link to integrate other works in the area of syntac-
tical and semantical transformations which are applicable here [3,25] and which
extend the 1:1 mappings we used for simplicity reasons here. Furthermore, event
composition can be used to further enhance the idea of event mappings [26,47].

3.5 Transmission Policies

Following the arguments of Sect. 2.2, we suggest to allow refinement of delivery
and dissemination semantics on a per scope basis. Transmission policies describe
how notifications are forwarded and to which consumers. They refine the vis-
ibility definition both within a scope and with respect to its superscopes. We
distinguish three different policies involved in notification transmission: delivery,
traverse, and publishing policy.

Delivery policies affect deliverable notifications produced in a superscope or
by some constituent subcomponent and determines which members of the scope
are to receive the notification. An example is a 1-of-n policy which delivers only
to one out of a group of possible receivers. The idea of meta object protocols of
object-oriented programming languages is applied here [24] in order to offer the
ability to order, queue, redirect, or transform incoming messages.

A traverse policy controls the downward path of incoming notifications in
the graph of scopes. Actually, this policy allows a notification to deviate from a
default path through the graph of scopes. In a top-down traverse policy eligible
receivers, i.e., simple components with a matching subscription, are searched
in the current scope first. A notification is forwarded to subscopes only when
no-one is found. The bottom-up traverse policy starts the search in the deepest
subscopes. Broadcast is the default policy which simply delivers to all compo-
nents in a scope.

To make an analogy to the application of meta-object protocols in the area
of object-oriented programming languages, multiple consumers of the same no-
tification located along the inheritance/scope hierarchy can be considered to be
implementing some form of generalized method overriding. Traditional program-
ming languages like C++ and Java use only one, static policy to resolve calls
to overridden methods. In a hierarchy of scopes, the traverse policies determines
what kind of method lookup is used. The bottom-up policy resembles a virtual
method call in C++ in that the implementation of the most derived class is
used. Other policies are possible that implement other kinds of method lookups.

Engineering Event-Based Systems with Scopes 323

Policies can also be viewed in the opposite direction. A publishing policy con-
trols publication into the direct superscopes. One may reject the idea of manu-
ally selecting where the data is published as contradicting with the event-based
paradigm. However, this selection is part of the administrator’s role and not in-
terwoven with the application functionality in simple components. While event
mappings provide the ability to support multiple interfaces, publishing policies
operate on a per notification basis and might be used to delay notifications for
a certain amount of time or until a condition becomes valid, for example.

To illustrate the usefulness of the advanced transmission policies, consider the
categorization of the customer scopes in private and professional ones: private
customers are bundled in the scope Private and professional traders in the scope
Professional. Assume that the market strategy is such that Quote notifications
should be notified to professionals first. It is because of the need to implement
this application semantics that we have defined two different customer scopes and
have made Professional an sub-scope of Private. By having Professional
encapsulate TF, notifications from the trading floor will reach the professional
scope first. In addition, the publishing policy of the professional scope is such
that Quotes are forwarded to the Private superscope only after a delay of 15
minutes: a publishing policy puts all notifications in a queue and ensures the
delay.

3.6 Sessions

The scoping model so far concentrated on application structure, but the dis-
cussion in Sect. 2.2 also identified the need to structure activities therein. In
the following, we investigate the problems imposed by activities in event-based
systems and give an outlook on how scopes can be used in solving the problem.

Dependent Notifications

The prevalent scenario of event-based applications are uni-directional flows of
notifications from producers to consumers, like stock tickers and news feeds. So,
it is simply about components lined up in chains. But in order to benefit from
the loose coupling of event-based cooperation in other types of applications, it
is necessary to support some form of stateful collaboration. Scopes offer this
support to a certain extent since they build up structures of bilateral visibil-
ity. However, there is so far no explicit mechanism to identify interdependent
notifications, which have a common cause and belong to the same activity.

This issue is aggravated by the fact that the graph of scopes is not a tree and
a node may have multiple superscopes2. Consider the scopes S and T in Figure 2:
notifications published in S are not visible in T , and vice versa. But an event in S
which is consumed by Y may trigger an reaction in Y leading to the publication
of a notification that is also visible in T . The delimitation imposed by scopes is
2 Note that we do not address the important question of notification duplication in

this paper.

324 Ludger Fiege et al.

diluted in this way since implications of an initially invisible event are diffused; an
effect that is not always appropriate. For example, assume that Y is a security
service that consumes, signs and republishes specific types of notifications so
that S and T are able to publish signed notifications. Unfortunately, Y acts like
a bridge and its reactions are visible in both superscopes. Obviously, it is not
acceptable to publish these triggered signed data into both scopes.

One solution to this problem is to replicate the security service so that it is
offered separately, but this is only feasible if the instances do not need to share a
common state, i.e., they are independent. However, this solution does not work
with components that cannot be instantiated but are deployed in a different
administrative domain and are only accessible remotely, like web services on
the Internet. Furthermore, the graph of scopes would be restricted to be a tree,
resulting in a structure built from only a single point of view, even though
it was corroborated that engineering of complex systems always benefits from
facilitating multiple viewpoints [22].

Session Scopes

In order to support dependent notifications and solve the problem of diluting
delimitation in multiple superscopes we define an extended type of scope which
provides notification contexts. Session scopes group components and especially
all of their published notifications. They are tagged scopes and the tag is ap-
pended to every notification published within. A tagged notification is processed
like any other notification, but additionally, the hidden context containing the
tag is maintained in every consumer by the event service. The context remains
valid during a consumer’s reaction to the delivery of a tagged notification. All
notifications published while a valid context is available are only disseminated
into that tagged session superscope from which the context originated. Forward-
ing into untagged scopes is not affected so that the application structure and its
behavior is not influenced by the creation of session scopes.

YS

T S

T

Fig. 6. Contexts of Multiple Superscopes

In our scenario, we would tag the scopes S and T , characterizing them to be
session scopes (cf. Fig. 6). On delivery of a notification a previously registered
processing function is invoked that computes the signature and publishes the
result. The tag carried by the notification is maintained as hidden context during

Engineering Event-Based Systems with Scopes 325

C2 C3
C1

PC
TF

DB ME

Agent

M2M

Private Private

...

...

...

Professional

Fig. 7. The stock application with sessions

the execution of Y and any subsequent publication is transparently directed to
the originating superscope. Note that the API of the event service needs not
to be changed since calls to pub(data) are unmodified and any contexts are
transparently maintained by the implementation of the API.

Session scopes are scopes that structure activities and allows components
with multiple superscopes to distinguish multiple sessions. These scopes can be
instantiated as first-class representatives of sessions, allowing to apply the other
mentioned features of scopes and to integrate activities in the graph of scopes.
One possible way of realizing sessions is pointed out, namely by using tagged
scopes and transmission policies to add, strip, and enforce matching of tags.
Obviously, the stated semantics of session scopes offer reasonable defaults but
further investigation is necessary to explore other features.

In order to illustrate the use of session scopes, let us once again return to our
running example. As already mentioned, customers send out notifications of type
Order. However, the event-based order processing in this form is only feasible
if the order data is only visible to the trading floor. For this purpose, customer
scopes are tagged as session scopes and each scope also includes the trading floor,
illustrated by the grey, dotted lines in Figure 7. The trading floor needs at least
two interfaces, one for handling orders used for the customer scopes and one
for publishing quotes into the professional market. Otherwise, the distinction
between private and professional customers would be broken. The activity of
putting an order is encapsulated in these session scopes so that an issued order
is only forwarded to the trading floor and the resulting acceptance notification
is only delivered back into the originating customer’s scope.

4 Implementation Issues

Generally, scopes are not about efficiency but enable to utilize the provided
constrained localities to consider efficient implementations. An implementation

326 Ludger Fiege et al.

S

K

m
2

m
1

...X

X

Y Y

S

K

K

K

n
n

n’
n’

Fig. 8. Transformation of mappings into components.

of a given subgraph of scopes can draw on these locality in that it is tailored to
the specific needs of the respective scopes and their constituents. For instance,
a scope that groups components on a local area network will most likely use an
implementation based on some broadcast mechanism, while the connections to
its superscopes rely on point-to-point transmission.

The presented sketch of an implementation demonstrates feasibility in the
sense that more efficient implementations may be applied in any part of the
system. It is based on an event notification service that supports content-based
filtering. Both are implemented in the Rebeca project [13], but scopes can
be based on other implementations, too. We first describe an implementation
realizing scopes without interfaces and mappings. In a second step, full-featured
scopes are based on top of a scoped event service.

The central idea of implementing scopes and the visibility v(X, Y) is to trans-
parently extend all subscriptions issued in the system to reflect the structure
implied by the graph of scopes. This structure is orthogonal to any subscrip-
tions issued by the components in the system and therefore the filter language
must allow filter extension. For example, a filter F would be transformed to
F ′ = (F ∧ Scope = X) , testing for a newly introduced name Scope. So, the
scope in which a notification is published has to be appended to it. This is
done transparently by an additional software layer between application code
and the simple notification service, without influencing existing components or
compromising loose coupling. Administration messages are sent when the graph
of scopes is changed. This task is eased by using a simplification of the graph:
According to the definition of the visibility v(X, Y), it is sufficient to append to
each notification the maximal elements, i.e., the root nodes of the graph which
have no outgoing edges, that are visible to the publisher. All subscriptions are
accordingly enhanced to filter on the visible maximal elements. For a detailed
discussion, please refer to [14].

The second implementation realizes scopes with interfaces and mappings and
relies on the previously described scoped event system; more efficient solutions
with the same interface are usable, too. Figure 8 depicts the implementation
idea. A scope graph with interfaces and mappings can be transformed into a
graph without mappings by introducing additional components that implement

Engineering Event-Based Systems with Scopes 327

Table 2. Related Approaches

Visibility Activity Flexibility Heterogeneity
Siena ◦ – – ◦
Ready + – ◦ +
Corba ◦ – + ◦

Information Bus + ◦ – ◦
Mediators + – + –

Field ◦ – + +
InfoBus ◦ ◦ – –

ActorSpace ◦ – ◦ –
Scopes + + + +

interface checks and event transformations. Such a component consists of two
parts, one is registered in the superscope and one in the mapped scope. This is
necessary in order to utilize the previously described scoped event system that
delimits visibility according to the maximal elements, the roots in the graph.
The depicted graph transformation creates a new root for every scope with an
interface/event mapping. Although it is not the most efficient solution, it high-
lights the inherent problems and facilitates a modular implementation. A more
efficient solution might explicitly instantiate a scope and integrate its imple-
mentation with the newly introduced components to form a ‘scope manager’
that transforms notifications, checks interfaces, applies delivery constraints, and
controls security issues such as scope membership.

5 Related Work

In this section, we discuss related work and compare it with our model. An
overview of the comparison with some of the discussed approaches is given in
Table 2, with the sign ‘+’ meaning ‘supported’, ‘–’ meaning ‘not supported’, and
‘◦’ meaning ‘not appropriately supported’.

Scoping is a well-known concept which is widely used in programming lan-
guages and software engineering [39]. It is used in blocks, functions, classes,
packages, and components, but the research literature on event-based systems
often lack most of the basic ideas of these structuring mechanisms. The basic
concept of visibility and the related problems are of fundamental nature and they
are therefore identified and addressed in many publications. However, no other
approach in the area of event-based systems is based on the notion of visibility.

Carzaniga et al. [8] describe the Siena event notification service, which is a
popular example of a service utilizing content-based filtering. A thorough pre-
sentation of filtering semantics and design choices is given, focusing on network
bandwidth efficiency. As for all other content-based filtering approaches, the
filters may be used to realize visibility constrains, but these issues are not ex-
plicitly addressed. Similar to other works on event services, the flat namespace
of notification attributes inhibit scalability because globally unique names are
assumed.

328 Ludger Fiege et al.

The Ready event notification service additionally offers event zones, parti-
tioning components based on logical, administrative, or geographical boundaries
[21] and delimiting the visibility of events. But a component belongs to exactly
one zone so that there is no multi-level hierarchy, and the system is structured
only based on one specific point of view, prohibiting composition and mixing of
aspects [22]. It is only mentioned that concepts from group communication [40]
may be applicable, offering the flexibility of changing notification delivery seman-
tics. Boundary routers are able to connect event zones and apply transformations
on crossing notifications. This work presents some scoping aspects, but they do
not offer one basic concept that integrates the different aspects of visibility.

The event channels of the Corba notification service [36] offer a structuring
mechanism in that notifications are only visible within the channel in which they
were published. Channels can be connected to compose the reachable compo-
nents, facilitating visibility and composition. However, producers must explicitly
publish notifications in a specific channel, moving information about application
structure into the components and limiting dynamic system evolution.

In subject-based addressing schemes for notification delivery, a tree of sub-
jects is used to partition and select notifications; the Information Bus [38] and
the Java Message Service [43] are prominent examples of this addressing scheme
and even a lot of commercial products are available, from Tibco [46] and oth-
ers. But the simplicity of the model results in severe disadvantages. Similar to
selecting event channels, producers have to select the appropriate subjects, and
the predefined tree of subjects constrain the view onto the system, impeding
composition in heterogeneous environments [22]. Nevertheless, the simplicity of
the concept led to wide acceptance and a multitude of implementations, e.g., in
Tibco Rendezvous the basic characteristics are extended to support additional
features such as bridges connecting multiple busses, integration of transactional
activities, and security considerations.

Sullivan and Notkin introduce mediators [42] in order to offer a design ap-
proach which explicitly instantiates and expresses integration relationships. An
implicit invocation abstraction is used to bundle components and mediators,
and, with its own interface, to compose new components. A similar approach
regarding visibility is used as in our scoping model, but no default semantics is
outlined so that they ‘only’ suggest a framework that facilitates design without
identifying features that are attached to visibility: transmission policies, activi-
ties, security, etc.

The Field environment [41] is an early work on tool integration and it is built
around a centralized server that distribute messages. Messages sent to the server
were selectively re-broadcasted to receivers that registered patterns matching the
message. The original approach realized content-based filtering in a flat space
of notifications. With the Field Policy Tool, it was later possible to extend the
semantics by introducing a mapping of any sent message to a set of message-
receiver pairs. While this opened up Field to include any delivery semantics, it is
a mechanism which is very hard to control because it is based on rule and trigger

Engineering Event-Based Systems with Scopes 329

evaluation. An additional extension allowed to limit the visibility of messages to
a set of receivers, but did not support composition and interfaces.

The InfoBus [10] is a small Java API which allows JavaBeans or cooperating
applets on a Web page to communicate data to one another. Multiple instances of
InfoBus might be manually connected with bridges, providing a limited means of
structuring without any inherent interfaces or composition support. It is merely a
mechanism to distribute change notifications and requests for data items. Match-
ing of messages is done by names, i.e., string matching. Besides being limited to
one virtual machine, it is a tool for connecting components not for composing
new ones.

Research on coordination models is dominated by Linda-like systems [18],
although it was criticized that race conditions are possible in Linda and its
variants, resulting from the inherent concurrency of the model [1]. In compar-
ison to Linda, event-based systems offer a more loose coupling of components,
facilitating distributed deployment of independent components. A general dif-
ference between our approach and Linda-like systems is that we have identified
the administrator role and the need for externally provided configuration mech-
anisms that do not change instantiated components. The need to specify names
or identities of tuplespaces is a major characteristic of many works on multiple
tuplespaces [19]. In this way, many of the considered ideas are relevant for event-
based systems but the suggested solutions are not directly adoptable. There exist
some work on Linda systems which establish structures on the components. Agha
and Callsen propose actorSpaces to limit distribution of messages [1]. The basic
drawback of their approach is that, even though previously unknown objects
are intended to cooperate, senders have to specify destination addresses. The
sketched implementation is rather limited. In [29], Merrick and Wood introduce
scopes to limit the visibility of tuples in Linda, but again, senders have to spec-
ify destination scopes. Furthermore, nesting of scopes is restricted to two levels.
Lime [31] realizes an transparent access to multiple tuplespaces, although the
approach is limited to a three-level hierarchy bound to the physical layout of the
system. It is focused on the intended application domain of mobile agents and
do not offer a general solution.

Cardelli and Gordon propose a process calculus for mobile ambients [5]. It is
used to describe the management of a tree of ambients whose intended purpose
of grouping computation resembles our graph of scopes. The calculus might be
used to model scope graph dynamics, but communication across ambients is only
indirectly supported and destination identities must be known.

Ported objects [28] are objects which communicate by processing messages
which arrive at ports. A port is a connector in a data stream which is not
directed by the object. A compound ported object encapsulates a number of
ported objects and hides the data flow inside. This resembles the idea of grouping
producers and consumers in scopes, while all the other features are lacking.

Evans and Dickman defined ‘zones’ in order to support partial system evo-
lution [12]. The meta object protocol [24] shows the relationship between OO
programming languages and scoping in event-based systems. Controlling and

330 Ludger Fiege et al.

modifying method calls is similar to the handling of notifications in transmis-
sion policies and event mappings presented in this paper.

Garlan and Scott presented delivery policies for implicit invocation sys-
tems [17]. Four different delivery policies are distinguished: full (broadcast) and
single delivery (1-of-n, that is ‘indirect invocation’), parameter-based selection
(filter), and a state-based policy. The policies resembles our definition but does
not include the other transmission policies.

6 Conclusion

Former work on event-based systems has concentrated on efficiency issues, ne-
glecting to support the engineering of complex systems. We have applied the no-
tion of scopes as a fundamental structuring mechanism for event-based systems.
Following classical developments in software engineering, the scoping concept is
based on the notion of visibility of components and notifications. A set of design
requirements for engineering event-based systems is investigated showing that,
similar to approaches in traditional request/reply-based systems, visibility is the
main underlying principle here. Although many other earlier contributions tack-
led some of the involved problems the scoping concept offers a unified approach
for event-based systems based on visibility.

From an engineering point of view, scopes offer a module construct for event-
based systems, being an abstraction and encapsulation unit at the same time. As
an abstraction unit, a scope provides the rest of the world with common higher-
level input and output interfaces to the bundled subcomponents. As an encap-
sulation unit, a scope constrains the visibility of the notifications published by
the grouped components. It hides the details of the composition implementation,
such as the underlying data transmission mechanisms, the interface mappings
that map between internal and external representations of notifications, security
policies, transmission policies controlling the way notifications are forwarded,
etc. The structure built thereby is orthogonal to the components’ implementa-
tion, separating concerns of implementation and interaction. As defined in our
model, scopes have the flavor of component frameworks in the sense of Szyper-
ski [45]: they encode the interactions between components and can themselves
act as components in higher-level frameworks. The ability to model, to inte-
grate, and to realize dynamic sessions with this concept shows the flexibility of
the presented scoping concept.

The main ideas presented in this paper have been implemented in a pro-
totype of an event notification service as part of the Rebeca project. We are
currently evaluating the prototype with the help of the stock trading example
used throughout this article and two other example applications dealing with
Internet auctions and self-actualizing Web pages. This allows us to investigate
the design of event-based systems and of the necessary infrastructure not only
in theory but also in practice.

Future work will include a more detailed discussion of session scopes and
their relation to traditional transactions, and engineering tools that allow to
build and administer scoped event-based systems via a graphical user interface.

Engineering Event-Based Systems with Scopes 331

References

1. G. Agha and C. J. Callsen. ActorSpace: an open distributed programming
paradigm. ACM SIGPLAN Notices, 28(7):23–32, July 1993.

2. P. A. Bernstein. Transaction processing monitors. Communications of the ACM,
33(11):75–86, Nov. 1990.

3. C. Bornhövd and A. Buchmann. A prototype for metadata-based integration of
internet sources. In 11th International Conference on Advanced Information Sys-
tems Engineering (CAiSE’99), volume 1626 of LNCS, Heidelberg, Germany, June
1999. Springer-Verlag.

4. D. Box et al. Simple object access protocol (SOAP) 1.1. Technical report, W3C,
2000. http://www.w3.org/TR/SOAP/.

5. L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, Proceedings of
Foundations of Software Science and Computation Structures (FoSSaCS), volume
1378 of LNCS, pages 140–155. Springer-Verlag, Berlin, Germany, 1998.

6. A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in supporting
event-based architectural styles. In ISAW ’98: Proceedings of the Third Interna-
tional Workshop on Software Architecture, pages 17–20, 1998.

7. A. Carzaniga, D. Rosenblum, and A. Wolf. Design of a scalable event notification
service: Interface and architecture. Technical Report CU-CS-863-98, Department
of Computer Science, Univ. of Colorado at Boulder, USA, 1998.

8. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

9. M. Cilia, C. Bornhövd, and A. P. Buchmann. Moving active functionality from
centralized to open distributed heterogeneous environments. In Proceedings of the
6th International Conference on Cooperative Information Systems (CoopIS ’01),
volume 2172 of LNCS. Springer, 2001.

10. M. Colan. InfoBus 1.2 Specification. Lotus.
11. G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure

and its application to the development of the opss wfms. IEEE Transactions on
Software Engineering, 2001.

12. H. Evans and P. Dickman. DRASTIC: A run-time architecture for evolving, dis-
tributed, persistent systems. In M. Akşit and S. Matsuoka, editors, European Con-
ference for Object-Oriented Programming (ECOOP ’97), volume 1241 of LNCS,
pages 243–275. Springer-Verlag, 1997.

13. L. Fiege and G. Mühl. Rebeca Event-Based Electronic Commerce Architecture,
2000. http://www.gkec.informatik.tu-darmstadt.de/rebeca.

14. L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to build structured
event-based systems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC’02), pages 385–392, Madrid, Spain, 2002. ACM Press.

15. M. J. Franklin and S. B. Zdonik. A framework for scalable dissemination-based
systems. In Proceedings of the 12th ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA ’97), Atlanta, Georgia,
USA, Oct. 5–9, 1997.

16. M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology in Per-
spective. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM
SIGMOD International Conference on Management of Data, June 2-4, 1998, Seat-
tle, Washington, USA, pages 516–519. ACM Press, 1998.

332 Ludger Fiege et al.

17. D. Garlan and C. Scott. Adding implicit invocation to traditional programming
languages. In Proceedings of the 15th Intl. Conference on Software Engineering
(ICSE ’93), pages 447–455. IEEE Computer Society Press / ACM Press, 1993.

18. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, Jan. 1985.

19. D. Gelernter. Multiple tuple spaces in Linda. In E. Odijk, M. Rem, and J.-C. Syre,
editors, PARLE ’89: Parallel Architectures and Languages Europe, volume 366 of
Lecture Notes in Computer Science, pages 20–27, 1989.

20. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

21. R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY
event notification service. In Proceedings of the 19th IEEE International Con-
ference on Distributed Computing Systems Middleware Workshop, Austin, Texas,
USA, May 1999.

22. W. Harrison and H. Ossher. Subject-oriented programming (A critique of pure
objects). In A. Paepcke, editor, Proceedings of the 8th ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
’93), pages 411–428, 1993.

23. ISO/IEC. Reference model of open distributed processing. Draft Standard, May
1995.

24. G. Kiczales, J. des Rivieres, and D.G. Bobrow. The Art of the Meta-Object Protocol.
MIT Press, Cambridge, MA, USA, 1991.

25. O. Lassila and R. R. Swick. Resource description framework (RDF) model and
syntax specification. W3C Recommendation, Feb. 1999.
http://www.w3.org/TR/REC-rdf-syntax.

26. C. Liebig, M. Cilia, and A. Buchmann. Event Composition in Time-dependent
Distributed Systems. In Proceedings of the 4th Intl. Conference on Cooperative
Information Systems (CoopIS ’99), Sept. 1999.

27. P. Maes. Concepts and experiments in computational reflection. In N. Meyrowitz,
editor, Proceedings of the 2nd ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’87), pages 147–155, Orlando, FL,
USA, Oct. 1987. ACM Press.

28. J. McAffer. Meta-level programming with CodA. In W. Olthoff, editor, European
Conference for Object-Oriented Programming (ECOOP ’95), volume 952 of LNCS,
Aarhus, Denmark, 1995. Springer-Verlag.

29. I. Merrick and A. Wood. Coordination with scopes. In Proceedings of the ACM
Symposium on Applied Computing (SAC 2000), pages 210–217, Como, Italy, Mar.
2000.

30. G. Mühl. Generic constraints for content-based publish/subscribe systems. In Pro-
ceedings of the 6th International Conference on Cooperative Information Systems
(CoopIS ’01), volume 2172 of LNCS, pages 211–225. Springer, 2001.

31. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A Middleware for Physical and
Logical Mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proceedings of
the 21st International Conference on Distributed Computing Systems (ICDCS-21),
pages 524–533, May 2001.

32. B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, Sept. 1994.

33. Oasis. FIXML - A Markup Language for the Financial Information eXchange
(FIX) protocol, July 2001. http://www.oasis-open.org/cover/fixml.html.

Engineering Event-Based Systems with Scopes 333

34. Object Management Group. The Common Object Request Broker: Architecture and
Specification. Version 2.3. Object Management Group, Framingham, MA, USA,
1998.

35. Object Management Group. CORBA Components. OMG, Framingham, MA, USA,
1999. orbos/99-07-01.

36. Object Management Group. Corba notification service.
OMG Document telecom/99-07-01, 1999.

37. Object Management Group. Corba transaction service v1.1.
OMG Document formal/00-06-28, 2000.

38. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an architecture
for extensible distributed systems. In B. Liskov, editor, Proceedings of the 14th
Symposium on Operating Systems Principles, pages 58–68, New York, NY, USA,
Dec. 1993. ACM Press.

39. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, Dec. 1972.

40. D. Powell. Group communication. Communications of the ACM, 39(4):50–53, Apr.
1996.

41. S. P. Reiss. Connecting tools using message passing in the Field environment.
IEEE Software, 7(4):57–66, July 1990.

42. K. J. Sullivan and D. Notkin. Reconciling environment integration and software
evolution. ACM Transactions of Software Engineering and Methodology, 1(3):229–
269, July 1992.

43. Sun. Java message service specification 1.0.2, 1999.
44. Sun Microsystems, Inc. Enterprise javabeans specification, version 2.0. Proposed

Final Draft, 2000. http://java.sun.com/products/ejb/index.html.
45. C. Szyperski. Components Software, Beyond Object-Oriented Programming.

Addison-Wesley, 1997.
46. TIBCO, Inc. TIB/Rendezvous. White Paper, 1996. http://www.rv.tibco.com/.
47. S. Yang and S. Chakravarthy. Formal Semantics of Composite Events for Dis-

tributed Environments. In Proceedings of the 15th International Conference on
Data Engineering (ICDE ’99), pages 400–407. IEEE Computer Society Press, 1999.

	1 Introduction
	2 Engineering Event-Based Systems
	2.1 Illustrative Example
	2.2 Engineering Requirements
	2.3 Engineering Support

	3 Scoping in Event-Based Systems
	3.1 Controlling Visibility
	3.2 Interfaces
	3.3 Advanced Features
	3.4 Event Mappings
	3.5 Transmission Policies
	3.6 Sessions

	4 Implementation Issues
	5 Related Work
	6 Conclusion
	References

