
Abstract

Middleware Mediated Transactions (MMT) integrate
message-oriented transactions and distributed object
transactions. MMT are suggested as an evolutionary
and integrative approach to support reliable and
flexible interactions between heterogeneous and
autonomous components, which is a major challenge in
enterprise application integration. MMT offer the
ability to combine communication of messages and
notifications with conventional transactional object
requests. Thus MMT introduce the flexibility of
mediated interactions with respect to topology, binding,
time-dependencies and content transformation into
distributed object transactions. MMT are characterized
by coupling modes to control if notifications become
visible immediately or are dependent on the transaction
status, to include mediators as transaction participants,
and to distinguish between message delivery and
processing, as well as vital and non-vital participants.
Furthermore, coupling modes interrelate different
distributed transaction contexts of publishers and
subscribers. This paper introduces the concept of MMT
and presents two system prototypes implementing MMT,
the Dependency-Spheres middleware service and the
X2TS middleware service. 

1. Introduction

Middleware is application-independent connectivity
software that is commonly used for the integration of
enterprise applications (EAI) in distributed and hetero-
geneous environments. Cooperative information sys-
tems are one example class of systems that typically
employ middleware for purposes of EAI. A cooperative
information system connects formerly independent
information systems into one comprehensive system,
where each information system – characterized by its
own application processes, common data and multiple
users – acts in the role of a component [7].

Building cooperative information systems leveraging
explicit middleware mediation is an attractive and com-
monly adopted approach. The explicit use of middle-
ware mediation, as suggested with message-oriented
middleware and object notification services, allows for
flexible and complex interaction models while preserv-
ing component autonomy. Object transaction process-
ing, on the other hand, also is an attractive and
important approach in EAI to address issues of system

reliability and correctness. However, object transactions
are based on a synchronous 1:1 request/reply interaction
model only, which induces a tight coupling among com-
ponents. This is in contrast to the flexible messaging
interaction models that often are required or desired.

The transactional, yet flexible integration of compo-
nents of a cooperative information system, which typi-
cally are autonomous to varying degrees w.r.t. their
design model, execution model, and/or communication
model [6], consequently describes a difficult problem.
Some components may not externalize an API for par-
ticipating in the standard two-phase commit protocol
(2PC) of a transaction, other components may not even
support atomic executions at all. Two general solutions
to this problem are to either exclude certain components
from transactions, or to develop new components that
render the autonomous components (if feasible) con-
forming to the transaction model used. We believe that
compromising component autonomy for transaction
processing in such ways is not always possible and
advisable, and that instead a more tolerant approach to
component autonomy in transaction processing is highly
desirable and advantageous.

This paper presents Middleware Mediated Transac-
tions as such a more tolerant approach. MMT offer the
ability to combine communication of messages and
notifications with conventional transactional object
requests. Thus MMT introduce the flexibility of medi-
ated interactions with respect to topology, binding, time-
dependencies and content transformation into distrib-
uted object transactions.

1.1. Motivating Example

Consider the design and implementation of a collabo-
rative workflow application that integrates various new
and existing, autonomous components. A process to
schedule group meetings is to be defined, which
involves the sending of invitation messages (notifica-
tions) to multiple participants. A subset of all invited
participants should accept the invitation (acknowledge
the notification) in order for the meeting to take place
and to confirm the update of distributed databases (e.g.,
for room reservation and participants calendars). That
is, some of the participants are considered vital to the
success of the scheduling process, while others are not.

If the process should be transactional (execute in an
all-or-nothing manner), a transaction model is needed
that allows to send out asynchronous invitation mes-
sages during the ongoing transaction with immediate
visibility. In parallel, synchronous database updates may

Middleware Mediated Transactions

Christoph Liebig* and Stefan Tai**

*Darmstadt University of Technology, Darmstadt, Germany
chris@informatik.tu-darmstadt.de

**IBM T.J. Watson Research Center, New York, U.S.A.
stai@us.ibm.com



be performed. Before transaction commit, a reply from
the vital participants is required in order for the transac-
tion to commit. Therefore, a mixture of a (deferred)
synchronous request/reply scheme, asynchronous (one-
way) notifications, and synchronous database updates,
all within the same transaction, is needed.

Furthermore, there may be technical challenges for
implementing such transactions. For example, one data-
base component may offer an object-oriented interface
through an Enterprise JavaBean only, while another
database may be accessible through a non-object asyn-
chronous messaging interface only. The single transac-
tion would need to integrate the two different,
incompatible components.

The conventional transaction services provided by
EAI middleware, such as the OMG Object Transaction
Service (OTS) [27] or the message grouping mecha-
nisms of message-oriented middleware [33], are not
readily applicable for such problems. The OTS, for
instance, groups synchronous requests to objects only,
but does not include the immediate sending of mes-
sages. Similarly, messaging transactions group mes-
sages only, but do not integrate object invocations.

1.2. Paper Overview

In this paper, we present a solution to the described
problem of transaction processing using standard EAI
middleware. Our solution of Middleware Mediated
Transactions (MMT) advocates the extension of object
transactions to include message-oriented communica-
tion using messaging middleware. 

MMT suggest to integrate mediation and mediators
by means of queue-based and publish/subscribe mes-
saging middleware into standard object transactions.
We introduce the notion of coupling modes to define
and describe kinds of transactional component and
inter-transaction dependencies of MMT. We further
present two different middleware services that support
MMT. These services have been developed indepen-
dently of each other, but both implement the idea of
MMT by extending standard EAI middleware and pro-
viding functionality such as compensation support for
revoked messages/notifications.

More particularly, among the unique features that
MMT offer are the ability

• to combine communication of messages and noti-
fications with transactional object requests to
extend the atomicity sphere as established by con-
ventional object transactions,

• to include mediators and/or final message recipi-
ents as transaction participants that can be either
vital or non-vital to the success (respective fail-
ure) of the transaction,

• to interrelate different distributed transaction
contexts of message senders/publishers and recip-
ients/subscribers.

MMT are a novel approach to advancing the state-
of-the-art in use of common middleware transactions.
MMT is related to and incorporates concepts of
extended transaction models and multi-database trans-
action management [6, 12, 17] and of distributed pro-

gramming language systems [23, 14].
The paper is structured as follows. Section 2 reviews

distributed communication and middleware mediation.
Section 3 discusses background on transaction process-
ing in the context of middleware. Section 4 then intro-
duces Middleware Mediated Transactions and presents
the concept of coupling modes of MMT. Section 5
describes the two service prototypes that realize MMT:
the Dependency-Spheres service, which is based on
message queuing middleware, and the X2TS service,
which is based on publish/subscribe middleware. Sec-
tion 6 concludes the paper. Related work is mentioned
and discussed throughout all sections.

2. Middleware Mediation

Middleware mediation refers to the indirection
established by middleware for interaction among two or
more (distributed) components. Middleware mediation
can be implicit, or explicit. With implicit mediation,
components are not aware of any intermediation by
middleware; a component interacts with another com-
ponent directly. With explicit mediation, components
are well-aware of intermediation by middleware and
explicitly make use of intermediation functionality pro-
vided by the middleware; a component communicates
with another component through a mediator, a distinct
entity (such as a message queue or an object channel)
that essentially “decouples” the communicating compo-
nents from each other.

Object middleware like CORBA promote implicit
middleware mediation. The middleware itself may
function as an explicit mediator for services such as
naming and object binding, but the actual communica-
tion among the application components is direct by
means of well-defined component interfaces. Message
middleware, and messaging services of object middle-
ware (such as CORBA’s Notification Service [26] or
the Java Message Service JMS [16]), promote explicit
mediation. Components do not provide application
interfaces, but exchange messages (data) through medi-
ators, using the services provided by the middleware
for message exchange (e.g., put and get requests to
queues, subscription to message subjects, and so on).

Explicit middleware mediation introduces signifi-
cant flexibility for distributed communication. Explicit
mediation further allows to incorporate message con-
tent transformations in the mediator. Data mappings for
different message recipients may in this way easily be
integrated. We believe that conventional transaction
processing, which today is limited to implicit middle-
ware mediation, needs to be extended to address
explicit middleware mediation. 

In the following, we identify different dimensions of
distributed communication and distinguish implicit and
explicit middleware mediation along those dimensions.
We present two fundamental groups of distributed com-
munication dimensions. The first group contains the
dimensions related to the way that two or more commu-
nicating applications are connected to and interact with
each other. The second group contains the dimensions
that are related to the reliability associated to the inter-
action of the components.



Please note that we use the term messaging as a gen-
eral term to refer to any kind of message communica-
tion that is based on explicit mediation. Mediators can
be either message queues, or publish/subscribe message
brokers. Similarly, we use the terms sender and pub-
lisher of a message, and receiver and subscriber (of
queueing, and pub/sub communication, respectively),
interchangeably. 

2.1. Component Connection and Interaction

The connection between two or more components
can be described in terms of topology and binding.

Topology. The topology describes the number (arity) of
communication partners. The topology can be 1:1, 1:n,
or n:m. The topology can be fixed or variable. For
example, in a publish/subscribe system, there may be
multiple publishers (n) and multiple subscribers (m),
where the actual number of n and m may change over
time.

Binding. The binding describes the means by which a
relationship is established. With reference-based bind-
ing, at least one communication party has a reference to
the others. With mediator-based binding, components
are not directly connected, but use a mediator. The
components do not have any references to each other
themselves, but the references are stored by the media-
tor. The components are logically connected, for
instance, by means of subjects (topics) of a defined sub-
ject-hierarchy, or by means of exchange of particular
application-specific data (for example, with content-
based publish/subscribe messaging). 

Component interaction can be described in terms of
life-cycle dependency and synchronicity.

Life-cycle dependency. The communicating partners
can be time-independent or time-dependent. With time-
independence, the components need not be available at
the same time. With time-dependence, the components
need to be available at the same time.

Synchronicity. The synchronicity of the communica-
tion partners describes the synchronization between
them. With synchronous communication, one compo-
nent A is synchronized with another component B with
respect to the time that the component B replies to a
request by A. The component A in this case is blocked
waiting for a response from B. With asynchronous
communication, the two components are not synchro-
nized at all, and none of the components is blocked.
With deferred synchronous communication, the com-
munication is at first asynchronous, but synchroniza-
tion takes place at a defined later point in time. 

Common forms of component connection and inter-
action are, for example, the object-oriented communi-
cation model, which is 1:1 fixed, reference-based, time-
dependent, and synchronous, and the publish/subscribe
messaging model, which is n:m variable, subject- or
content-based, time-independent, and asynchronous.

2.2. Reliability

Reliability of component interaction can apply to the
guarantee of delivery of a request/message to a set of
recipients, or, to the guarantee of processing of a
request/message by a set of recipients. Reliability is
addressed through mechanisms such as logging of
transaction state and persistence of notifications that
allow to recover from potential failures.

Delivery. The delivery of a request/message can either
be not reliable (best-effort and at-most-once delivery),
or be guaranteed to be reliable (at-least-once and
exactly-once). With best-effort and at-most-once deliv-
ery, requests/messages may be delivered, and, with
best-effort, may possibly even be delivered more than
once. With at-least-once and exactly-once delivery,
requests/messages are ensured to be delivered, and,
with at-least-once, may possibly be delivered more than
once.

There are various factors that determine or affect the
process of delivery and the likelihood of delivery suc-
cess, such as ordering and prioritizing requests/mes-
sages, the initiation of delivery (push versus pull), or
the level of destinations addressed (delivery to media-
tors only or to final destinations) (see [29] for a detailed
discussion). Further factors include questions of mes-
sage integrity, security, and confidentiality.

Processing. The processing of a request/message can,
correspondingly, be not reliable (best effort), or be
guaranteed to be reliable (atomic and transactionally
coupled) in case the delivery was reliable. For atomic
processing reliability, the processing of the request/
message is part of the transaction where the request/
message was published. With transactionally coupled
processing reliability, the processing is part of its own
transaction (another transaction than the one where the
request/message was published), and a dependency
between the two transactions must be established.

The reliable communication models of delivery and
processing raise the question of recovery and recover-
ability. Recovery can either be forward (outgoing) and/
or backward (incoming) from the viewpoint of the pub-
lishing transaction. Factors that affect recoverability
include the definition and determination of the set of
recipients for which recovery must be executed. Like-
wise, the set of recipients that are to be included in the
transactional scope for failure detection, the failure
scope [29], needs to be defined. 

Only few reliability guarantees are made for com-
mon communication models of existing middleware.
For example, object request processing is only reliable
w.r.t. processing and recovery if embedded in a pre-
defined object transaction. Common messaging sys-
tems typically only guarantee reliable delivery of
messages to mediators like queues, but not to sets of
final recipients that make up a failure scope or recovery
scope. The combination of object request processing
and messaging today observes very limited or no reli-
ability at all.



3. Transactions

Standard object interactions are limited in their flex-
ibility of interaction models, due to limited variability
in topology, binding, life-cycle dependency, and syn-
chronicity (as defined above). Nevertheless, object
interactions, when bracketed in transactions, offer ato-
micity and thereby support the building of reliable sys-
tems. Conversely, messaging systems and explicit
middleware mediation allow for very flexible interac-
tion models due to more variability in topology, bind-
ing, life-cycle dependency, and synchronicity.
However, messaging systems do not offer a transaction
processing and recovery model comparable to that of
object transactions.

We believe that the high transactional reliability
achieved with object transactions is not a contradiction
to the weaker forms of reliability guaranteed for the
more flexible interaction models of mediation-based
messaging communication. Applications require and
benefit from both communication models and reliabil-
ity models, and a combination of the transactional
object and messaging paradigm is very promising. 

Middleware Mediated Transactions aim to achieve
such a combination. The objective is to allow for more
flexible interactions than fixed object interactions using
mediator-based messaging, while retaining transac-
tional reliability comparable to the one established for
object transactions. Object requests should be carried
out as conventional transactional object requests, while
the integrated messages demand additional features and
system support to address the concerns of atomic pro-
cessing reliability and transactionally coupled process-
ing reliability, as well as recovery. 

Before introducing MMT in Section 4, we review
the different styles of transactions of databases, object
middleware and messaging middleware.

3.1. Database Transactions

The traditional transaction concept of databases
encompasses the ACID properties (atomicity, consis-
tency, isolation, durability) [4]. A transaction is the unit
of reliable execution and brackets several operations on
data items, such that the database state is transferred
from one consistent state into another consistent state –
possibly going through inconsistent intermediate states.

From a middleware technology perspective, a data-
base provides integrated transactions, where client
requests are shipped to the database and the transac-
tional execution guarantees are monitored and enforced
by the DBMS server. Integrated transactions are closed
in the sense that all state manipulations are known to
and are under control of the database and no communi-
cation to other components may be part of a transac-
tion. 

3.2. Distributed Object Transactions (DOT)

In contrast to stand-alone-DBMS systems, (object-
oriented) TP-Monitors provide distributed transaction
coordination [5,27,9]. While they also offer support for
building scalable and robust systems (such as support

for server activation, load balancing, management and
others [13]) they all encompass a distributed object
transaction service, which is responsible for managing
the status and coordinated outcome of a transaction.
This encompasses transaction context propagation and
keeping a list of registered resources. And most impor-
tant, the transaction service provides the coordination
functionality to drive the two-phase commit processing,
decide about commit or abort and realize its part of the
recovery protocol. 

Compared to the database ACID transactions, dis-
tributed object transactions resemble more a two-phase-
commit service than an “ACID transaction” service,
separating reliability and concurrency control concerns.
Participating resources are obliged to follow the object
transaction protocol and guarantee recoverability or
durability with respect to the decision on transaction
outcome. 

Transaction services in distributed object systems
are open in that they make no further assumption on the
implementation of the participating resources. As long
as an object provides the required interfaces and inter-
acts in a 2PC conforming way it may be involved in a
distributed transaction. Objects are characterized by
their interface, whereas state and persistence of state are
considered to be implementation concerns. The latter
could be realized by traditional resource managers like
databases or queues. 

The same applies for concurrency control. Although
concurrency control theory has been well researched
for particular configurations like multi-database or mul-
tilevel systems [6,12,1], correctness criteria and guaran-
tees for an overall enterprise application system seem to
be hardly feasible, especially when execution autonomy
and partial failures must be considered.

3.3. Message-oriented Transactions (MOT)

Another style of transaction processing addresses
message-oriented middleware, namely message-ori-
ented transactions. Enqueuing/dequeuing of messages
and publishing/consumption of notifications is enclosed
in a unit-of-work and dependent on the overall transac-
tion outcome and vice versa. Only if the unit-of-work is
committed, the messages will be sent out and con-
sumed. The message mediator (for example, a queue
manager) provides its own transaction manager and
associated transaction demarcation API, or alterna-
tively, may play the role of a transactional resource on
behalf of an externally coordinated distributed transac-
tion.

Both message-oriented transactions and distributed
object transactions are accepted as common means to
build cooperative information systems and to reduce
the complexity of independent failure modes in distrib-
uted systems. Note however, that message-oriented
transactions are fundamentally different from the other
kinds of transactions discussed above. Message-ori-
ented transactions group a set of messages that are to be
published or consumed as a whole, and that may be
included in the sphere of atomicity of a sender’s (con-
sumer’s) execution. Message-oriented transactions do
not group the consumer’s processing of data – as conse-



quences of delivery or receipt of a message – within the
sender’s unit of work. 

Therefore, a transactional messaging interaction typ-
ically spans multiple transaction contexts. Although the
transaction contexts of sender and consumers are logi-
cally related, there is no middleware support to express
and enforce such dependencies.

3.4. Comparing DOT and MOT

Distributed object transactions offer atomic process-
ing reliability: the execution of a requested service is
enclosed into a sphere of atomicity, i.e. the transaction
is successful if the processing of the requested services,
typically spanning multiple remote objects, is all suc-
cessful. This has a deep impact on the life-cycle depen-
dency between involved components, because all must
be up during processing of the transaction. As a conse-
quence, a message delivery failure (of e.g. an IIOP
request message) typically will cause the transaction to
fail. With respect to synchronicity, the termination
model of current object transaction services assumes
synchronous interactions, at least deferred synchro-
nous, in the sense that the start of commit processing
requires that beforehand all executions which contrib-
ute to the transaction outcome have been completed.
This is a shortcoming compared to the termination
model of peer-to-peer style interactions [5], and may be
overcome when introducing asynchronous method
invocation support as suggested in [25].

With message-oriented transactions, the goal is to
atomically publish messages to remote participants and
enforce processing thereof in an exactly-once-manner.
The execution in response to the message receipt will
not affect the outcome of the sender’s transaction.
While atomic processing reliability of producer and
consumer is not guaranteed, the assumption is that
eventually the message will be processed in a way
expected by the application. In particular, the message
will be processed not more than once, if the consump-
tion is also transactional. Separating the execution of
sender program and receiver program into multiple
(depending on the number of receiver/subscribers)
transactions is the key to the flexibility of mediated
interaction. This approach provides for life-cycle inde-
pendence and is considered one of the strengths of mes-
saging middleware. Although this is a powerful
concept, atomicity as provided by such transaction ser-
vices has its drawbacks and deficiencies, especially
when it comes to integrating both styles of transaction
processing.

4. Middleware Mediated Transactions

Figure 1 shows a typical architecture where some
components (object1..object3) interact through
object interfaces on behalf of an object middleware
transaction, and additionally, explicitly mediated inter-
action with further components is required, as exempli-
fied by queue-based mediation to recipient1 (and
others) as well as publish/subscribe-based mediation to
consumer3 (and others). 

4.1. Sample Scenarios and Requirements

Assume that the recipients (recipient1 etc.) are
autonomous components, i.e., they do not cooperate in
a 2PC (do not even expose a prepare state). Typically,
there may be different recipients carrying out separate
business functions. In a normal case, the message
would eventually be delivered to and be processed by
the recipients. However, from the point of view of
object1, this may be too weak as a reliability. It is
often required that some specified components will def-
initely receive the message, e.g. in a particular time
frame, while the transaction is still ongoing (whereas
for other recipients a fully time-independent delivery
and processing may be adequate). With common mes-
saging transactions on behalf of tx, the message will
only be sent if tx commits and it will earliest be sent
after commit of tx. In particular, it is not possible to
make the tx outcome dependent on the acknowledg-
ment of delivery to recipient1 and furthermore, it is
not possible to immediately sent out the message in par-
allel to the object transaction execution. 

With MMT we suggest to allow immediate message
visibility and to enforce a backward dependency of
message delivery and/or processing on the outcome of
tx, i.e., tx may only commit if the delivery/processing
conditions are satisfied.

Assume, as another example, a cooperative work-
flow scenario, where object1..object3 carry out
computation steps on behalf of some process activity,
and the consumer3 component realizes a situation-
aware worklist monitor [2,20]. Situation-awareness
requires that an agent may monitor in a timely manner
other processes and events in the environment, in paral-
lel to the on-going process. The realization of the
observer pattern (the implicit invocation) must be trans-
action-aware in the sense that notifications are dis-
played immediately, but the tentative nature of
notifications must be taken care of. Using mediation
through pub/sub preserves the decoupling in space. 

The addition of MMT allows to immediately make

m
e diato r

yyy

xxx
recipient2

consumer2

recipient1

object1

object2

object3
"pub/sub"

tx.begin()

OTS Context

q.put()

topic.publish()

"queues"

1) immediate, separate, backward conditional on delivery
2)  on abort, separate

O
R

B

coupling

coupling

consumer3

3) immediate, separate, forward commit

tx.commit()

Figure 1. MMT Scenario



such notifications visible and additionally enforce a for-
ward commit dependency between tx and the transac-
tion of the worklist manager. It will be enforced by
MMT that the consumer3 transaction may only com-
mit if the triggering tx has committed. For example, a
commit of consumer3 might change the color of the
worklist entry and save it in a persistent worklist area,
whereas an abort may remove the entries. Notice that
there is no 2PC synchronization between the object
middleware transaction and the separate transaction of
consumer3. In particular, notifications of object3 are
time-independent of consumer3, and a failure of pro-
cessing in component3 does not affect the success of
tx, and thus does not impede the advance of the work-
flow process.

As can be seen from the examples, sending out mes-
sages immediately breaks the isolation sphere of the
sender’s transaction, if the transaction tx later aborts.
This can be compared to a dirty read in CC theory [4].
Computations are externalized (by publishing notifica-
tions) that might be revoked later. With respect to seri-
alization theory, publishing a notification can be
compared to a write operation, while reacting to it
introduces a read-from relation. Therefore, dirty reads –
reactions to immediate visible notifications of not-yet-
committed transactions – may lead to non recoverable
reactions or necessitates cascading aborts. While in
some cases it may be possible to revoke and compen-
sate an already committed reaction, in other cases it
might not be [18]. Weakening (communication) isola-
tion in cooperative information systems often is consid-
ered to be a requirement and not as an error. Thus
aborting a transaction is not only of local interest to the
invoking component (i.e. transactional client) but to
remote components that received “dirty notifications”.
As an implication, we require that MMT must provide a
means to at least propagate the abort in order to allow
compensating actions to take place where and when
necessary. We suggest that the mediator provides a
means to realize transactionally coupled processing
reliability, which will be discussed next.

4.2. Coupling Modes

In order to provide the application developer with a
flexible means to integrate mediated interactions in
object middleware transactions we introduce the notion
of a coupling mode (according to research carried out in
the area of active object systems and active database
management systems [10,8]).

Coupling modes determine the way that the message
mediator relays notifications published in a producer’s
transaction to processing and/or delivery of the notifi-
cation at the consumer. In particular, we suggest to dis-
tinguish the following properties that constitute a
coupling mode:

• Visibility: the earliest point in time with respect to
the producer’s transaction status at which the
mediator will relay a message to a consumer

• Context: the transaction context in which the
message consumer component should execute its
actions

• Dependency: the commit (abort)-dependency

between the producer’s transaction and the trig-
gered action

• Production, Consumption: the impact of publish-
ing and consuming messages on the transaction
and the degree of delivery reliability

The following table enumerates different policies
with respect to the coupling mode properties. We do not
claim that this table is complete, nor that all policies are
required in any case. The proposed coupling modes are
introduced as a starting point and should undergo fur-
ther discussion and evaluation in practice. The intention
of the various policies are discussed below. 

Visibility. With immediate visibility, messages are sent
to consumers without waiting for the completion of the
producer’s transaction. Messages are sent out in parallel
to the ongoing transaction without blocking and inde-
pendent of the outcome of the triggering transaction. 

In case of on commit (on abort) visibility, a con-
sumer will receive the notification only if (and not
before) the triggering transaction has committed
(aborted). Note that abort visibility carries a weaker
delivery guarantee than on commit, as a system crash
may cause errors in sending out notifications.

With deferred visibility, the notification is propa-
gated as soon as the producer starts commit processing.
In a synchronous object transaction, this point in time is
reached when all executions have completed.

Context. The transaction context may be propagated by
the mediator and if the consumer component is willing
to join the transaction, it may run in a shared context
with the sender. 

The mediator may also create a new transaction at
the consumer’s site and thereby establish a separate
context. Or, the consumer may already run in a separate
context in the first place. 

In some cases, the mediator may not be able to influ-
ence the transaction management, or may not know
about transactions at all. 

Forward Dependency. A commit forward dependency
specifies that the consumer’s reaction may only commit

Visibility immediate, on commit, on abort, 
deferred

Context none, shared, separate

Forward 
Dependency

none, commit, abort

Backward 
Dependency

none, vital, mark-rollback

Production transactional, independent

Consumption on delivery, on return, atomic, 
explicit

Table 1: Coupling Modes



if the sender’s transaction commits. 
An abort forward dependency specifies that the con-

sumer’s reaction may only commit if the sender’s trans-
action aborts. 

Backward Dependency. A backward dependency con-
strains the commit of the producer’s transaction with
respect to the success of delivery or processing at a con-
sumer’s site. If the recipient is vital coupled, the
sender’s transaction may only commit if the triggered
transaction has been executed and completed success-
fully.

If the consumer is coupled in mark-rollback mode,
the sender’s transaction is independent of the con-
sumer’s transaction outcome, but the consumer applica-
tion may explicitly mark the producer’s transaction as
rollback-only.

Both backward dependencies imply, that a failure of
event delivery will cause the triggering transaction to
abort. More fine-grained control of the impact of mes-
sage delivery success (failure) on the sender – as men-
tioned in the example of the previous section – is
provided by conditional messaging [31]. The sender
may specify delivery conditions (e.g. regarding a time
window for message receipt or processing by a defined
set of recipients) which must be satisfied in order to
allow the producer’s transaction to commit.

Production.  Transactional production specifies the
well-known messaging transaction (unit-of-work) style,
which makes the message delivery to the mediator
dependent on the producer’s transaction success and
vice-versa.

With independent production policy, it is up to the
application what should happen in case that the sending
of a message fails. The application could abort the
transaction but is not forced to do so.

Consumption. Once a notification has been consumed,
the notification message is considered as delivered and
will not be replayed in case the consumer crashes and
subsequently restarts. The notification may be con-
sumed simply by accepting the notification (on deliv-
ery) or when returning from the reaction (on return).
Alternatively, consumption may be bound to the com-
mit of the consumer’s atomicity sphere (atomic) or be
explicitly indicated by the application at some point
during reaction processing.

4.3. Discussion

Obviously, the defined policies are not independent
of each other, not all combinations make sense, and
some settings subsume others. Due to lack of space and
to keep the paper at a reasonably level of abstraction,
we will discuss some but not all issues that relate to the
definition, semantics, realization and application of
possible coupling modes.

If the reaction is coupled in a shared mode, it will
execute on behalf of the sender’s transaction. This
implies a forward and backward dependency, which is
just the semantics of a sphere of atomicity. This case is
interesting for asynchronous mediated interactions,

mostly in the sense of implicit invocation, where, for
example, consistency constraints can be enforced (e.g.
using immediate/deferred, shared, mark-rollback/back-
ward commit). Thus, separation of concerns can be
realized at component granularity.

Backward dependencies, even if implicit using a
shared context, raise the difficulty of how to synchro-
nize concurrently ongoing mediated computation and
conditional delivery steps on behalf of an atomicity
sphere. This is why checked transaction behavior must
be enforced by MMT. A triggering transaction may not
commit before the delivery conditions are satisfied and/
or all reactions that have backward dependencies are
ready to commit (and vice versa).

Mediated interaction in principle encompasses an
unknown number of different consumers. Therefore,
we require that the consumers that have backward
dependencies and which need to synchronize with the
triggering action must be selected by a predicate using
conditional delivery or must be specified in a pre-
defined group.

In cooperative information systems and EAI like set-
tings, the reaction is typically executed in its own trans-
action context, i.e., a separate context, and the commit/
abort dependencies to the triggering transaction can be
established to structure the transactions dynamically.

A forward commit dependent reaction to the receipt
of a message compares to a nested transaction structure,
where a subtransaction may only commit through the
top. It is different in the way that the “nested top” trans-
action of the consumer may be carried out time-inde-
pendent (in particular after execution) of the sender’s
transaction. 

An abort dependency allows to spin off exclusive
alternative and contingency actions. Notice that chain-
ing of abort dependencies may lead to inversion prob-
lems, which requires special treatment by the mediator
(e.g. transitive establishing commit dependencies).

The on-commit (on-abort) visibility cannot be used
in conjunction with a shared transaction context. Fur-
ther, the on-commit (on-abort) visibility trivially
implies a forward commit (abort) dependency. 

Execution of the consumer’s actions in a separate
context may be achieved in different ways and with dif-
ferent degrees of flexibility and structuring power. The
consumer may provide its own transaction context,
which we then require to be controllable by the media-
tor conforming to the established dependencies (other-
wise it is treated as context none). Or, the mediator
creates a separate transaction context, which can be
done i) on a per message basis or ii) in an aggregate
manner, i.e., processing of several messages is grouped
in one transaction.

Some couplings like forward commit/abort depen-
dencies may not even be feasible, because one is faced
with autonomous components that do not allow to con-
trol commit processing. If a forward commit depen-
dency cannot be enforced, conservative on-commit
visibilities may be used if the application can tolerate
the delay and is not involved in a direct cooperation
with the sender. Another approach is to let the con-
sumer subscribe to on-abort visible messages (using
immediate visibilities paired with dual subscriptions).



The latter can then be used to compensate dirty notifi-
cations in case that the sender’s transaction fails.

On-abort visibilities are a very powerful and new
concept in explicit middleware mediated interactions.
Its potential use as a basis to build flexible, reliable, yet
distributed exception handling seems very promising,
especially in the context of “programming in the large”
(also called “scripting objects” or “process enactment”)
[19]. Following the paradigm of separating control and
data flow from implementation of (business) function-
ality requires a flexible interaction between compo-
nents that implement activities and the process
enactment engine which drives the process flow [19].
Additionally, programming in the large requires a
remote control for scripting objects and a decentralized
open architecture. Error handling cannot simply be
achieved by atomicity of activity steps, which typically
means backing out in case of error. Instead, appropriate
means to externally interpret and react upon the situa-
tion of error are needed to facilitate forward recovery
and progress of the overall process. Using notifications
to monitor progress and abort-visible notifications as
means of an activity execution-log seems to be a prom-
ising approach [28,22,15].

5. Service Support for MMT

Middleware Mediated Transactions extend the con-
ventional distributed object transaction model by inte-
grating explicitly mediated interactions provided by
messaging middleware. MMT allow for additional flex-
ibility in component interaction and enable to tolerate
and support different forms of component autonomy.

Middleware-mediated transactions are programmed
using combined object communication and mediator-
based messaging communication. A MMT middleware
service needs to provide a transaction service, a media-
tor-based messaging service, and features that realize
MMT coupling modes as introduced above. MMT mid-
dleware services can be implemented as integrated
middleware service solutions; services that integrate
and extend existing transaction and messaging services
already available with standard middleware. The inte-
grated service can either introduce an indirection for
use of the integrated transaction and messaging ser-
vices, or expose the underlying service functionality
and API directly to the application clients.

In this section, we briefly present two different
MMT middleware services that have been developed
independently of each other. The first service presented
is the Dependency-Sphere (D-Sphere) service devel-
oped at IBM Research [30]. The second service pre-
sented is the X2TS prototype developed at Darmstadt
University of Technology [22]. These two services both
support MMT with similar effects, but differ in their
realization (in particular, the kind of mediation used),
and, as a consequence, in the application use.

5.1. Dependency-Spheres

A Dependency-Sphere (D-Sphere) logically and
operationally groups transactional distributed object
requests and messages. The (synchronous) object

requests occur as part of a conventional distributed
object transaction, and the (asynchronous) messages are
sent using standard messaging middleware [30].

D-Spheres are designed to accommodate a variety of
object transaction models and messaging models. This
includes the OMG OTS for standard distributed object
transactions and the Long-Running Unit-of-Work trans-
action service (LRUOW) for long-lived transactions
[3]. Messaging models supported include the Java Mes-
sage Service (JMS) [16] and IBM’s MQSeries [33]. 

The D-Sphere prototype focuses on systems that
need to integrate Java2 Enterprise Edition (J2EE) appli-
cations with (JMS/MQSeries) message queuing appli-
cations. The D-Sphere service can be regarded as an
additional layer above existing transaction and messag-
ing middleware services, as illustrated in Figure 2.

A D-Sphere groups object requests on transactional
resources and a set of conditional messages [31], i.e.,
messages to which diverse application-defined condi-
tions for message delivery and message processing
have been associated. These message conditions, such
as different time constraints on delivery or processing
for different recipients of the same message, are used to
determine an outcome of success (or failure) for each
D-Sphere message sent. This in turn affects the out-
come of the D-Sphere as a whole including its constitu-
ent actions of object transactions, therefore allows to
define and implement a variety of kinds of backward
commit dependencies. D-Sphere conditional messages
are sent out with immediate visibility as default, and
final recipients who read messages from queues are
associated to the D-Sphere. If a final recipient reads a
message within his own D-Sphere transaction, the
recipient-side transaction context is associated with the
sender-side D-Sphere context.

The D-Sphere system provides its own API for a cli-
ent to demarcate a D-Sphere, to create and send D-
Sphere conditional messages, and to receive D-Sphere
conditional messages. The D-Sphere system generates
standard JMS/MQSeries messages for each conditional
message, and provides additional functionality for mon-

D-Sphere Messaging

D-Sphere Management

D-Sphere API

2PC [existing base services]

JMSJTS LRUOW MQ

DS_begin 

sendMessage

DS_commit 
DS_abort

readMessage

Transactional Resource
invocation

DS.ACK.Q

DS.SLOG.Q

DS.COMP.Q

QR1

QS1

QRn

DS.RLOG.Q

Figure 2. D-Spheres

Message Sender,
Transactional Client

Message Receiver



itoring message delivery and message processing, eval-
uating message conditions, and for taking actions such
as the sending of success notifications or compensating
messages dependent on the outcome of the evaluations.

Invocations on transactional objects are performed
unchanged in the same manner as with the object trans-
action service selected (JTS or LRUOW). Object invo-
cations implement a forward commit dependency.

The D-Sphere system uses persistent message
queues and reliable message communication internally
for purposes of logging (queue DS.SLOG.Q for send
logs, DS.RLOG.Q for read logs), compensation support
(DS.COMP.Q), and observation and evaluation of mes-
sage condition satisfaction (respective violation)
(DS.ACK.Q). These queues exist with the queue man-
ager that a D-Sphere client uses for sending or receiv-
ing D-Sphere conditional messages. 

The success (respective failure) of a D-Sphere is
determined based on the outcomes of evaluation of its
conditional messages and subsequently executing the
conventional 2PC for all transactional object resources
involved. In case of a D-Sphere success, all actions are
committed. In case of a D-Sphere failure, object trans-
action rollback is enforced and compensation messages
are (reliably) delivered to required message recipients.

The prototype currently implements the following: 
• Messages are sent with immediate visibility

(default). On commit and on abort visibilities are
not yet supported. 

• D-Spheres support the same propagation mecha-
nism of the underlying object transaction service
selected, but do not propagate object transaction
contexts with messages. However, D-Spheres
allow to associate separate (D-Sphere) transac-
tion contexts of message recipients.

• Forward dependencies are supported for inte-
grated object transactions and object requests. 

• A large variety of kinds of (application-defined)
backward dependencies is supported through the
concept of conditional messaging.

• The production policy can be either transactional
or independent, but the system employs in any
case reliable messaging as guaranteed by the
underlying messaging middleware. 

• The consumption policies supported are on deliv-
ery and atomic. On return and explicit consump-
tion policies will be supported in future versions.

5.2. X2TS

X2TS focuses on event-based publish/subscribe sys-
tems and their integration with distributed object trans-
actions. It represents a combination of CORBA
Transaction Service and CORBA Notification Service.
X2TS is implemented on top of a multicast enabled
messaging middleware [32]. X2TS supports indirect
context management, implicit context propagation,
interposition for distributed object transactions and the
XA protocol for RDBMS resource management.

In our prototype, we only support the push-based
interfaces with StructuredEvent one-at-a-time
notifications. We assume that events (used as a syn-

onym for notification) are instances of some defined
type and that subscription may refer to specific types
and to patterns of events.

The architecture of the combined transaction and
notification service as provided by X2TS is shown in
Figure 3. A supplier creates, commits or aborts transac-
tions through the use of the Current pseudo object.
Notifications are then published on behalf of the current
transaction context.

Subscription to patterns of events and coupling
modes are imposed by the consumer by configuring the
service proxy, i.e. setting properties through QoSAd-
min and CompositorAdmin. 

If any coupling modes are specified the couplings
must refer to event types of the subscription (pattern
declaration). We suggest that facades should be defined
which simplify configuration by providing predefined
coupling mode settings.

The prototype implementation currently supports the
following MMT features:

• Deferred, on abort and on commit visibility.
• Currently we only support X2TS managed trans-

actions at the consumer. The consumer may pro-
vide its own transaction context, select a shared
context or let X2TS create a new transaction for
each notification. Grouping of several notifica-
tions in one transaction can be facilitated by sub-
scribing to an appropriate composite event.

• Checked transactions to support forward cou-
plings and vital backwards

• Backward processing dependencies with the pos-
sibility to define groups of subscribers to be vital;
X2TS does currently not support conditional
delivery

• Production policy is non-transactional, but can be
explicitly programmed as transactional

• Consumption policies are on delivery, on return
and explicit. Atomic consumption will be sup-
ported in a future version.

The design of X2TS considers the fact that there may
be a multitude of consumers with different couplings.
While one consumer may be restricted to react to events
on commit of the triggering transaction, others may
need to react as soon as possible and even take part in
the triggering transaction e.g. to check and enforce
integrity constraints. Therefore, coupling modes, most
important visibility, are configured on a per consumer
basis. This has a significant impact on how visibilities
and forward dependencies are realized. The basic idea
is to always immediately and only once publish notifi-
cations. Additionally, transaction status changes are
published (using a volatile EventReliability, only) on
the message bus. The visibility guard component at the
subscriber site enforces the visibilities by correlating
transaction status change events and notifications
appropriately. In order to deal with transaction and sys-
tem failures, which may lead to lost status change noti-
fications, we apply a graceful degradation mechanism,
which in the worst case leads to polling the transaction
status from the sender (details can be found in [22]). 

The status change events are also used to enforce



forward dependencies in a push-based manner and
therefore preserve the loose coupling between sender
and multiple subscribers.

Detecting patterns of events is realized by pluggable
event compositors that are created by a specific Com-
positorFactory. We do not support the standard
NOS filters but added our own proprietary Composi-
tor interface. For event composition to cope with the
lack of global time and network delays we introduce
(in)accuracy intervals for timestamping and use sup-
plier heartbeats [21]. Event composition may span sev-
eral triggering transactions and we support different
couplings with respect to multiple triggering transac-
tions.

Reliable delivery and recovery of events leverages
the persistent ledger of the underlying messaging mid-
dleware. In order to realize different consumption poli-
cies we had to implement our own acknowledgment
and sequence number logging.

6. Conclusion

A major challenge of EAI is to achieve the reliable
interoperation of diverse, autonomous components
using standard middleware. 

Reliability can be addressed through transactions,
which provide the powerful abstraction of an atomic,
indivisible execution of a set of actions. Transactions
greatly reduce the number of possible errors an applica-
tion programmer has to deal with. Two popular styles of
middleware transactions are distributed object transac-
tions and message-oriented transactions.

Component autonomy, i.e., variability in compo-
nent-to-component topology, binding, life-cycle depen-
dency and synchronicity, requires support for flexible
interactions between components. Explicitly mediated
interactions using mediators such as queues or publish/
subscribe message services, as provided by messaging
middleware, offer such interaction flexibility.

In this paper, we proposed Middleware Mediated
Transactions (MMT) as an extension of the conven-
tional distributed object transaction model. MMT inte-

grate explicitly mediated interactions as provided by
messaging middleware into standard object middleware
transactions. MMT thus introduce additional flexibility
of component interaction for object transactions. 

We introduced the concept of MMT coupling modes
which encompass visibility policies, context policies,
dependency policies and production/consumption poli-
cies for transactionally interacting components.

MMT allow to publish messages from a distributed
object transaction with immediate visibility as well as
with transaction status dependent visibilities. The visi-
bility policies suggested advance the state-of-the-art of
conventional object and message transactions, where
the visibility of messages is limited to the commit of the
triggering transaction only and notifications cannot be
sent out if the transaction aborts. 

MMT uniquely allow to define spheres of reliable
message delivery to, and of processing by, multiple
messaging components that become transaction partici-
pants. With MMT, dependencies between multiple
sender and receiver transaction contexts can be estab-
lished. Furthermore, MMT support recovery through
compensation for messages that were sent with imme-
diate visibility. Also, MMT suggest flexible and modu-
lar exception handling – as supported by subscribing to
notifications with on-abort visibility or forward abort
dependency – which is again not possible with the
transaction services as provided by middleware today.

We briefly presented two prototypes of new middle-
ware services supporting MMT, the Dependency-
Spheres service and the X2TS service. Both services
realize the idea of MMT employing queue-based mes-
saging middleware in one case and publish/subscribe
based middleware in the other. 

Beside the area of EAI, we believe that process
enactment using an event-driven approach will benefit
from MMT services. Notifications for monitoring of
process status, progress and errors, as well as provision
of advanced situation awareness in collaborative work-
flow environments may be realized in a transaction-
aware manner using MMT services.

s u p p l i e r

AppEvent &
Heartbeat
Publisher

O
T

S
 E

ng
in

e

TxContext
SupplierTxState

Publisher

le
dg

er netw
ork

begin
register_resource

commit/rollback D
ep

en
de

nc
y

G
ua

rd

NOS:ProxyPush-
Consumer

NOS:PushSupplier

M O M

NOS:StructuredEvent,
OTS:TxContext

X2TS:Event RvDataintegrate publish

OTS:Current

pu
sh

_s
tr

uc
tu

re
d_

ev
en

t

action

X 2 TS

MOM Connector

Visibility
Guard

Compositor

register_resource
commit /rollback

push_structured_event,
ack_consumption

NOS:ProxyPushSupplier

NOS:PushConsumer

c o n s u m e r

T
xS

ta
te

 C
ac

he

X2TS:Event
NOS:StructuredEvent,
OTS:TxContextsnoop dispatch

OTS:Current

re-actionO
T

S
 E

ng
in

e

X 2 TS

MOM Connector

D
ep

en
de

nc
y

G
ua

rd

T
xC

on
te

xt
S

up
pl

ie
r

Dispatcher

LO
G

le
dg

er

Figure 3. X2TS



7. References

[1] G. Alonso, A. Fessler, G. Pardon, and H.-J. Schek:
Correctness in General Configurations of Transactional
Components. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS’99),
Philadelphia, Pennsylvania, USA, May 31-June 2, 1999.

[2] D. Baker and D. Georgakopoulos and H. Schuster and
A.R. Cassandra and A. Cichocki. Providing Customized
Process and Situation Awareness in the Collaboration
Management Infrastructure. In Proceedings of
CoopIS’99, Edinburgh, September 1999. 

[3] B. Bennet, B. Hahn, A. Leff, T. Mikalsen, K. Rasmus, J.
Rayfield, and I. Rouvellou. A Distributed Object
Oriented Framework to Offer Transactional Support for
Long Running Business Processes. In Proceedings of
Middleware 2000, Springer-Verlag LNCS 1795, 2000. 

[4] P.A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[5] P. Bernstein and E. Newcomer. Principles of Transaction
Processing. Morgan Kaufmann, 1997.

[6] Y. Breitbart, H. Garcia-Molina and A. Silberschatz.
Overview of Multidatabase Transaction Management.
In VLDB Journal, 1 (2), 1992.

[7] M.L. Brodie and S. Ceri. On Intelligent and Cooperative
Information Systems: A Workshop Summary. Journal of
Intelligent and Cooperative Information Systems, 1(3),
1992.

[8] A.P. Buchmann. Active Object Systems. In A. Dogac,
M.T. Szu, A. Biliris, and T. Sellis, (edit.), Advances in
Object-Oriented Database Systems. Springer-Verlag,
1994.

[9] S. Cheung. Java Transaction Service (JTS). Sun
Microsystems, Mar. 1999. 

[10] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy,
M. Hsu, R. Ledin, D.R. McCarthy, A Rosenthal, S.K.
Sarin, M.J. Carey, M. Livny, and R. Jauhari. The HiPAC
Project: Combining Active Databases and Timing
Constraints. In SIGMOD Record, 17 (1), March 1988.

[11] L.G. DeMichiel, L.U. Yalcinalp, and S. Krishnan.
Enterprise JavaBeans. Specification, Version 2.0, Sun
Microsystems, JavaSoftware, May 2000.

[12] A.K. Elmagarmid (Edit.). Database Transaction Models
for Advanced Applications. Morgan Kaufmann, 1992.

[13] I. Gorton. Enterprise Transaction Processing Systems.
Longman, 1999.

[14] R. Guerraoui, R. Capobianchi, A. Lanusse and P. Roux.
Nesting Actions Through Asynchronous Message
Passing: the ACS Protocol. Europ. Conf. on Object
Oriented Programming (ECOOP’92), Springer-Verlag,
June 1992.

[15] C. Hagen and G. Alonso. Beyond the Black Box: Event-
based Inter-Process Communication in Process Support
Systems. In Intl. Conf. on Distributed Computing
Systems (ICDCS). IEEE Computer Society, 1999.

[16] M. Hapner, R. Burridge, and R. Sharma. Java Message
Service. Specification Version 1.0.2, Sun Microsystems,
JavaSoftware, November 1999.

[17] S. Jajodia and L. Kerschberg (Edit.). Advanced
Transaction Models and Architectures. Kluwer
Academic Publishers, 1997.

[18] H.F. Korth, E. Levy, and A. Silberschatz. A Formal
Approach to Recovery by Compensating Transactions.
In Proc. 16th Intl. Conf. on Very Large Data Bases,
Brisbane, Australia, August 1990. Morgan Kaufmann.

[19] F. Leymann, and D. Roller. Workflow-based
applications. IBM Systems Journal, 36(1), 1997.

[20] C. Liebig, B. Boesling, and A. Buchmann. A
Notification Service for Next-Generation IT Systems in
Air Traffic Control. In GI-Workshop: Multicast -
Protokolle und Anwendungen, Braunschweig, Germany,
May 1999.

[21] C. Liebig, M. Cilia, and A. Buchmann. Event
Composition in Time-dependent Distributed Systems. In
Proceedings of CoopIS’99, Edinburgh, September 1999.

[22] C. Liebig, M. Malva, and A. Buchmann. Integrating
Notifications and Transactions: Concepts and X2TS
Prototype. In Proceedings EDO2000, Springer-Verlag
LNCS 1999, 2001.

[23] B. Liskov and R. Scheifler. Guardians and actions:
Linguistic support for robust, distributed programs.
Communications of the ACM, 36(9), 1983.

[24] Object Management Group (OMG). The Common
Object Request Broker: Architecture and Specification,
rev 2.2, Famingham, MA, May 1998.

[25] OMG. CORBA Messaging. OMG Document orbos/98-
05-05, Famingham, MA, May 1998.

[26] OMG. Notification service specification. Technical
Report OMG Document telecom/98-06-15, OMG,
Famingham, MA, May 1998.

[27] OMG. Transaction service v1.1. Technical Report OMG
Document formal/2000-06-28, OMG, Famingham, MA,
May 2000.

[28] F. Ranno, S.K. Shrivastava, and S.M. Wheater. A
system for specifying and coordinating the execution of
reliable distributed applications. In Intl. Working
Conference on Distributed Applications and
Interoperable Systems (DAIS’97), 1997.

[29] S. Tai and I. Rouvellou. Strategies for Integrating
Messaging and Distributed Object Transactions. In
Proceedings of Middleware 2000, Springer-Verlag
LNCS 1795, 2000.

[30] S. Tai, T. Mikalsen, I. Rouvellou and S.M. Sutton.
Dependency-Spheres: A Global Transaction Context for
Distributed Objects and Messages. In Proceedings 5th
IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2001), Seattle, USA,
September 2001. IEEE Press.

[31] S. Tai, T. Mikalsen, I. Rouvellou and S.M. Sutton.
Conditional Messaging in Enterprise Application
Integration. May 2001. in submission.

[32] TIBCO Software Inc. TIB/ActiveEnterprise.
www.tibco.com/products/enterprise.html, July 2000.

[33] IBM. MQSeries Application Programming Guide, 10th
Ed., IBM 1999.


