
Security Aspects in Publish/Subscribe Systems

L. Fiege A. Zeidler A. Buchmann
TU Darmstadt�

fiege,az,buchmann � @dvs1.informatik.tu-darmstadt.de

R. Kilian-Kehr
SAP Corporate Research

roger.kilian-kehr@sap.com

G. Mühl
TU Berlin

gmuehl@acm.org

Abstract

Publish/subscribe is emerging as a very flexible commu-
nication paradigm that is applicable to environments de-
manding scalable and evolvable architectures. Although
considered for workflow, electronic commerce, mobile sys-
tems, and others, security issues have long been neglected
in publish/subscribe systems. Recent advances address
this issue, but only on a low, technical level. In this pa-
per, we analyze the trust relationships between producers,
consumers, and the notification infrastructure. We devise
groups of trust to model and implement security constraints
both on the application and the system level. The concept
of scopes helps to localize and implement security policies
as an aspect of structured publish/subscribe systems.

1 Introduction

The publish/subscribe paradigm is an interest-oriented
communication model [3]. Event notifications are pub-
lished by producers, and consumers receive those that
match one of the subscriptions they have specified. The
paradigm is successfully applied in many areas of dis-
tributed computing, and the loose coupling of producers and
consumers leverages reconfigurability and evolution. Re-
cent research mainly focused on functional aspects of the
intermediary pub/sub service that conveys the notifications.
It is considered a black box optimized for notification rout-
ing and scalability in distributed settings. Today, an in-
creasingly important emerging aspect of publish/subscribe
systems is security and trust. This includes access control
to the pub/sub infrastructure (and the data it transports), as
well as the need to establish mutual trust between produc-
ers and consumers of data, i.e., granting the authenticity and
validity of data in the system.

This imposes the question of how the mutual trust be-
tween publisher and consumer can be established despite
the decoupling facilitated by the pub/sub paradigm. The
obvious approach is to delegate some of the aspects of trust-
worthy interaction to the pub/sub service for enforcement.
For instance, access control and secured delivery can be

added to the pub/sub infrastructure [1]. Unfortunately, this
often implies that the infrastructure as a whole is trusted, a
frequently found assumption.

At Internet scale, however, the pub/sub infrastructure it-
self has to be considered as a security issue. A distributed
network of event brokers likely spans a larger number of
service providers and many administrative domains. Conse-
quently, the security considerations of producer-consumer
interaction must include the infrastructure, and a black box
view on it is no longer applicable.

Initial work is available on security issues in publish/
subscribe. A general description of requirements is given
by Wang et al. [12]. An apparent problem is access con-
trol to the pub/sub service and certain classes of notifica-
tions [8, 1]. Miklós [8] uses the Siena covering relations
to constrain allowed subscriptions and advertisements; a
trusted broker network is assumed. Perhaps the most ad-
vanced result is Belokosztolszki et al. [1], who combine
role-based access control with a distributed notification ser-
vice. The privilege to publish or subscribe to a specific type
of event is granted by a designated owner of this type. A re-
laxation of the trusted network assumption is sketched that
finds connected broker subgraphs that use encrypted com-
munication links. However, globally valid type hierarchies
are problematic to establish and limited in their modeling
capabilities [7].

In this paper, we want to weaken the assumption of a
trusted network to a large degree. The settings we consider
are systems where the notification service (a) can be part of
a larger network consisting of different transport networks
of unknown trustworthiness; and (b) the notification deliv-
ery itself may span several separate notification services or
administrative domains. Obviously, mechanisms must be in
place to bridge potentially malicious networks or brokers,
as well as to establish mutual trust between different ad-
ministrative domains on behalf of a client. We discuss these
issues in greater detail in Section 2. Then, in the remainder
of this paper, we show our approach of applying scopes to
the problems aforementioned. Scopes originally were de-
signed to model visibility of event dissemination within the
distributed pub/sub notification service REBECA (cf. Sec-

tion 3). In Section 4 we exploit scopes to enforce and
maintain security aspects in Internet-scale pub/sub systems.
Section 5 sketches an implementation using aspect-oriented
programming techniques, before Section 6 concludes this
paper.

2 Trust in Pub/Sub Systems

2.1 System Model
A minimal pub/sub system consists of producers, con-

sumers, and the intermediary pub/sub service to convey the
published notifications. The pub/sub service offers three
simple-to-use primitives: subscribe, advertise, and
publish to register consumer interests, to announce po-
tential future notifications, and to publish a notification.
The notification service itself acts as a black box and is con-
ceptually centralized, which we refine later. We assume a
distributed implementation in a network of event brokers;
the brokers to which clients are connected are called border
brokers. Each broker maintains a routing table that keeps
track of the network links and the subscriptions that were re-
ceived on them. Notifications are forwarded on those links
for which a matching subscription is stored.

2.2 Trust

Trust in the sense we use it in this paper has two dif-
ferent aspects: a “real-world” aspect of trusting someone or
something on the basis of some contract (Fig. 1(a)) and, sec-
ond, the aspect of implementing trust through some security
measures in a more technical sense (Fig. 1(b)). In traditional
systems, security is mostly based on knowing the identity of
involved parties, which is not possible in publish/subscribe.
Indeed, at first sight one might argue that security contra-
dicts its open and decoupled nature.

C1
C3
C4
C2

Reuters

CNN

Content Provider Consumer

(a) Real world trust

H1 H2 H1 H2

C2 C3 C4C1

Reuters CNN

Akamai

... ...

C & W

providers
Content

Network
providers

Hosts

Clients

(b) Implementation

Figure 1. Trust

Figure 1 depicts a common example from the domain
of e-commerce applications: a customer subscribes to a
“premium stock market ticker” provided by Reuters, for in-
stance. As the service comes with a monthly fee, contracts
are concluded between customers and the service provider
(Fig. 1(a)) describing the terms of their trust relationships.

Obviously, the provider of such a service has an interest
in access control. Only authenticated and authorized cus-
tomers should be able to receive the stock market quotes.
The most basic requirement for a security implementation
is to allow access to the service for the group of valid cus-
tomers and to deny access to anybody else. On the other
hand, a customer of such a premium service wants to be
sure that information received from the service is authentic,
i.e., originates from the premium service and is not manip-
ulated. Therefore the customer has to trust the authenticity
and validity of the received information. Taken together,
provider and customers share a common group of trust in
which they interact.

Obviously, the presence of the pub/sub infrastructure as
an intermediary introduces an additional level of trust con-
cerns. Not only that the infrastructure must be trustworthy
itself, it also must be leveraged to implement the trust rela-
tionship between the producer and consumer (cf. Fig. 1(b)).
From the point of view of a group of trust, as described
above, the infrastructure must be part of the application-
specific group of trust that customers and provider share.

Consequently, an implementation of real-world trust
must secure groups of application components and the un-
derlying groups of event brokers necessary to connect the
components. On both levels, measures must be taken to sep-
arate communication within the group from outsiders and to
base group admission on credentials sufficient to establish
mutual trust.

2.3 Current Deficiencies

Contemporary design of pub/sub services focuses on
functional aspects of the pub/sub paradigm, i.e., efficiency
of message routing, scalability, expressiveness of filter lan-
guages, or event composition, to name only a few.

However, trust and security is not part of the pub/sub
paradigm, and the trust relationship is not directly enforca-
ble in producers and consumers. Security is a separate as-
pect of publish/subscribe, outside of the pure ability to con-
vey messages. Trust is injected into a system based on ex-
ternal contracts on the level of applications. The goal must
be to map trust agreements to the underlying notification
service for implementation and enforcement. The current
model of pub/sub assumes that the black box model of a
conceptually centralized pub/sub service is applicable at all
times. But implementing a group of trust requires additional
control on how messages are delivered in the infrastructure.

What is needed to implement trust and security on top
of the pub/sub paradigm, is fine-grained control over every
part of the infrastructure used to transport messages from
a producer to a consumer. Each part on this way has to
have the same trustworthiness as if producer and consumer
would communicate directly. To inject this extensive level
of control we exploit the concept of scoping introduced in

the next section.

3 Scoping
Scopes in publish/subscribe systems [5, 6] delimit

groups of producers and consumers on the application level
and control the dissemination of notifications within the in-
frastructure. Hence, they offer a technical basis to realize
groups of trust. This section describes their basic function-
ality and security extensions are shown in Section 4.

3.1 Model

The fundamental idea of the scoping concept is to control
the visibility of notifications outside of application compo-
nents and orthogonal to their subscriptions. A scope bun-
dles a set of simple application components, i.e., produc-
ers and consumers, which are typically not aware of this
bundling. Additionally, it may contain other scopes as well.
The resulting structure of the system is given by a directed
acyclic graph of simple and complex components .

simple

U
scope

R

component Y Z

T

X

S

Figure 2. An exemplary scope graph

The visibility of notifications is initially limited to the
scope they are published in. The transition of notifica-
tions between scopes is governed by scope interfaces, i.e.,
a scope issues subscriptions and advertisements in order to
act as regular producer and consumer in its superscope(s).
The scope’s interface selects the eligible notifications that
are forwarded to their superscopes and the external notifica-
tions that are relayed towards the scope’s (sub-)components.
In Figure 2, a notification published by � is delivered to �
and to any other consumers in � and � if their subscription
matches. Also, it is visible in � if it matches the output
interface of � or � , but it is not visible in � .

3.2 Using Scopes

Four new functions are needed for maintaining a scope
graph: creating new scopes (cscope), destroying scopes
(dscope), joining an existing scope (jscope), and leav-
ing a scope (lscope). Two approaches to scope adminis-
tration exist. First, the functions may be directly accessed
by the clients of the pub/sub service, i.e., the producers and
consumers, i.e., the components of applications. In this
case the functions are provided as extensions of the pub-
lish/subscribe API.

However, in accordance with the loose coupling of the
event-based paradigm, scope management should be done
outside of the application components. We identified the
role of an administrator who is responsible for orchestrat-
ing existing components into new scopes, which in turn
are available for higher level composition. At deployment
time, descriptors assign newly created components to cer-
tain scopes. At runtime, we leverage management inter-
faces to remotely administrate scope membership of exist-
ing components. For the implementation of trust we can
exploit the same mechanisms for assigning components to
certain application-dependent scopes, representing a group
of trusted components.

3.3 Scope Architectures

We sketch a distributed implementation of scopes as
an extension of the REBECA distributed notification ser-
vice [10]. This approach opens the black box and deter-
mines groups of event brokers that implement a specific
scope, thus correlating groups on the application and the
system level.

Integrated routing reconciles distributed notification
routing with the visibility constrains defined by the scope
graph. The original routing table is broken into multi-
ple tables, one for each locally available scope. Thus, for
each scope a connected subset of event brokers constitute
an overlay within the broker network that conveys scope-
internal traffic. Another routing table, the scope routing ta-
ble, records scope-link pairs signifying in which directions
brokers of the respective scope can be found.

Upon scope creation, an initially empty routing table is
created at some broker, together with any management in-
formation regarding this scope, such as interface definitions.
The creation is announced with a notification that is dis-
tributed in the network to update the scope routing tables.
The overlay can either be extended manually by adminis-
trative commands to preset a certain extent of the overlay,
or it is extended dynamically when other components are to
join the scope. Both ways, a scope join request is always is-
sued at a broker currently not part of the overlay. A request
is traveling in the direction stored in the scope’s routing ta-
ble, leaving a temporary trail of references to the request
source. The first broker encountered that is part of the re-
quested scope, processes the join request and sends a reply
back along the trail. If affirmative, the reply contains man-
agement information needed to set up routing tables in the
involved brokers; they become part of the scope’s overlay.

The transition of notifications between two scopes re-
quires the two scope overlays to share at least one broker.
Consider scopes � and � of Figure 2. � is a component of

� and has joined � . For each subscription of � , a respec-
tive entry is added to the routing table of � that points to
the table of � . For each advertisement an entry is added in

� ’s table that points to � . Mechanisms are in place to pre-
vent multiple transitions at different brokers, but they are
omitted here.

With this implementation, scopes not only group clients
of the pub/sub service on the application level. They are
also an important tool to group event brokers, extending
their structuring capabilities to the infrastructure. They de-
termine which subset of brokers belong to the same group-
ing and even allow for different routing algorithms in sep-
arate overlays as long as the transition between the scopes
adhere to the constraints of the scope graph.

4 Security in Scopes
The preceding discussion introduced scopes as a means

to group application and infrastructure components. They
are therefore an apparent place to implement groups of trust.
A scope isolates intra-scope traffic from the rest of the sys-
tem, if the infrastructure is trusted. In Section 4.1 we ad-
dress access control of clients, i.e., at the application level.
Section 4.2 enhances scope overlay management to extend
application-depend trust groups to the infrastructure.

4.1 Client Access Control

In many scenarios, like e-Commerce applications or mo-
bile applications, access to the pub/sub infrastructure must
be controlled on the level of subscriptions, advertisements,
and publications, i.e., client access control. It must be en-
sured that only authorized clients have access to the network
of brokers to publish and subscribe to notifications they are
privileged to. In general, access control is implemented at
the border brokers of a system, assuming a trusted infras-
tructure (cf. Section 4.2).

The presented solution uses rather simple policies be-
cause the main focus lies on how security is integrated—
more sophisticated policies would be available if role-based
access control schemes are bound to scopes, cf. [1]. At-
tribute certificates (AC) as specified in RFC 3281 [4] are
utilized to encode privileges. An AC is a credential with a
digitally signed (or certified) identity and a set of attributes.
It carries here a reference to a public key certificate to au-
thenticate the client and authorized filter expressions the
client is allowed to advertise or subscribe for. ACs are is-
sued by the provider of the broker network itself or by some
other trusted attribute authority (AA). A legitimate content
provider has got an AC from the network provider that au-
thorizes its advertising. On the other hand, access to pre-
mium content may require an AC of the content provider,
which is checked by the network.

Consider a service requesting the pub/sub system to
propagate an advertisement � . To do so, it calls
advertise of the pub/sub interface together with an AC
showing its privilege to do so. The border broker veri-
fies the AC by checking the contained signature of the net-

H1 H2
A

H2
B

H1
B

A

Applications App

B
providers
Network

C

A
Hosts... ...

Figure 3. Trust relationships

work provider and, depending on the result of the check,
grants access or, e.g., simply discards the advertisement. In-
cluded in a valid advertisement is another certificate carry-
ing the public key of the content provider for this advertise-
ment. Later, this certificate is used to authorize subscribers
to the content published after the advertisement (e.g., the
group of “premium content subscribers”). Advertisements
are flooded through the overlay network of the scope they
are published in. Thereby, access control information for
subscriptions matching the advertisement is made available
at all border brokers—overlay extensions are handled trans-
parently as the network is trusted, so far.

When a client subscribes to some information at a border
broker, it also gives its credentials in form of an AC. The
border broker checks the signature of the certificate based
on the network provider key or the keys contained in its
list of received advertisements. The AC the client provides
must match the attributes specified by the signing AA con-
tained in the advertisement. If and only if they match, the
subscription is processed further like in the standard pub/
sub case without additional security.

4.2 Infrastructure Security

So far, we considered access control on the level of ap-
plications, i.e., in the graph of scopes. As discussed in Sec-
tion 2, the trust relationship manifested in the application
must also be secured within the infrastructure. Routing and
the decision (how) to use specific parts of the broker net-
work is subjected to application-specific security consider-
ations. Scoping is exploited to correlate groups of applica-
tion components with groups of trusted event brokers, mak-
ing the scope overlay accessible to system engineers.

The previous assumption of having a homogeneous
trusted network is relaxed and we first investigate when to
extend a scope overlay. One can suppose large broker net-
works to be hosted by different service providers, like it is
the case for the Internet. City carriers are likely to provide
event brokers on wireless access points while global play-
ers link cities, countries, and continents. We assume a trust
relationship as sketched in Fig. 3, e.g., negotiated in busi-
ness contracts. Certificates authenticate hosts, their relation
to providers, and the provider-application relation.

Connected Overlays. Assume that a scope overlay in a
trusted network of brokers �

���� �
���� and �

�� exists (Fig-
ure 4) and that a scope join request is received from a neigh-
bor broker �	�� , which is not yet part of the overlay. The
decision whether the requesting, directly connected broker
is trusted is application- and scope-specific. If positively
ascertained, the implementation described in Section 3.3 is
used for extending the scope overlay. A likely pre-installed
policy of the network provider is to trust all the brokers
within its own administrative domain.

H1

A

H2

A

H1

B
H1

X

H2

B

H3

A
tunneled
overlay

App
connected
overlay

Figure 4. Extending the scope overlay

If a broker from a different administrative domain, say
�	�� , is asked to join the scope, it forwards a scope join re-
quest according to its scope routing table towards �

�� . It
appends to the request a list of chained attribute certificates
of the path in the trust graph of Figure 3 from its node to
the node of the respective scope. Upon receiving such a re-
quest, �

�� tests the included certificates. If a shared ances-
tor in the trust relationships is found, extending the overlay
may proceed as described. At this place, various security
policies could be applied that are assigned to the scope App
to govern its extension in the broker network. For instance,
a scope might mandate link layer encryption with Transport
Layer Security (TLS).
Tunneling. If a trustworthy node is about to join that is
only reachable via an untrusted broker, the previous ap-
proach is not applicable. Consider a join request from a host
�	�� that is routed through an untrusted broker ��
� . The
latter is assumed to have a routing entry for the scope App
in its scope routing table. ���� digitally signs the request
and includes its own public key. If �

�� accepts the request,
the scope overlay would include an untrusted intermediary
if the above implementation is used. The solution applied
here is to tunnel the traffic through ��
� . The clear text part
of the reply contains an indication of whether to tunnel the
scope and, if so, triggers an update of the scope routing ta-
ble to include an entry pointing to ���� —provided that ��
�
cooperates. Notifications are encrypted and tagged with
the scope’s name so that they can be forwarded by �

� , al-
though they are not part of its content-based routing. Eaves-
dropping and modifications are prevented, while malevolent
omissions are detectable by application level heartbeats.

The tunnel can span more than one broker and it may

even be used to connect clients via untrusted border bro-
kers. The problem is, however, that multiple join requests
lead to multiple tunnels. A second broker requesting to join
the scope via ��
� , or multiple clients connected via point-
to-point tunnels at untrusted border brokers, will result in
duplicated messages individually encrypted for the various
destinations. At least in the former case of multiple trusted
brokers behind an untrusted one, scope-level broadcast with
a shared session key can attenuate bandwidth consumption.
The same session key is forwarded to any newly attached
broker so that the overlay connected via �

�� - �	
� is reached
with only one message. Of course, this trades computing re-
sources with bandwidth, for the new brokers have to filter
out notifications consumed at other brokers.

The described tunneling is similar to secure (application-
level) multicast, giving raise to the known problems of mul-
ticast key management [9]. Shared session keys must be
changed if some brokers leave the overlay. However, if ses-
sion keys are only used between brokers, it is plausible to
assume that fluctuation is rather low and the frequency of
key changes is limited.

5 Implementation
Clients access the REBECA notification service via local

event brokers, which offer the plain pub/sub API as a li-
brary collocated to the client code. Local brokers maintain
connections to the event broker network. There, event bro-
kers are implemented as separate processes, which main-
tain TCP connections to other brokers and clients and at
least one routing table for unscoped traffic. Brokers are cus-
tomizable software containers and thus the implementation
of the routing engine, connection pooling, transmission pro-
tocols and message handlers is specified at deployment of
the broker. REBECA messages transmitted between brokers
may contain (a) control messages, like subscriptions and
scope admin messages, or (b) notifications, which consist
of a management header and notification data. Appropriate
message handlers process these messages according to their
type (a) or (b).

Scope configuration is accessed through a remote man-
agement interface to the event broker functionality, using
the Java Management Extensions (JMX) (cf. Figure 5). On
creation of a scope, the desired scope parameters can either
be specified directly, or via a scope type, which refers to a
predefined configuration.

Although flexible, the current REBECA architecture does
not allow for an easy inclusion of security policies. A num-
ber of core classes would have to be re-implemented for the
integration of each specific kind of security handling. Fur-
thermore, the proposed implementation of security is only
partially tied to the sketched scope implementation – inte-
grated routing in this case – and is designed to be applicable
to other forms, as well.

interface ScopeEBIf :
public RemoteEBInterface {

createScope (ScopeName, IOInterface)
createScope (ScopeName, IOInterface,

SuperScopeName)
createScope (ScopeName, Type)

joinScope (ComponentName, ScopeName)

subscribe (ScopeName, Filter)
...

}

Figure 5. Remote event broker interface

To achieve greater flexibility, we employ aspect-oriented
programming (AOP) techniques and AspectJ [2] to imple-
ment security aspects of scopes. We briefly sketch three
main security extensions. First, access control on the API
level is required for the authorization of the invocation of
management functions. Certificates are stored with the
callee and are transparently sent with each call to the re-
mote management interface. These are verified before ac-
cess to management functionality is granted by the broker.
Second, some features, like admission tests of join requests,
are also applicable to implementations other than integrated
routing. Thus, a new function was introduced that calls a list
of interceptors before starting to update the routing tables.
Third, specific to integrated routing, extending the scope
overlay must be governed by an authorization test of the
original requesting broker and the next-hop broker. This
test checks chains of certificates according to Figure 3 and
is evaluated prior to calling the handler that processes the
extension. Depending on the result a new session key may
be generated. It must be added to all affected routing table
entries by the extension handler and is used for secure mes-
sage exchange between brokers over untrusted parts of the
broker network. The encrypted fan-out to consumers uses
point-to-point connections; in case of performance prob-
lems, caching schemes like [11] may be employed to reduce
the number of encryptions needed.

6 Conclusion

Trust in publish/subscribe systems cannot be associated
with specific producers and consumers without impairing
their loose coupling. Instead, we have associated trust with
the interaction within a group of components. This facil-
itates the design of loosely coupled applications and their
security policies. Security is considered on the level of both
applications and its implementation in the infrastructure, al-
lowing for enforcement of security measures even across
different administrative domains.

We introduced scopes as a suitable means to model and
implement the above issues. Originally designed as general
concept to control visibility, they make component interac-

tion explicit. By opening up the black box of the pub/sub
service, they provide for the appropriate locations to weave
security aspects into a distributed pub/sub notification ser-
vice. The separation of intra-scope traffic makes it possi-
ble to implement different security implementations that are
bound to different parts of an application’s structure, de-
pending on the actual needs for security and trust. To avoid
re-implementing larger parts of the pub/sub service every
time the system evolves, we employed AOP technology to
add the implementation to the REBECA notification service.

References
[1] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Ba-

con, and K. Moody. Role-based access control for pub-
lish/subscribe middleware architectures. In Proc. of the 2nd
International Workshop on Distributed Event-Based Sys-
tems (DEBS’03), June 2003. ACM Press.

[2] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented
programming: Introduction. Communications of the ACM,
44(10):29–32, 2001. Special Issue on Aspect-Oriented Pro-
gramming.

[3] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[4] S. Farrell and R. Housley. An internet attribute certificate
profile for authorization. Request For Comment 3281 (RFC
3281), April 2002.

[5] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. En-
gineering event-based systems with scopes. In Proc. of
the ECOOP 2002, LNCS 2374, Malaga, Spain, June 2002.
Springer-Verlag.

[6] L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based
systems. The Knowledge Engineering Review, 17(4):359–
388, 2003.

[7] W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In Proc. of OOPSLA 1993, 411–
428, 1993.

[8] Z. Miklós. Towards an access control mechanism for wide-
area publish/subscribe systems. In Proc. of the 1st In-
ternational Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, 2002. IEEE Press.

[9] R. Molva and A. Pannetrat. Network security in the multi-
cast framework. In NETWORKING 2002 Tutorials, LNCS
2497, pages 59–82, Pisa, Italy, 2002. Springer-Verlag.

[10] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt University of Technology,
2002. http://elib.tu-darmstadt.de/diss/000274/.

[11] L. Opyrchal and A. Prakash. Secure distribution of events in
content-based publish subscribe systems. In 10th USENIX
Security Symposium, Aug. 2001.

[12] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security
issues and requirements for Internet-scale publish-subscribe
systems. In Proc. of the HICSS-35, Big Island, Hawaii, Jan.
2002.

