
Mobile Code as an Enabling Technology
for Service-oriented Smartcard Middleware

Roger Kehr
T-Nova Research Labs
Deutsche Telekom AG

roger.kehr@telekom.de

Michael Rohs
Institute of Information Systems

ETH Zurich
rohs@inf.ethz.ch

Harald Vogt
Institute of Information Systems

ETH Zurich
vogt@inf.ethz.ch

Abstract

Smartcards can be seen as service providing entities that
implement a secure, tamper-proof storage and offer com-
putational resources which make them ideally suited for a
variety of tasks such as authentication, management of per-
sonal profiles, and other kinds of secure information pro-
cessing. Integration of smartcards into networked environ-
ments though, has not been achieved yet in a transparent
manner.

In this paper we describe the requirements for the design
of a middleware for smartcards and propose a platform for
the execution of mobile code as the core of such middleware.
This is in contrast to traditional architectures based on a
request-broker scheme that would need huge standardiza-
tion efforts to be applicable to smartcards. As an instance
of such middleware, we describe our implementation which
is centered around the mobile code facilities available in
Java and the service trading features of Jini.

1. Introduction

Only recently, large computing systems have begun to
show the trend of dissolving into vast crowds of small units,
working together in order to supply services to clients. An
indication for this development is the extensive proliferation
of PDAs and other devices designed for specific, domain-
dependent applications, and the increasing need for com-
munication between them. Communication abilities are es-
sential in order to allow for more complex and more useful
tasks. Conversely, devices specifically designed for com-
munication, such as mobile phones, are approaching the
status of computing platforms (cf. WAP [23]). This de-
velopment is likely to lead to new computing environments
where services are expected to be available at any place, at
any time, often referred to as ubiquitous computing envi-
ronments [25].

In contrast to these increasingly dynamic computing en-
vironments, smartcards remain isolated to a great extent,
trapped in proprietary application environments. The most
attractive smartcard applications, such as authentication,
digital signatures, encryption, and cashless payment are far
from being universally available. Interworking of devices
is one of the main issues in ubiquitous computing, and it
is not acceptable that smartcards are not easily integratable
into interworking scenarios.

Isolation is even less acceptable in the face of the obvious
qualities of smartcards: they are highly mobile, since they
are easily carried by their owners, and they are strongly per-
sonalized with a focus on security (though not being “per-
fectly” secure [12], they seem to achieve a proper trade-
off between the potential risks and cost). This enables the
card to serve as a “user agent” which knows much and re-
veals little about its owner when acting on his or her behalf.
Thus, smartcards could play a vital role in future highly dis-
tributed computing systems, under the provision that they
are easily integrated into such types of environments. In
this paper, we show how such an integration could be ap-
proached and what problems are likely to occur.

This paper presents the design of a middleware architec-
ture for smartcards. Jini [19, 21] serves as an exemplary,
general service framework upon which we build our archi-
tecture. The design of a specialized access point, a smart-
card terminal, is presented in Sect. 2. Such a terminal could
be implemented as a physical device as well as a virtual de-
vice, consisting of a conventional smartcard reader together
with supporting infrastructure in the Jini federation itself.

The main functionality of such a terminal is the active ex-
ploration of a smartcard’s capabilities. This is achieved by
dynamically loadable pieces of code, for which Jini supplies
a suitable framework. In Sect. 3 we show how smartcard
services are integrated in a Jini federation. Sect. 4 describes
how application development is facilitated within such an
infrastructure.

In the remainder of this section we try to investigate the
reasons for the relatively inflexible use of smartcards and



we show how emerging developments could contribute to
resolve some of the technical obstacles.

1.1. The Status Quo of Smartcards

We see three main practical reasons for the relative in-
flexibility of smartcards. First, smartcard interaction is stan-
dardized on a per-application basis. Institutional standards
exist for (simple) applications in a variety of domains, e.g.
data storage, transportation, and mobile telephony [8, 2, 4].
Standards for more sophisticated applications, such as dig-
ital signatures, have just recently begun to show up [17].
But standards guarantee interoperability only to a limited
degree, as marketing needs require certain variability and
proprietary extensions.

The second reason is that smartcards have very limited
resources in terms of memory size, computing power, and
communication bandwidth. This limits their range of appli-
cability and makes them extremely dependent on their en-
vironments. Without an appropriate card reader and a soft-
ware package, it is impossible for a user to access a smart-
card’s functionality.

Furthermore, such smartcard environments are often
highly proprietary, thus further restricting interoperability.
Applications in such environments usually work only with
specifically configured smartcards and refuse to interact
with third party cards. This has both technical and non-
technical, as well as business-related reasons. A prominent
example are payment transactions with the German “Geld-
karte” (cash card) [3] which are only possible at particular
terminals.

This technologically-oriented analysis mirrors the mar-
ket structure: usually, smartcards are distributed in large
quantities and applications are implemented by tight inter-
action between card manufacturers and card issuers. Hence,
these partnerships tend to be very strong and long-lasting,
which opposes open architectures.

1.2. A New Age

Smartcards as Software Platforms

Until recently, smartcards and their applications were
tightly coupled, resulting in the card being useful for only
one application. But the idea of viewing a smartcard as
a mere platform has obtained wide dispersion. Increas-
ingly, applications show up that try to use smartcards al-
ready in the field for new applications, e.g. ticketing with
cash cards [1]. This is possible if the specifications allow
for third party access which, however, is usually hampered
by strict regulations of the card issuers.

The most consequent step in this direction is the evolv-
ing of execution environments for smartcards, such as Java-
Card [9] and Windows for Smartcards [26]. This increases

extensibility and flexibility and allows to open up the smart-
card market to independent application providers. As smart-
cards are becoming increasingly open, their role as a soft-
ware platform gains importance and the smartcard paradigm
changes, since the separation of cards and applications be-
comes possible.

The shift towards the platform paradigm is accompa-
nied by a simplification of software development. This
is achieved by bringing high-level, standard programming
languages to smartcards (Java, VisualBasic), opening up
smartcard programming to a new class of developers. Sim-
ilarly, access to smartcards from applications is unified by
architectures like the OpenCard Framework [14] and PC/SC
[15], which integrate the card reader infrastructure into op-
erating systems and programming languages.

Nevertheless, in software development for smartcards,
manufacturer and application provider independence is still
an unmatched goal. It seems reachable, at least.

Smartcards in Networked Environments

In networked systems, devices and applications are work-
ing together on different levels. On the network level, pro-
tocols are used to exchange data, e.g. TCP/IP. On top of the
networking level protocols such as HTTP allow for peer-
to-peer communication upon which services can be imple-
mented. On the service level, a server, e.g. a Web server,
supports a client in order to provide services to other clients
and/or users.

Recent work has shown the feasibility of integrating
smartcards on the network level [16, 6, 5, 24]. This makes
it possible to regard smartcards as real network nodes.

Integrating smartcards on the service level requires the
description of smartcard services, their announcement in a
service-trading environment, and establishment of links to
the services. These are generic tasks which are usually fa-
cilitated by middleware systems. Such a system provides
a framework for the description and standardization of ser-
vices. Lower-level details are hidden in such descriptions,
thus standardization can focus on the service descriptions
themselves without referring to technical details. Service
management is carried out by standard application level
services, while communication is performed over standard
protocols. This makes access to smartcard services trans-
parent w.r.t. their location and the card’s communication
features.

Smartcards are devices that are temporarily accessible.
Their availability usually corresponds to the physical pres-
ence of the user. This requires transparent, quick integra-
tion of smartcards into the local environment. Additionally,
applications must be designed to handle abrupt disconnec-
tions smoothly. Therefore, middleware that offers means to
address these requirements is needed.



2. Aspects of Middleware for Smartcards

The goal is to design middleware architectures and sys-
tems that facilitate smartcard integration into service feder-
ations as much as possible. In the sequel we discuss gen-
eral design issues of middleware systems leading to our
proposed architecure for a smartcard middleware. We start
by discussing the basic requirements for a smartcard ter-
minal, a component that offers network connectivity for
smartcards, and continue by comparing different design
paradigms for the middleware implemented in such a ter-
minal.

2.1. Smartcard Terminal

Services implemented in the smartcard must be able to
offer their interfaces to the network the smartcard terminal
is attached to. Figure 1 illustrates the role of the terminal in
a smartcard middleware architecture. A smartcard terminal
could be partitioned into the following components:

Smartcard Terminal

Network Clients

Smartcard
with Services

IP-
Layer

Service-
Layer

Card-
reader

APDU-
Layer

Terminal-
Middleware

Intra-/Internet

Figure 1. Smartcard terminal

Card reader and APDU layer. The card reader compo-
nent provides access to the smartcard based on standard-
ized protocols [8]. Essentially, it handles communication
between the smartcard and the terminal by exchanging ap-
plication protocol data units (APDUs, refer to [8] for de-
tails).

Network layer. This layer provides basic terminal con-
nectivity to the network. In case of IP this layer would im-
plement an IP stack.

Service layer. This layer presents smartcard services to
the network in any suitable form. A number of technologies
such as CORBA [13], Java/Jini [19, 21], or DCOM might
be used to make the smartcard services accessible from ar-
bitrary network clients. We believe that the actual technol-
ogy chosen for representing smartcard services should be
independent of the scope of the concrete middleware com-
ponent. Hence, the component should be able to support
any of those technologies.

Terminal middleware. The terminal middleware has to
perform a number of tasks:

� It must be able to explore the services/applications on
a smartcard as it gets inserted into the card reader.

� Based on the service information found it must in-
form the service layer about the network-interface of
the smartcard applications.

� It must act as a gateway for incoming requests from
network clients that access the smartcard services via
the service layer and forward requests to the APDU
layer back and forth.

As such the terminal middleware represents the “glue” be-
tween the externally offered network services of the card
and the communication layer with the smartcard.

2.2. Design Choices for Smartcard Middleware

Various implementation strategies can be envisioned for the
smartcard terminal as outlined above. We describe some
possible approaches and compare their strengths and weak-
nesses w.r.t. the following criteria: simplicity, flexibility, and
standardization effort from the perspective of service and
application developers on the one hand and middleware im-
plementors on the other hand.

2.2.1 Middleware as an APDU Gateway

This approach can be described as a simple gateway for
APDU-requests to the smartcard. Clients send packets to
the service-layer of the smartcard terminal containing AP-
DUs which are routed via the APDU-layer to the card
reader. Hence, there is no real abstraction above AP-
DUs, and the middleware would be responsible only for
multiplexing communication between arbitrary clients and
smartcard services.

The interfaces at the service layer would therefore of-
fer methods such as sendAPDU, enterMutex / leaveMutex
(needed for locking access to the card for a certain period
of time), etc. From the perspective of the middleware im-
plementor this is a rather simple middleware, easy to imple-
ment and flexible, since it burdens all the complexity onto
the service developer. Services operate at the same level of
abstraction as before, but with the intricacies of distributed
application programming such as partial failures.

2.2.2 Middleware as Request Broker

With this approach the middleware first explores the ser-
vices available on the card. This requires an enormous stan-
dardization effort since apart from detecting the correct type



of card, there must be a standarized way to perform this ex-
ploration. This could be achieved by the definition of new
ISO 7816 class and instruction bytes that return descriptions
of the services available in the card. Usually, service de-
scriptions consist of interface descriptions, additional info-
blocks, and addressing information, e.g. application identi-
fiers, needed to address the service from a smartcard client.
This information could come in a variety of formats ranging
from binary encoded descriptions to IDL- or XML-based
documents.

The middleware could implement a generic server which
is capable processing incoming requests from clients and
transforms them into appropriate sequences of APDUs. As
an example one could imagine a CORBA IDL description
that describes a smartcard service which can be used to au-
tomatically generate server skeleton code, bind a CORBA
object with an ORB running in the smartcard terminal and
register the object with a CORBA naming service. In addi-
tion to a pure interface description the mapping of method
invocations to sequences of APDUs sent to a smartcard need
to be defined.

The request broker middleware operates at a much
higher level of abstraction. For clients, the smartcard ser-
vices appear as objects in a distributed object system such
as CORBA, Java/RMI, RPC, etc. Service implementors
only need to provide an interface definition and appropri-
ate APDU-mappings to integrate legacy applications into
the outlined middleware. From the perspective of the mid-
dleware implementor numerous standardization steps have
to be taken first: exploration of service descriptions, for-
mat of descriptions, mapping to distributed object system
of choice, service publication, to name a few. We think
that this approach though promising in general suffers from
the amount of standardization steps necessary for real-world
deployment.

2.2.3 Middleware as an Execution Platform for Mobile
Code

The middleware architecture presented in this subsection
tries to circumvent most of the drawbacks of the previ-
ous approaches by completely reconsidering the underly-
ing middleware paradigm. Put shortly, the middleware is
not “glue” code between components but a platform for the
execution of dynamically downloaded mobile code. We en-
vision the following core scenario:

� The smartcard gets inserted into the terminal and the
Answer-To-Reset (ATR) identification string is read.

� The ATR is used to fetch a component that acts as
a card manager from a well-known set of Web sites
hosting such proxies. These proxies are implemented
in a mobile code programming language such as Java.

The smartcard terminal provides an execution platform
such as a Java virtual machine (JVM). The service
proxy is contained in an appropriate Java archive (JAR)
file, which is downloaded to the terminal and executed
in its JVM. In the basic scenario this card manager
could itself now register as a service representing the
card with the net.

� In a more advanced scenario the card manager explores
the contents of the smartcard in search for smartcard
services. This is possible if we assume the implemen-
tation of the card manager knows about the particu-
lar kind of card which triggered its activation. Hence,
it knows how to actually explore the card and find its
available services. Each service found may consist of
a URL pointing to a service manager which in turn can
be fetched and instantiated in the execution platform
and offer its particular service to the net.

It should have become clear that this approach essentially
defines (a) an execution platform for mobile code, (b) a
well-defined process to fetch a card manager from the
network, and (c) some API or protocol for the manager
to access the smartcard and the network. Compared to
the broker-like middleware much less standardization is
needed, though the overall flexibility has even increased,
since the card and service manager are active components
that not only act as services but can also proactively be
clients to other services. The most significant drawback
with this approach is the fact that the complexity is mostly
shifted towards the implementors of card and service man-
agers and the proper definition of an execution platform.

We have found the advantages of the execution platform
sufficiently appealing to further experience it by designing
and implementing a complete architecture from scratch. In
the sequel we describe this architecture along with the most
interesting design considerations we were faced with.

3. The Architecture of the JiniCard Frame-
work

As outlined in Sect. 1, smartcards are temporary devices.
Consequently, the availability of the services that they of-
fer is short-term and volatile in nature. Smartcards, and
hence their services, can appear and disappear without prior
notice, that is, spontaneously. Smartcards are physically
portable and can easily be carried into unknown environ-
ments1. Yet smartcards are utterly dependent2 on their envi-

1Examples are public and semi-public places like offices, meeting-
rooms, banks, post offices, and shops, in which smartcards act as user
agents.

2For a taxonomy of the design space of small devices along the dimen-
sions of autonomy, computational power, and ability to communicate, see



ronment to be useful, as they generally lack any input or out-
put devices (UIs) for humans. These usage characteristics
call for an effortless integration into different environments
that do not require any setup or configuration. Service dis-
covery and integration must take place spontaneously.

The requirement for spontaneous integration of smart-
cards and their services was our motivation to choose Jini as
the foundation of the service layer, as described in Sect. 2.1.
Jini’s objective is to provide simple mechanisms which en-
able devices to plug together to form an impromptu com-
munity, without any planning, installation, or human inter-
action. Therefore, Jini as a middleware is an ideal choice to
support the integration of smartcards, because it meets some
essential requirements that are imposed by these ultra-small
devices. Jini relies on the Java programming language and
the Java virtual machine (VM) as its execution platform. A
key point, which we exploit in our architecture, is the abil-
ity to move code and objects between physically distributed
Java VMs.

3.1. Design Objectives

We call our architecture JiniCard to emphasize the fact
that it makes card services available as Jini services, inde-
pendent of the type of smartcard used. It was a key design
objective to support a wide variety of smartcards by impos-
ing only a minimal set of requirements on the smartcard’s
side. Basically, the only requirement on the card’s side is
that it adheres to the ISO/IEC 7816 standard [8, parts 1–3],
i.e. that it communicates by exchanging APDUs, as the vast
majority of smartcards does.

One of the main issues that we encountered was how to
deal with smartcards that are completely unknown to an en-
vironment, given the extremely limited amount of informa-
tion that can be extracted from an unknown card. A related
issue was how to dynamically instantiate card services that
are not yet present in the environment at the time of card
insertion. In our implementation, mobile code and mobile
objects play a major role in this regard. The steps involved
in the process of service instantiation will be explained in
detail. Finally we will describe what the JiniCard frame-
work looks like for card service developers, i.e. which APIs
they can rely on and how they can be used.

Service Integration. An early consideration when devel-
oping the JiniCard architecture was that smartcard users are
not primarily interested in physical smartcards themselves,
but in the services they provide. Therefore, the main goal
was to make these services available without much effort on
the user’s side. Ideally, card services should become part of

[11]. On all dimensions, smartcards rank at the lower end, which means
that they are very dependent on proper support from the infrastructure of
their environment.

the infrastructure as soon as the card that carries them is in-
serted into a card terminal. This should be possible even if
there is no a priori knowledge of the services that are con-
tained on a particular smartcard. Another desirable feature,
especially if one takes on a more net-centric perspective [7],
is to have these services available not only locally, but as
part of a local or wide-area network. Therefore the goal can
be described as making instances of smartcard services im-
mediately available in a network environment, as a result of
inserting a card into a card reader.

The Card Terminal as a Network Component. We felt
that the design of current card readers and their device
drivers is unsatisfactory to meet these goals. They are usu-
ally not self-contained, but attached to a general-purpose
PC to function. We propose to view a card terminal as a
self-contained entity that provides access to smartcards to
a whole network infrastructure. The ultimate vision is to
build the JiniCard terminal as a physical device that con-
tains a Java VM, can be plugged into a network, and does
not need any additional hardware. This approach requires
that such a device is able to describe its capabilities on its
own. To make the card terminal available as a network-wide
resource, we decided to model it as a Jini service. This has
the following benefits:

� the terminal is modeled as a Java interface which
means that low level technical details of the implemen-
tation of the terminal are abstracted and are no longer
important;

� the terminal is seamlessly integrated into an infrastruc-
ture and can be used by any client, without any knowl-
edge of the concrete underlying terminal technology;
finally,

� the client may be located anywhere in the environment.

3.2. Architecture

The JiniCard framework consists of three categories of
components that can conceptually be divided into two lay-
ers. The lower layer provides the abstraction of a card ter-
minal as a Jini service and serves as a common base for
the other components of the framework. The upper layer
consists of a mechanism to explore smartcards to identify
services that are contained on them. The actual card ser-
vices can also be seen as part of this layer. Card services get
instantiated as the result of an exploration process. Figure 2
gives a simplified layout of the architecture.

3.2.1 Lower Layer: The JiniCard Terminal

Card services are meant to be downloaded into many differ-
ent settings. This requires a well-defined environment, con-



Lo
w

er
 L

ay
er

Jini enabled smart card terminal

Terminal SmartCard

CardExplorerManager
www.atr.net

ATRMapper

CardExplorer1 CardExplorern

FooCardService

BarCardService

www.fooservice.com

www.barservice.com

(physical)
Smartcard

U
pp

er
 L

ay
er

JiniCard services and their originsSmart card exploration mechanism

(p
hy

si
ca

l)
T

er
m

in
al

...

Figure 2. Components of the JiniCard framework

sisting of well-known interfaces, into which these services
can be embedded. One way to provide this foundation is
by modeling a card terminal as a network component that
provides a standard means of remote access to a smartcard.

Accessing Smartcards Remotely. The purpose of the
lower layer of the JiniCard framework is to provide a
uniform and simple way to access smartcards remotely.
With regard to uniform access, motivations similar to those
that led to the development of the Open Card Framework
(OCF) [14] apply here. OCF is a Java-based framework
that provides a uniform application interface for building
smartcard applications. A major difference to OCF is that
the JiniCard terminal is designed to be used remotely and is
not restricted to be used by a single Java VM. This means
that remote mutual exclusion of access to a smartcard has
to be considered.

The card terminal can be assumed to be a more per-
manent resource than a smartcard, because smartcards are
only temporarily inserted into terminals. Therefore it makes
sense to consider the card terminal as the foundation of the
architecture. Smartcards and the services contained on them
are more volatile resources.

We have modeled the JiniCard terminal as an ordinary
Jini service. It becomes part of the local Jini federation by
finding lookup services and uploading its proxy to them.
This process is known as discovery and join [20].

As shown in Fig. 3, the JiniCard terminal has a very
thin interface. Using the notifyStatus method, clients
can register for remote events, which are triggered upon
card insertion and card removal. The getCard method
returns a remote reference to the smartcard that is cur-

rently inserted. Calling this method leads to a Card-
NotPresentException, if no card is currently avail-
able. Card presence can be tested by using the isCard-
Present method.

package jinicard.core;

public interface Terminal f

EventRegistration notifyStatus(
RemoteEventListener listener,
MarshalledObject handback,
long leaseDuration)

throws RemoteException;

SmartCard getCard()
throws RemoteException,

CardNotPresentException;

boolean isCardPresent()
throws RemoteException;

g

Figure 3. API of the JiniCard Terminal

In contrast to OCF, the methods for interaction with the
actual smartcard are factored out into a separate interface,
called SmartCard. This interface is shown in Fig. 4. The
terminal acts as a resource manager for the smartcard. It is
the starting point of access to the card.

It is an inherent feature of smartcards to be available
only temporarily and possibly for short periods only. There-
fore it is essential to design applications robustly in this
respect. The fact that smartcards can be disconnected



without notice is reflected in the design of the Smart-
Card interface. Most methods throw card related excep-
tions. CardNotPresentException is derived from
SmartCardException, which is the common super-
class for all smartcard related exceptions. CardNotPre-
sentException indicates that the temporary association
between a smartcard and the card terminal has been lost.
RemoteException indicates that the respective method
can be used remotely; it is thrown to indicate (possibly tem-
porary) errors that are related to the underlying communi-
cations system. The approach not to try to hide these errors
is in line with RMI’s general philosophy to make remote
exceptions a part of the interface. A discussion of this ap-
proach can be found in [22].

package jinicard.core;

public interface SmartCard f

ATR[] getATRs()
throws RemoteException;

void setSelectAPDU(byte[] selAPDU)
throws RemoteException;

void beginMutex()
throws RemoteException,

SmartCardException;

void endMutex()
throws RemoteException,

CardNotPresentException,
IllegalStateException;

void reset()
throws RemoteException,

SmartCardException,
IllegalStateException;

byte[] sendAPDU(byte[] apdu)
throws RemoteException,

SmartCardException,
IllegalStateException;

ResponseAPDU sendAPDU(APDU apdu)
throws RemoteException,

SmartCardException,
IllegalStateException;

g

Figure 4. The SmartCard interface

Maintaining the APDU Interface. The SmartCard in-
terface provides a uniform and easy to use abstraction for all
kinds of smartcards, but it does not change the basic princi-
ples of interaction with a smartcard. The APDU as the low
level protocol unit is visible in the interface. A step in the
protocol still consists in the exchange of a pair of APDUs

– a command APDU followed by a response APDU. This
renders the interface very flexible and does not constrain its
applicability to certain kinds of smartcards.

Multiple clients of a single JiniCard terminal can hold
a reference to the current smartcard simultaneously. Inter-
actions with a smartcard often require the atomic exchange
of multiple APDU pairs, e.g. to navigate through a file sys-
tem hierarchy. During this process state is established in the
card. This means that APDUs are not independent of one
another. It is not possible to provide transparent scheduling
of access to a smartcard, because it is unknown what state
was established by one card client, and how to reestablish
that state, after another client has been using the card in
between. This fact, and the fact that multiple clients can
hold references to the same smartcard, requires some kind
of mutual exclusion mechanism that is exposed in the inter-
face. This is achieved through the methods beginMutex
and endMutex. They provide mutual exclusion between
distributed clients of a smartcard. A problem is that a client
can effectively block a smartcard if it does not relinquish
control of the smartcard once it has acquired exclusive ac-
cess to it. Possible reactions to this problem are (1) to ignore
it, (2) to use a fixed maximum amount of time that a client is
allowed to access a smartcard, (3) to let the client specify in
advance (on calling beginMutex) how long it needs the
card, and (4) to use a fixed maximum inactivity time after
which the card is revoked from the client. None of these
approaches is without problems, however. For reasons of
simplicity, we have chosen the first approach.

A client of the smartcard interface should access a smart-
card exclusively only during a single atomic sequence of
APDU pairs. Exclusive access should be held as shortly as
possible, to give other clients a chance to obtain access to
the card.

The method named setSelectAPDU is a convenience
method for Java cards. Normally, a client cannot assume
that a card has not been used by another client between suc-
cessive exclusive accesses to a smartcard. If another client
has used the card in between, it is likely that this other client
has changed the state that was established on the card, e.g.
by selecting another applet. Therefore a client always has to
select its applet again each time it gains exclusive access to
the card. With a call to setSelectAPDU the client com-
municated the selection APDU of its card-resident coun-
terpart to the terminal. The terminal records this selection
APDU and since it logs all accesses to the card, it is able to
decide whether it is required to select the applet again. This
is done if meanwhile the card has been touched by another
client.

The actual means to talk to the card still is to send com-
mand APDUs and to receive response APDUs. JiniCard
is fully transparent in this respect. A service implementer
can be sure that JiniCard will not change the content of the



exchange of APDU messages. This has the advantage that
JiniCard works with all ISO/IEC 7816 compliant cards that
rely on exchanging APDUs to communicate.

Immediately after reset, smartcards issue a short se-
quence of bytes, called the ATR (answer to reset). It con-
tains information about low level communication protocol
parameters. It also contains up to fifteen so called histor-
ical characters that are used in different ways by different
vendors. ISO/IEC 7816-3 only states that ”the historical
characters designate general information, for example, the
card manufacturer, the chip inserted in the card, the masked
ROM in the chip, the state of the life of the card. [...]”. In
our approach, we use the ATR simply as a key to obtain
further information about a card.

The ATRs of a card are obtained by invoking the getA-
TRs method. It returns an array of ATRs to reflect the fact
that some smartcards have multiple ATRs. By consecu-
tively resetting a card, it is possible to cycle through the
set of ATRs of that card.

A JiniCard terminal service together with the Smart-
Card it manages provides an effective abstraction of the
underlying card reader technology. It makes the card ter-
minal and an inserted smartcard a part of the network in-
frastructure. By modeling the terminal and smartcard as
Java interfaces they become easy to use. Clients just need
to know the Terminal and SmartCard interfaces and
how to look up a card terminal in a Jini environment. De-
tails related to remote communication are hidden by Jini and
RMI. Details concerning the interaction with the physical
terminal are hidden by JiniCard. Mutual exclusion allows
multiple applications at different locations to act as clients
of a single smartcard in an ordered manner. Keeping the
exchange of APDUs as the basic means of communication
retains the flexibility that is needed to use a wide variety of
different smartcards.

As such, the lower layer of JiniCard is an instance of
the APDU-gateway middleware described in Sect. 2.2.1 and
provides the API for the manager to access the smartcard.

3.2.2 Upper Layer: Smartcard Exploration Mecha-
nism

The components described above provide a uniform way
to access smartcards as network components. But they are
not enough to reach our goal to effortlessly integrate the
services that a smartcard offers into an environment.

To reach this goal, we propose an exploration mecha-
nism to identify the services that are contained on a smart-
card and to make them available in the environment. Our
approach to reach the goal of card service integration in-
cludes the dynamic download of exploration components
as well as card-external parts of card services.

As our target environment we chose Jini, which serves

as a platform that represents all system entities as ser-
vices. Therefore we represent all applications contained on
a smartcard as Jini services. This places services that are
offered by smartcards on an equal footing with other Jini
services. In the following sections, we describe the steps
that the card exploration mechanism takes.

Smartcard Insertion. The service exploration process is
triggered by the insertion of a smartcard into a JiniCard ter-
minal. This causes the terminal to distribute a remote event
to all listeners that previously registered with it (1, in Fig. 5).
The event contains the ATRs of the card to allow listeners to
decide early on, if they are interested in the event and wish
to respond to it. The set of ATRs is the only information that
can be obtained from a card if there is no a priori knowledge
about it.

The Card Explorer Manager drives Card Exploration.
The component that controls the card exploration process
is known as the card explorer manager. This component is
registered at the card terminal as an event listener. The card
explorer manager manages a set of card explorers. Card ex-
plorers carry out the actual work of exploring a certain kind
of smartcards to identify the services contained on them.
Card explorers are dynamically loaded into the Java virtual
machine of the card explorer manager, if an unknown kind
of smartcard is encountered. The card explorer manager
passes a reference to the smartcard on to its card explor-
ers and asks them to explore the card (2). The result of
this exploration process is an instance of class Explora-
tionResult (3), which contains a set of ServiceInfo
objects or an indication that the card explorer could not han-
dle the card. A ServiceInfo object describes a single
service and provides enough information to engage in the
service instantiation process.

Terminal

ATRs

JAR file 
names / 
entry class 
names

HTTP
Request JAR files /

class files

www.atr.net
CardExplorer JAR files

ATRMapper

Terminal-
Event 

ExplorationResult

exploreCard

1

2
3

4
6

5

7

8SmartCard

CardExplorerManager

CardExplorer1 CardExplorern...

Figure 5. Download and instantiation of card
explorers for unknown smartcards



The role of manifest files. What happens if none of the
instantiated card explorers was able to handle a card? In
this case the card explorer manager contacts a special, well-
known Web server. For the following assume that this
server is named www.atr.net 3. This is a Web site that hosts
card explorers for many types of smartcards. These card
explorers are stored as Java archive (JAR) files. A single
JAR file aggregates multiple Java class files and other files.
An important part of a JAR file is its manifest file that con-
tains information about the archived files. The contents of
an example manifest file are shown in Fig. 6.

Manifest-Version: 1.0
Main-Class: jinicard.javacardexplorer.JavaCardExplorer
Created-By: 1.2.2 (Sun Microsystems Inc.)
Smartcard-ATR: O78RAMAQMf5EU01AUlQgQ0FGRSAxLjFDwQ==

Figure 6. Example manifest file

Manifest files for card explorers contain two special en-
tries. The first one is the Main-Class attribute that was
introduced with the Java 2 platform. It allows to designate
the class that serves as the entry point into the card explorer.
It refers to a class that implements the CardExplorer in-
terface as shown in Fig. 7.

package jinicard.core.exploration;

public interface CardExplorer f
ExplorationResult exploreCard(SmartCard sc)

throws IOException;
g

Figure 7. The CardExplorer interface

The example manifest file refers to a card explorer that
is able to explore JavaCards. The second special entry is
named Smartcard-ATR. Its value is a set of base-64 en-
coded ATRs. The ATRs have to be base-64 encoded, be-
cause the manifest file specification [18] does not allow ar-
bitrary 8-bit entries. This set of ATRs determines the set
of cards that the explorer is willing to handle. The example
shows the encoded ATR of a JavaCard. This mechanism can
be extended by using regular expressions to gain more flex-
ibility. Currently each ATR must be specified separately.

ATR Mapper. A component called ATR mapper inspects
all card explorer JAR files that are stored on www.atr.net, in
order to establish a mapping from a set of ATRs to a set of
names of card explorer JAR files.

3www.atr.net is just used for illustrative purposes here, so don’t
worry if it doesn’t actually contain card explorers.

If a card explorer manager was not able to find a suit-
able card explorer for a particular card, it contacts the ATR
mapper available on www.atr.net (4, in Fig. 5). The result
is (hopefully) the name of a suitable card explorer (5) that
the manager can then use for download (6 and 7) and in-
stantiation (8) by using a custom class loader. This newly
instantiated card explorer is then in charge of exploring the
card in question. Alternatively, the ATR mapper could, in-
stead of a URL, return the actual implementation directly.

Service Information Objects. As already mentioned, the
result of a successful exploration process is an Explora-
tionResult instance that contains a set of Service-
Info objects – one for each service. The ServiceInfo
interface is shown in Fig. 8. An ExplorationResult
object is what is handed back from a card explorer to the
card explorer manager, to enable it to instantiate card ser-
vices as the final step.

The ServiceInfo interface is shown below. It con-
tains Jini related information, such as the service identifier
(service ID), codebase information and entry point infor-
mation. The service ID is used to uniquely identify the card
service as a Jini service instance. The groups array spec-
ifies names of service categories that the service belongs
to. Name and comment are user editable descriptions of a
service. The locators attribute explicitly specifies lookup
services that the service has to connect to once it gets initi-
ated. The Jini specification prescribes that these service at-
tributes (service ID, groups, attributes, and lookup locators)
are stored persistently. Once a Jini service gets a service
identifier assigned to it, it should remember that identifier
and use it in all future interactions with lookup services and
other Jini services. To be in line with the Jini specification
we decided to store Jini related information on the smart-
card whenever possible. For JavaCards for example, we
wrote a small applet that stores service information entries
by predefined keys. The restrictions in terms of memory
space require a clever organization of this information. A
further complication is that most entries have varying length
and can be changed as a result of user configuration.

JiniCard’s Card Services. To enable the card explorer
manager to retrieve the actual card service code, the code-
base and entry point information are essential. The service
URL refers to a site that contains the code of the card ser-
vice described (named www.service.com in Fig. 9). The
service class name denotes a class that implements inter-
face jinicard.core.CardService. With this infor-
mation the card explorer manager is able to dynamically
download and instantiate the card service.

The card service interface is shown in Fig. 10. It serves
as an entry point and defines the interaction between a card
service and the JiniCard framework.



package jinicard.core.exploration;

public interface ServiceInfo f

// get methods
ServiceID getServiceID();
String[] getGroups();
Name getName();
Comment getComment();
LookupLocator[] getLocators();

URL getServiceURL();
String getServiceClassName();
CardService getService();

// set methods
void setServiceID(ServiceID sid)

throws IOException;
void setGroups(String[] gs)

throws IOException;
void setName(Name n)

throws IOException;
void setComment(Comment c)

throws IOException;
void setLocators(LookupLocator[] rs)

throws IOException;
void setServiceURL(URL url)

throws IOException;
void setServiceClassName(String scn)

throws IOException;
g

Figure 8. Interface ServiceInfo

To be useful, a card service must have access to its card-
resident counterpart and therefore to the physical smartcard.
This is achieved by using the SmartCard interface that the
JiniCard terminal provides. The JiniCard framework com-
municates it to the card service by calling the setCard
method with a remote reference to the smartcard object. It
is set to null if the card is no longer available.

The getAttributeSets method returns Jini at-
tribute sets that are immutable and that do not depend on the
specific service instance. The getProxy method returns
the proxy object that will (in serialized form) be uploaded
to the Jini lookup service (abbreviated as LUS in Fig. 9),
where it can be downloaded by clients. No restrictions are
imposed on the proxy object other than that it is serializable.

This is all there is to know to understand the place that a
card service occupies in the JiniCard framework. It uses a
smartcard object that abstracts from the need to know any-
thing about the underlying card reader technology or about
the location of the smartcard in the network. It interacts
with its service manager through the simple card service in-
terface. Everything else is up to the card service developer,
who has maximum freedom to design a card service that is
appropriate for the application.

LUS

HTTP request 
using serviceURL& 
serviceClassName

JAR files /
class files

www.service.com 
CardService JAR files

ExplorationResult

exploreCard

6

1 2

3

4

5

CardExplorerManager

CardExploreri CardService

setCard

getAttributeSets

getProxy

card
service
proxy

Figure 9. Download and instantiation of card
services

package jinicard.core.cardservice;

public interface CardService f
void setCard(SmartCard sc)

throws SmartCardException,
RemoteException;

Entry[] getAttributeSets();
Object getProxy();

g

Figure 10. Interface CardService

4. The JiniCard API from the Service Devel-
oper’s Perspective

In the following section we will describe how the Jini-
Card framework looks to the developer, who wants to de-
velop card services using the JiniCard framework.

4.1 Implementing a Card Explorer

If a card service is to be written for a smartcard type for
which a card explorer does not yet exist, then the developer
has to provide an implementation of the CardExplorer
interface. This interface has just a single method, named
exploreCard, that takes a SmartCard object as an ar-
gument. The card explorer must find a way to explore the
set of cards that it is wishes to handle. This can be done by
using an on-card directory, which is particularly useful, if
multi-application JavaCards are used. Another way to ex-
plore a card may be to simply probe the card by using some
selection APDUs and by examining if the card generates
the expected responses. This is what we have done when
implementing a card explorer for GSM cards [2]. The deci-



sion about the way to explore cards is card specific and has
to follow pragmatic considerations.

As described above, the result of the exploration process
is a set of ServiceInfo objects that provide informa-
tion about a service and also describe how to instantiate it.
There are two different possibilities to instantiate card ser-
vices: One is to provide a URL from which the service im-
plementation can be downloaded (called serviceURL), the
other is to provide a reference to the card service that the
card explorer is able to instantiate by itself. The method
getService is intended to get a reference to a card ser-
vice that was instantiated this way. The JiniCard framework
first tests if getService returns a valid (i.e. non-null)
reference. If it does not, the ServiceInfo object must
give a service URL to download the code from. The first
approach might be useful if the set of services for a given
card is fixed. This allows to store the service implementa-
tion together with card explorer implementation. Also, if
the card-external code of a smartcard application is stored
on the card itself, instead of being stored on a Web server,
this might be advantageous.

The reason for making the card-external part of a smart-
card application available on a Web server, instead of stor-
ing it on the card itself, is the limited amount of memory
that is available on current smartcards. The card-external
part of a card application may in fact be orders of magni-
tudes larger than what current smartcards are able to pro-
vide. It may, for example, contain a graphical user interface
that often needs a large amount of code.

To install a card explorer, all class files that are related
to it have to be stored in a JAR file. Its metainf/mani-
fest.mf file has to contain the ATRs that are to be han-
dled by the card explorer as well as the name of the imple-
mentation’s entry class. Finally, the JAR file has to be up-
loaded to a well-known Web server, like www.atr.net, where
it can be inspected by an ATR-mapper.

4.2 Implementing a Card Service

To implement a card service that the JiniCard framework
can handle, the following steps must be taken: First, the
interface CardService (or its subinterface Adminis-
trableCardService) has to be implemented. Apart
from implementing the interface methods, this means im-
plementing the actual service methods. The service uses the
SmartCard interface to talk to the card. At runtime, an
object implementing this interface will be provided through
the setCard method. It is important to emphasize that the
JiniCard framework does not define the way in which the
card-external part of an application talks to its card-resident
counterpart. Both parts have to agree upon a proprietary
protocol, i.e. a set of APDUs and their meaning. The de-
veloper is free to define this private protocol, using APDUs.

The developer is also free to design the card-resident part
of the application in any way that he or she deems appro-
priate. This flexibility allows for the integration of cards
that provide a fixed APDU protocol. We have, for example,
integrated GSM cards into JiniCard that use a standardized
APDU protocol that is defined in [2]. In that case the card-
resident part, and therefore the APDU protocol, was fixed,
and our task was to write a card-external part that integrates
a service for GSM cards into the JiniCard framework.

The service related class files have to be packaged as a
JAR file and have to be made accessible to an HTTP server.
If such a JAR file is small enough, it may also be stored on
the card. In any case, the card explorer that explores the
card has to be able to examine the service information and
to find a way to acquire access to the service code.

If a card service implementation is installed on a multi
application card, then its existence has to be announced.
This can be done by storing service information in some
kind of on-card directory. Card explorers examine this di-
rectory to learn about services that are available from the
card.

4.3 Implementation and Performance Experi-
ences

The API description in the form of Javadoc pages can be
found at [10]. The source code of the JiniCard framework
is available from the authors upon request.

Although there is a noticeable delay when the down-
load of a card explorer for an unknown card is required,
we found the performance of the JiniCard framework quite
acceptable. We expect, that in most cases a card explorer
will be available locally and only a card service has to be
downloaded and instantiated dynamically. Simple caching
strategies could help to improve performance significantly.

5. Conclusion and Future Work

In this contribution we have motivated the need for a
new type of middleware that addresses the specific needs of
smartcards for integration into a distributed computing en-
vironment. Smartcards are one typical instance of small de-
vices with limited computing power and memory resources
that pose special requirements to the environment to be use-
ful in a service scenario. These limitations require special
attention from the middleware that must be able to integrate
devices in a flexible and convenient way.

Our middleware is essentially comprised of an execution
platform for mobile code in a card terminal and a well-
defined process of how appropriate mobile code is trans-
ferred to the terminal as smartcards are inserted into its
reader. We argued that our approach outperforms other
approaches w.r.t. flexibility and effort of standardization,



which we consider a crucial point in proposing middleware
in general.

The Jini network infrastructure has been used both as
the trading platform for services offered by smartcards and
as a means to implement the JiniCard framework as a set
of cooperating network services. We have found Jini to be
particularly well-suited for this purpose since it builds upon
mobile code, which nicely fits into the paradigm of our pro-
posed middleware.

We think that our approach can be applied to other set-
tings where devices needing assistance from their environ-
ments must be integrated into a service federation. Further
research into this domain is necessary to support this as-
sumption.

Untouched in our work are security aspects which are
especially critical in conjunction with smartcards. Commu-
nication between a network client and a smartcard currently
traverses several components in the JiniCard framework, i.e.
several nodes of different trustworthiness are crossed.

Acknowledgements

We would like to thank F. Mattern, J. Posegga, and
U. Wilhelm for many useful comments on earlier versions
of this paper.

References

[1] C. Blum. Elektronisches Ticketing bei der Deutschen Bahn
AG. In M. Flur, editor, OMNICARD, 2000. www.omnicard.
de.

[2] European Telecommunications Standard Institute. Digital
cellular telecommunications system (Phase 2+); Specifica-
tion of the Subscriber Identity Module – Mobile Equipment
(SIM–ME) interface (GSM 11.11), 1998.

[3] W. Gentz. Elektronische Geldbörsen in Deutschland. DuD,
1, 1999.

[4] GSM Association. www.gsmworld.com.
[5] S. Guthery, R. Kehr, and J. Posegga. How to Turn a GSM

SIM into a Web Server. In To appear in Proceedings of
CARDIS’2000, Sept. 2000.

[6] S. Guthery, R. Kehr, J. Posegga, and H. Vogt. GSM
SIMs as Web Servers. In Short-Proceedings of 7th Interna-
tional Conference on Intelligence in Services and Networks
IS&N’2000, Athens, Greece, Feb. 2000.

[7] M. A. Hamilton. Java and the Shift to Net-Centric Comput-
ing. IEEE Computer, 29(8):31–39, 1996.

[8] International Standards Organization. International Stan-
dard ISO/IEC 7816: Identification Cards - Integrated Cir-
cuit Cards with contacts, 1989.

[9] Java Card Technology. java.sun.com/products/javacard/.
[10] JiniCard API Documentation. Available at www.inf.ethz.ch/

�rohs/JiniCard/.
[11] R. Kehr, A. Zeidler, and H. Vogt. Towards a Generic Proxy

Execution Service for Small Devices. FuSeNetD Workshop
Position Paper, Heidelberg, Oct. 1999.

[12] O. Kömmerling and M. G. Kuhn. Design Principles for
Tamper-Resistant Smartcard Processors. In USENIX Work-
shop on Smartcard Technology, 1999.

[13] CORBA 2.2 Specification. Available at www.omg.org.
[14] OpenCard Consortium. OpenCard Framework 1.1.1 Pro-

grammer’s Guide, third edition, Apr. 1999. www.opencard.
org.

[15] PC/SC Workgroup Specifications. www.pcscworkgroup.
com.

[16] J. Rees and P. Honeyman. Webcard: A Java Card Web
Server. Technical report, Center for Information Technology
Integration, University of Michigan, 1999. www.citi.umich.
edu/techreports/reports/citi-tr-99-3.pdf.

[17] RSA. PKCS #11 - Cryptographic Token Interface Standard,
1999. www.rsalabs.com/rsalabs/pkcs/pkcs-11/.

[18] Sun Microsystems Inc. Manifest and Signature Specifi-
cation, 1996. java.sun.com/products/jdk/1.2/docs/guide/jar/
manifest.html.

[19] Sun Microsystems Inc. Jini Architecure Specification – Re-
vision 1.0, Jan. 1999.

[20] Sun Microsystems Inc. Jini Discovery and Join Specifica-
tion – Revision 1.0, Jan. 1999.

[21] J. Waldo. The Jini Architecture for Network-centric Com-
puting. Communications of the ACM, 42(7):76–82, July
1999.

[22] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A Note on
Distributed Computing. Technical Report SMLI TR-94-29,
Sun Microsystems Laboratories, 1994. www.sunlabs.com/
technical-reports/1994/abstract-29.html.

[23] Wireless Application Protocol Forum. www.wapforum.org.
[24] Eurescom P1005 Project. Further information available at

www.eurescom.de/�websim/, Apr. 2000.
[25] M. Weiser. The Computer for the 21st Century. Scientific

American, pages 94–104, Sept. 1991.
[26] Windows for Smartcards. www.microsoft.com/smartcard/.


