
Distributed Group Communication System for
Mobile Devices based on SMS∗

Bettina Kemme1 and Christian Seeger2

1 McGill University, School of Computer Science,
3480 University Street, Room 318, Montreal, Canada

kemme@cs.mcgill.ca,
2 Technische Universität Darmstadt, Department of Computer Science,

Databases and Distributed Systems Group,
Hochschulstraße 10, 64289 Darmstadt, Germany

cseeger@dvs.tu-darmstadt.de

Abstract. This paper presents a group communication system for mo-
bile devices, called DistributedGCS. Mobile communication is slow, ex-
pensive and suffers from occasional disconnections, especially when users
are moving. DistributedGCS is based on SMS and enables group commu-
nication despite these restrictions. It provides all primitives needed for
a chat application and handles process failures. As mobile communica-
tion is expensive, DistributedGCS is designed for small message overhead
and, additionally, exploits SMS based message relaying to handle short-
term disconnections. In this work, we present the group maintenance
service and the multicast service of DistributedGCS. In order to dis-
tribute the overhead of failure discovery over all processes we introduce
the concept of a circle of responsibility for failure detection. We discuss
informally that DistributedGCS can handle the most common failures
properly while keeping the message overhead very low.

1 Introduction

Mobile phones have not only become a standard commodity for telephony but
we also use them for online shopping, to find the nearest restaurants, and to chat
with our friends. Text-messaging has become particularly popular, especially in
Europe. Nevertheless, basically all interaction we currently do is between two
mobile phones or between the mobile phone and a central service. While a cen-
tral service might disseminate information (e.g., flight information) to many
interested phones, a phone usually does not send messages to many recipients.
Nevertheless, there are plenty of applications that would benefit from a com-
munication middleware that would allow mobile phones to participate in group
communication. Two obvious applications are chat among a group of friends or

? The work in this paper is based on an earlier work by Christian Seeger, Bettina
Kemme and Huaigu Wu: SMS based Group Communication System for Mobile De-
vices, that appeared in the Proceedings of the ACM Workshop on Data Engineering
for Wireless and Mobile Access, (c) ACM, 2010.



business partners, or information dissemination among a group of people with
similar interest (e.g., a common research project).

In this paper, we propose such a group communication system (GCS) provid-
ing both the primitives to manage a group of mobile phones as well as offering
multicast to group members. A very special feature of our system is that it com-
pletely relies on SMS (the GSM Short Message Service) as underlying commu-
nication medium. SMS allows short messages to be sent from one mobile device
to another without the need of a centrally maintained service that would charge
extra service fees. Routing is done through the network carrier. Our decision on
this communication medium has two main reasons. Firstly, not all mobile users
subscribe to a data plan that would allow Internet connectivity, and access to
the Internet through wireless access points is usually very sporadic. In contrast,
SMS is basically always provided and continuously available. Secondly, even if a
data plan or other wireless access exists, phones cannot be directly accessed by
other phones through TCP or UDP as they do not own a permanent IP address.
And even if they have for intermittent time, it is usually not possible to connect
to them. Thus, any solution based on Internet communication would likely need
to rely on a server on the Internet to which the phones connect. The server
would be responsible for relaying messages to all phones. However, our goal was
to design a truly distributed, server-less solution that is easier to deploy and
run. Our GCS solution only relies on a network carrier that supports SMS and
a Java-enabled phone. Compared to an ad hoc network solution, users do not
need to be in the same communication area.

The solution that we present is a pragmatic one. Mobile communication is
expensive and slow. Every message counts. Furthermore, mobile devices have
low computing power and restricted memory. Thus, our solution provides much
weaker properties than traditional group communication systems. For instance,
we consider the communication overhead to maintain virtual synchrony [4, 16]
too high. Similarly, providing reliable message delivery [4] requires considerable
communication and storage overhead that we are not willing to pay. Nevertheless,
our system needs to be able to handle the fragile connectivity of mobile phones
as phones can quickly disconnect for short, medium and long time periods. Thus,
our approach includes extensive failure handling. However, it attempts to keep
the overhead as small as possible. As a trade-off, it does not handle all failure
combinations correctly. We believe this to be a compromise that users are readily
going to accept.

Our solution was influenced by the requirements of the application that we
believe will be the first one to adopt group communication technology, and that
is chatting. Nevertheless, we believe that other applications can also benefit from
our tool. Our GCS offers the chat application to create, join, leave and destroy a
chat room and to send FIFO multicast messages. All message exchange is done
via SMS and only among the phones.

Failed phones are detected and removed from the group. The system han-
dles short disconnections gracefully. In order to keep the message overhead for
group maintenance small and distribute it over all phones, we introduce the



concept of circle of responsibility as our failure detection system. Group mem-
bership changes can be handled and propagated by every group member which
automatically distributes the group maintenance overhead.

2 Background

This section depicts different aspects of GCSs and the network environment of
mobile devices which we rely on. Additionally, we introduce the GCS require-
ments of a chat application and close this section with related work.

2.1 Group Communication Systems

GCSs are implemented as a layer between the application and the network layer
and provide two types of services [4]: group maintenance service and multicast
service. Group maintenance manages a list of all active members, called view V.
At any given point in time a view describes the current set of members of a group.
Processes can join or leave, and failed processes will be excluded. Members are
informed about a view change through the delivery of a view change message
containing the members of the new view. The big challenge is to find a consen-
sus between member processes about the current view. View proposal algorithms
usually involve complex coordination protocols, requiring several rounds of mes-
sage exchange among all members in order to guarantee that all members agree
on the same view. Even more advanced, certain services provide a logical order
between view change messages and application messages delivered in each view,
such as virtual synchrony [16]. In this case, the view change protocol also has to
agree on the set of application messages to be delivered at each process.

The multicast service propagates application messages submitted by the ap-
plication layer to all group members. In our notation, we say that the application
layer of a member receives a message that the GCS layer delivers to it. There
are two main demands on a multicast service: ordering and reliability. FIFO
ordering requires that if the application layer of a process sends two messages,
then these messages are delivered in the order in which they were sent. Causal
ordering requires that if an application first receives a message m and then sends
a message m′, then all members should deliver m before m′. And total ordering
requires for every two messages m and m′ and two processes, if both deliver m
and m′ they deliver them in the same order. Message delivery can be unreliable,
reliable or uniform reliable. Reliable delivery (uniform reliable delivery) guar-
antees that if a message is delivered to an available member (to any member
– available or one that crashes shortly afterwards) then it will be delivered to
all available members. The higher the degree of ordering and/or reliability, the
more expensive and complex is the message exchange between the members in
term of additional messages and message delay.



2.2 Network Environment of Mobile Devices

Mobile devices, especially mobile phones, usually connect to stationary base sta-
tions provided by network carriers which provide mobile devices with different
speech and data services. The most common data services for mobile devices are
SMS, MMS, GPRS and UMTS. SMS and MMS are services designed for direct
data communication among mobile phones. Messages are addressed to the re-
ceiver’s phone number and can be sent even if the receiver is disconnected from
the network. The network carriers store the messages and relay them when the
receiver is connected again although the number of messages and the time mes-
sages are stored are limited. GPRS and UTMS enable mobile phones to establish
an Internet connection. The base station allocates an IP address to the device
and acts as a router enabling message delivery but only as long as the phone is
connected to the Internet. Furthermore, IP addresses can change quickly due to
two reasons. Phones automatically disconnect after a certain idle time. When the
phone reconnects, the phone’s base station might allocate another IP address.
Furthermore, if a mobile phone moves from one cell to another, the base stations
change and, hence, the allocated IP address changes, too. In addition to this,
for propagating a phone’s current IP address an additional server is needed and
this we want to avoid. Phones could also connect to the Internet through wire-
less access points. However, such connectivity is very sporadic and not available
everywhere. Therefore, we decided to use SMS as underlying communication
layer due to its universal, bidirectional and fairly reliable services. MMS would
be equally possible and we will look into this in future work. Disadvantages of
SMS (and MMS) are an often higher message delay than for IP packets and a
payment per message independently of the size of the message.

2.3 Application

We decided for a chat application as our example application and developed our
GCS with regard to the primitives a chat application requires. In our opinion,
chatting is a feasible scenario for a mobile application, because almost every
mobile device fulfills the hardware requirements for a chat application. Addi-
tionally, we assume that friends or colleagues have their phone numbers already
stored in their mobile phones. Hence, the users do not need additional informa-
tion from a server as long as the membership consists of known people. Since
there is no need for a name server in a chat application with known members,
we decided to design a completely decentralized group communication system
without an expensive server. However, a server-based naming service could be
easily integrated into our GCS architecture. In a chat application typically all
members multicast relatively short messages. While causal order would be de-
sirable, FIFO order should be acceptable for most situations. Similarly, while
reliability is important, the emphasis is probably more on fast message delivery.
We assume that a chat application on a mobile phone is not feasible with more
than 20 users, as the message delay would be too high for propagating informa-
tion to more than 20 users in acceptable time. For applications beyond 20 users,



SMS and server-less communication will likely be problematic due to the high
message costs and delay. With twenty users, view change messages can be easily
propagated within one message assuming phone numbers are process identifiers.

2.4 Related Work

Group communication systems are available for many different network types.
The first generation of GCS has been mainly developed for local area networks
(LANs) such as Totem [12], Isis [2], Horus [8] and Spread [1]. They provide
basically all virtual synchrony and strong ordering and reliability guarantees.

There are also approaches for mobile networks. The authors of [14] propose
an algorithm for consistent group membership in ad hoc networks. This algo-
rithm allows hosts within communication range to maintain a consistent view
of the group membership despite movement and frequent disconnections. Pro-
cesses can be included or excluded with regard to their distance from the group.
Different groups can be merged when they move into a common geographical
area and the partition of one group can be handled as multiple disjoint groups.
Another further approach [13] uses not only the ad-hoc network, but also the
cellular network and a Virtual Cellular Network (VCN). A Proximity Layer pro-
tocol monitors all network nodes within a certain area and forwards changes to
the Group Membership Layer. Based on this information a three-round group
membership protocol builds a group of mobile nodes.

Closest to the approach presented in this paper is SMS GupShup Chat [18].
SMS GupShup Chat is a commercial group chat application based on SMS and
managed by a central server. Users are able to create a group by sending a SMS
message to the special phone number of the server. Also invitation messages
containing up to four phone numbers are possible. Once a group is created, users
can join or leave the group. Users can post a message to the group by sending
a simple SMS message to the special phone number. The message forwarding to
all group members is done by the server.

Not all existing systems provide strong guarantees. Epidemic approaches only
provide guarantees with a certain probability and will only achieve that messages
are “eventually” delivered (such [3, 6]) or views “eventually” converge (e.g, [7]).
The idea is to let nodes regularly exchange their past history of received mes-
sages. Given the low memory capacity and the high costs of communication, we
do not consider epidemic protocols applicable for mobile phones. Also, in our
application context of chatting, we require much lower delivery delays than the
ones provided by epidemic protocols.

The work presented in this paper, DistributedGCS, is based on MobileGCS
[17]. Message dissemination and failure detection are very similar in both sys-
tems but in MobileGCS the group maintenance relies on one specific phone,
called master phone. Since the master phone is responsible for distributing group
changes, it suffers from a higher message overhead. Therefore, we introduced a
master move operation for switching these responsibilities from one phone to
another. Still, a master move costs additional messages that we want to save.
Furthermore, if several membership changes occur the master phone could easily



get overloaded. In DistributedGCS, every member can propagate membership
changes and every member manages its own list of group members. This makes
a master phone and a master move operation unnecessary. On average, mem-
bership changes cost the same number of messages in DistributedGCS as in
MobileGCS, but DistributedGCS inherently distributes the overhead over all
group members and saves the messages for master moves.

3 System Overview

Our GCS layer provides the typical primitives to the application: create, join,
leave and destroy a group. The application receives a view change in form of an
SMS message every time the group configuration changes. The application can
write an SMS and submit it to the GCS layer. The GCS layer will deliver this
messages to all group members.

3.1 Multicast

We do not provide reliable message delivery to all available nodes. This would
require a node to store messages that it receives from other nodes in order
to be able to relay them in case of the failure of the sender. We consider this
unfeasible for mobile environments. However, as mentioned above, we can assume
each individual SMS message to be delivered reliably, even when short periods
of disconnection occur. Therefore, we implement multicast by simply sending
the message via SMS to each phone that is currently in the view of the sending
phone. This achieves what we call sender reliability. A message sent by a node
that does not fail during the sending process is delivered to all available members
that are in the view of the sending process. If the sender fails during the sending
process, some members might not receive the message. If a phone disconnects
before the message is received, it will very likely receive it upon reconnection.
Furthermore, as SMS offers FIFO delivery, we automatically also provide FIFO
delivery.

3.2 Group membership guarantees

Considering a chat application, we think that virtual synchrony, although de-
sirable, is not absolutely needed. Thus, view membership is decoupled from the
delivery of application messages.

Ideally, we would like to have an eventual agreement, that is, all available
members of a group will have eventually the same view of the group if there
is a sufficiently long time without membership changes. We achieve this if we
assume a strong failure detector that allows for the correct detection of a failure
by choosing a sufficiently large timeout interval. In most cases, wrongly suspect-
ing a non-failed node, simply leads to the exclusion of an available node from
the group, something that we consider acceptable. However, in some rare cases,
a wrong suspicion or short-term disconnections might lead to partitioned, and



thus, incorrect views. Nevertheless, we tolerate many forms of concurrent fail-
ures, and we believe that our properties are acceptable for chat applications. As
a result, we do not offer more than best-effort membership that will handle the
most common errors but might not converge in some cases.

The remainder of this paper is dedicated to the discussion of the membership
protocols.

4 DistributedGCS without Failures

DistributedGCS provides a totally distributed group maintenance service. All
group members are equal and allowed to handle group operations such as join
and leave requests. In contrast to the predecessor of DistributedGCS, Mobi-
leGCS [17], where group maintenance was coordinated by a master phone, the
additional overhead for group maintenance messages is distributed over all pro-
cesses. This makes costly operations for changing the group master unnecessary.
On the other hand, having a master process simplifies the group maintenance. In
MobileGCS, when a mobile phone wants to join or leave a group, or if a failure
occurs, the corresponding request is sent to the group master, which decides on
a new view configuration and sends the new view to all affected phones. As a
result, every process that receives the view change has a consistent view with
the group master. As long as every message sent by the master is received by all
members and the master does not fail, all members install the same sequence of
views. In contrast, DistributedGCS allows every process to handle membership
operations and to change the view. This prevents overloading a single phone,
but makes it more difficult to find a consensus if two or more processes change
the view simultaneously. Nevertheless, DistributedGCS eventually achieves the
same view among all members after a feasible amount of time.

With regard to a chat application, we assume that it is more important
to keep all active processes in the view than excluding left or failed processes.
Thus, the view management of DistributedGCS has a higher priority for keeping
processes than for excluding them.

4.1 Group Maintenance Service

In DistributedGCS, every process has to maintain the group membership on its
own. Although not every process necessarily receives the same messages in the
same order, the views of all processes should eventually converge if there are no
further configuration changes. This is the main challenge DistributedGCS has
to deal with. For this, we first describe the basic communication schemes in the
case of only one event at a time. After that, in View Management, we explain
the processing of more complex events.

In order to identify a process’ status change, DistributedGCS uses additional
flags behind process identifiers / phone numbers. A flag represents the status a
process pi has stored about a foreign process pj . It might be that two processes
have different flags stored for one process pj . We distinguish between three dif-
ferent flags.



– “u” - up: process is in the group and has not changed its status recently
– “j” - join: process has recently joined the group
– “l” - leave: process has recently left the group

(join)

(up)

(leave)

local flag change after Tjoin

join request

leave request

delete process entry after Tleave

Fig. 1. Flag changes in DistributedGCS.

Figure 1 shows how flags are changed in DistributedGCS. A view change
message consisting of a set of processes indicates that a process (e.g., D) has
joined by tagging it with a join flag (e.g., Dj). When a process p that is already
group member receives the view change message it first keeps this flag for the
newly joined process. After a local timeout Tjoin exceeds, p sets the new process’
flag set from join to up (e.g., from Dj to Du). This is done individually at every
process. As long as a process has an up or join status, it is considered a member of
the group. If a process leaves the group, a new view change message is distributed
marking the leaving process with a leave flag (e.g., Dl). When process p receives
this message, it changes the leaving process’ flag to leaving (e.g., Dl) but it does
not immediately remove the process from its view. It is important to keep track
of an already left process for a while in order to avoid that it is mistakenly added
again. After Tleave time passes at process p, it finally removes the leaving process
from the view. For simplification in the following figures, a process without a
flag has always an up flag.

Create/Destroy Since we avoid the usage of a central server the existence
of a new group has to be propagated. The idea is that when a user wants to
create a group, it invites other phones to be members of the group. This means
group creation is combined with group invitations. This is useful for chatting as
it allows the creation of a new chat room and to invite other people to join it.



J J J

T0 T1 T2

T3 T4

J – join

Invitation messages

View change {A,B*,C,D}

Fig. 2. Create

Figure 2 shows how the creation and invitation is done. In time step T0, the user
of the upper phone creates a new group. The create method requires a group
name and a list of other phones that are invited to become group members.
The phone numbers to be invited must be provided by the user. The group
name only needs to be unique over its lifetime across the phones that might
want to participate. Given that it is unlikely that a given user will create many
chat rooms concurrently, a group name containing the creator’s identifier and a
sequence number suffice. For a chat application, group creation will open a chat
room and invite others to join the group. A phone that calls the create method
automatically becomes a temporary group master (black color) and the group
creation is completed only including the calling phone as group member. The
next step involves sending invitations to contacts that are chosen by the user.
The chosen phones receive invitation messages including the group name from
the temporary master in T1. The GCS layer of these phones relay the message to
the application which can now indicate whether it wants to accept the invitation.
If it does accept the invitation, the GCS sends a join request to the initiating
phone. In the given example, each phone, except for the phone E, sends a join
request in step T2. In T3, the black phone adds all joining processes to the view
and sends a view change message to all members of the new group. After that,
the black phone stops acting as a master. The temporary master only waits a
limited time to send the view change as described in the following section. If
a further join request is received later, it simply sends a further view change
message. At T4 phones A-D are all members of the group and have the same
view.

For a chat application, we think, it makes sense that a group can only be
destroyed when there is only one process left which is automatically done af-
ter/once the last processes leaves the group. Therefore, DistributedGCS does
not provide a special destroy operation.



{A,B,C,DJ} {A,B,C,DJ} {A,B,C,DJ} {A,B,C,D}

T4

{A,B,C,DJ} {A,B,C,DJ} {A,B,C,DJ} {D}

I

I II

T3

{A,B,C} {A,B,C} {A,B,C,DJ} {D}

T2

JoinReq

{A,B,C} {A,B,C} {A,B,C} {D}

T1

{A,B,C,DJ}

{A,B,C,DJ}

{A,B,C,DJ}

ACK: {A,B,C,DJ}

{A,B,C} {A,B,C} {A,B,C} {D}

T0

Fig. 3. Join

Join If a phone wants to join after the initial creation has completed, it has to
send a join request to one of the group members. Our GCS processes join requests
in a completely distributed manner. Figure 3 depicts a simple join request from
process D. Time step T0 shows an already existing group of three processes
A,B,C that have the same view {A,B,C} ({Au, Bu, Cu} including status flags)
installed. At T1, process D sends a join request to process C. As all processes
are equal, D can send a join request to any group member. In this case, process
C is requested and adds the new process D to its view and sets its flag to join:
{A,B,C,Dj}. In the next time step process C sends the new view first to the
old view members and then to the joining process. At T4, all group members
that have received the view update send an acknowledge message to D and D
checks whether the join succeeded or not.

The acknowledge messages sent to the joining process fulfill two requirements.
First, they allow a joining process to check whether the join succeeded or not.
And second, by attaching their originator’s view, these acknowledge messages
allow to capture further join requests. Figure 4 depicts an example that shows
how two simultaneous join requests sent to two different phones are processed.
Again, we start with a group of three processes A,B,C. Processes D and E
want to join the group. Process D sends a join request to C and process E
sends a join request to A at T1. In the next step, both join requests are pro-
cessed in the same way as already described for a single join. The requested



{A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,D,EJ}

{A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,DJ,EJ} {A,B,C,D}

I

I II

{A,B,C,EJ} {A,B,C} {A,B,C,DJ} {D}

JoinReq

{A,B,C} {A,B,C} {A,B,C} {D}

{A,B,C,DJ}

{A,B,C,DJ}

{A,B,C,DJ}

ACK: {A,B,C,DJ,EJ}

T4

T3

T2

T1

{A,B,C,DJ,E}

{A,B,C,E}

{E}

{E}

JoinReq

{A,B,C,EJ}

{A,B,C,EJ}

I

I

{A,B,C,EJ}
II

ACK: {A,B,C,DJ,EJ}

Fig. 4. Two Joins

processes add the new process to their views and set the join flag. Then, they
send the resulting views first to the old members and then to the joining pro-
cesses. Hence, process C sends {A,B,C,Dj} to B,C,D and process A sends
{A,B,C,Ej} to A,B,E. In order to include all joining processes, every process
that receives a foreign view builds a union of its own view and the incoming
view. Process B, for example, has the view {A,B,C} installed and receives both
update messages in T2. Assuming the message from C is processed first, it cal-
culates the following view: {A,B,C} ∪ {A,B,C,Dj} = {A,B,C,Dj}. Then, it
processes the second update message sent by A and builds the following view:
{A,B,C,Dj} ∪ {A,B,C,Ej} = {A,B,C,Dj , Ej}. The order of incoming up-
date messages does not affect the result of a union. T3 in our example highlights
the reason for attaching the current view to the acknowledge message. At T2,
process C was not informed about E when it sent the update message to D.
Hence, the update message to D does not include process E. However, at T3 the
processes A and B already added E to their views and attached them to their
acknowledge messages. On receiving the acknowledge messages from A and B,
process D gets informed about the new process E and adds it to its view. And
process E gets also informed about the new process D by receiving acknowledge
messages from B and C. This way, attaching views to acknowledge messages
enables DistributedGCS to detect simultaneous joins. At T4, the processes D
and E have joined the group and all processes have the same view installed.

Leave Figure 5 shows how a leave request is processed. In the first step, the
leaving process D sends a leave request to any group member (C in our example).



{A,B,C,DL} {A,B,C,DL} {A,B,C,DL}

T3

{A,B,C,D} {A,B,C,D} {A,B,C,D} {A,B,C,D}

T1

{A,B,C,D} {A,B,C,D} {A,B,C,DL}

T2

LeaveReq

{A,B,C,DL}

{A,B,C,DL}

Fig. 5. Leave

At T2, process C changes D’s flag from up to leave and propagates the view
change among all members. Process D does not get an acknowledge message
for its request. We let another process than the leaving process propagate the
leave request to make this procedure similar to what is done when nodes fail
(cp. Section 5). At time step three, every available process has set D to leave
and, therefore, D is excluded from the group.

4.2 View Management

Building the union of two views only works as long as two incoming views do
not carry different flags for the same process. In the case of different flags, a
consensus among all processes has to be found. DistributedGCS does not have
a group master for conflict resolution and we also want to avoid expensive view
proposal algorithms. Therefore, we will present a view management scheme that
eventually finds a common view with local decisions and with a minimum of
message exchanges among processes. It does not use any kind of voting algorithm
that guarantees that every member installs the same view. Our goal is to find a
common view with local decisions and without sending any additional message.
Incoming views are processed sequentially. A foreign view can be received as a
view change message, an acknowledge message after a join request or as a safety
message. A safety message is the view from a process to which the process’ own
view was sent before. It is the response to a strong inconsistency between two
views. For example, an up message about a process which has already left the
group. Safety messages are not necessary, but they accelerate finding a common
status.

As said before, each process can have one of three different flags (up, join,
leave) in both the current view of another process and in an incoming message.
Figure 6 shows how a process pi changes the local flag of another process pj
triggered by an incoming view or triggered by one of the timeouts Tjoin and
Tleave. The first entry in each row is the local flag of pi for the process pj (“-”



local flag  incoming flag  timeout 

  J  U  L  Tleave  Tjoin 

J  J  J  J    U 

U  U  U  L     

L  J  L  L  ‐   

‐  J  U  ‐     

 

Fig. 6. View change table of pi for process pj .

stands for no entry). The following columns show how pi changes pj ’s flag upon
receiving a foreign view or when a timeout exceeds.

First, we take a look at incoming views. For simplification, we say a local flag
is the locally stored flag for a process pj and an incoming flag is the flag for this
process pj received from another process pu. If the local flag and the incoming
flag are the same, nothing has to be done. If there is an incoming join flag and
the local flag is leave or there is no entry, the local flag is set to join. If the local
flag is up, the incoming join is ignored. Incoming up flags are ignored unless this
process is not in the local view. In this case, a process is added with an up flag
set. If the local flag for a process pj is join and pi receives a leave from pu, pi
sends a safety message to pu and does not change the local flag. In the case of
a local up and an incoming leave flag, a process is set to leave. A second reason
for a safety message is an incoming up flag when the local view has the leave
flag set.

Upon receiving an incoming leave of a process pj a local timer tleave is started.
As soon as tleave exceeds Tleave process pj is finally deleted from the local view
and incoming leave flags for pj are ignored. If a process deleted pj immediately
upon receiving the leave message, an incoming view that still contains an up flag
for pj would add the already left process pj to view again. Therefore, pj stays
in view for Tleave. Upon receiving the incoming join of a process pj a local timer
tjoin is started. As soon as tjoin exceeds timeout Tjoin the local flag for pj is
changed from join to up. Keeping a local join flag for a while is not necessary but
helpful in order to inform simultaneous joining process (cp. Figure 4) about the
other recently joined process(es). Assuming that processes can fail, this timeout
becomes more important and will be discussed in the next section.

5 Failure Detection

SMS does not establish a connection to other phones nor does it provide a
method to check whether a phone is available or not. Hence, the GCS has to
detect failures on its own. Failure detectors are a standard component of GCS.
They typically require members to send heartbeat messages to each other. Once
heartbeat messages are not received for a certain period of time, the member
is suspected to have failed. Then, an agreement protocol is run to remove the
suspected node. As we mentioned before, we do not want to have a complex
protocol requiring many messages, neither heartbeat nor agreement messages.



Thus, we use a very pragmatic approach where each member only sends heart-
beat messages to one other node, and this node makes a solitary decision to
remove the node if it does not receive the heartbeat messages anymore.

heartbeat message

process

Fig. 7. Circle of Responsibility

The authors in [9] and [15] introduce distributed failure detectors that dis-
tribute the workload for failure detection to more than one failure detection
module. Each module monitors a subset of nodes and, thus, has a reduced work-
load compared to a central approach. We use the same idea by introducing a
circle of responsibility among all processes. The GCS runs on mobile phones
and every phone has a unique phone number. Since we use phone numbers as
process identifiers, every process knows all phone numbers in the current view.
By sorting the phone numbers and connecting the first number with the last
number, we get a unique circle of phone numbers which is known by every pro-
cess. As a result, every process knows its successors and predecessors. Figure 7
illustrates such a circle of responsibility. For simplification, we use again letters
instead of phone numbers. The white process A is monitored by the successor
process on its right side and, therefore, it sends heartbeat messages to B every
time period t. Every successor process also knows its predecessor process and
expects heartbeat messages from it.

5.1 Failure of a Process

If an expected heartbeat message is missing for a period T (T is significantly
larger than t in order to handle message delay variations), the failure procedure
is started. The monitoring process performs a self test, and if it succeeds it
sends a process failure message to the group. This means that it marks the
suspected process as down in its view and distributes the new view among all
group members of the new group. It also sends the new view excluding the
suspected process to the suspected process. In principle, when node B does
not receive the heartbeat from A, A could have failed or be disconnected, in
which case it should be excluded from the group. Alternatively, B itself could be
temporarily disconnected from the network. If the latter is the case, B should



not send the process failure message to the group. The self-test allows B to
detect whether it is currently connected and is described in Section 5.4.

5.2 Adapting to Process Leaves/Failures

For the circle of responsibility, it makes no difference whether a process leaves
the group or has failed. In both cases, the process will be excluded from the circle
of responsibility which has to be adapted. The adaption is done as follows: the
successor process of a leaving process has to change the process it monitors and
the predecessor process has to change its heartbeat receiver. Assume process pi
leaves or fails. Then the successor of pi, i.e., pi+1 must now monitor the predeces-
sor of pi, i.e., pi−1. That is, pi−1 has now to send its heartbeat messages to pi+1

instead of pi. If the leaving process pi has a temporary status (temporary pro-
cesses are described in next section), pi−1 only deletes pi as a heartbeat receiver
and pi+1 stops monitoring it. No other process needs to adjust its monitoring
activity.

5.3 Adapting to Process Joins

If a process joins the group, the responsibilities change and the circle of respon-
sibility has to adapt to it. In order to avoid a gap in the circle of responsibility,
a joining process pi is only then completely included into the circle when pi+1

actually knows that the join was successful and pi becomes a permanent mem-
ber of the circle. For this, a joining process gets a temporary status first. Upon
receiving the first heartbeat message from this process, it is assured that the
join succeeded. Only the processes pi−1, pi and pi+1 have to adjust their mon-
itoring activity upon receiving the view change message including pi: (i) pi−1
marks pi as temporary and starts sending heartbeat messages to both pi and
pi+1, (ii) pi starts sending heartbeat messages to pi+1 and monitoring pi−1 and
(iii) pi+1 marks pi as temporary and starts monitoring pi (it still monitors also
pi−1). Upon receiving pi’s first heartbeat message, pi+1 stops monitoring its for-
mer predecessor pi−1 and deletes pi’s temporary status. In addition to this, pi
sends a stop heartbeats message to pi−1. Process pi−1, upon receiving pi+1’s stop
heartbeats message, deletes pi’s temporary status and stops sending heartbeat
messages to pi+1.

If there are two or more joining processes in a row, they are all first monitored
as temporary processes.

5.4 Self Test Message

With a self test, a mobile phone checks whether it is connected to the network.
A phone does so by sending a self test SMS to itself. SMS does not distinguish
between a message sent to a foreign phone number or the own phone number.
It will always use the network carrier to send the message. Thus, we can use
SMS to test our own network status. As long as a phone is able to send and



receive a self test message, it is also able to receive foreign messages. If a phone
does not receive its own self test message (identified by a random number), we
can assume that this phone is currently disconnected from the network and,
hence, we can avoid wrong failure assumptions. Thus, after not receiving its own
self-test message, it suppresses all process down and heartbeat messages until
connectivity is re-established and the self test message is received.

5.5 Down Status

Mobile phones can be frequently disconnected for short time periods, for in-
stance, while its user takes the metro for two stops. The network carrier forwards
messages sent to a disconnected phone after reconnection. We do not want that
short disconnections completely expel a phone from the group. Therefore, we
take a two-step approach for removing phones from group activity. When the
failure detection mechanism is triggered for a process pi from which no heartbeat
messages are received anymore, pi is removed from the circle of responsibility.
This leads to a view change message excluding pi. However, the remaining pro-
cesses keep pi’s phone number and set a down flag. They continue sending the
application messages to pi. If pi does not reconnect within a certain time period,
pi’s phone number will be completely deleted and no more messages sent to it.
The down flag is similar to the leave flag with the exception that processes with
the leave flag will not receive any application messages anymore as they left the
group voluntarily and explicitly.
At the same time, pi itself detects that it is disconnected as it does not receive
any heartbeat messages from its predecessor and performs a self-test which fails.
It sets itself to down status and queues all messages that the application wants
to send. It also informs the application that there is a disconnection. If pi does
not become connected within a certain time period, it drops all queued messages
and informs the application about being removed from the view. When pi be-
comes connected it receives all messages sent to it, including the view change
excluding itself. It delivers all received application messages. These might not
be all messages sent within the view during the downtime because each process
handles down flags individually, but the application is aware of this best effort,
since it receives the temporary disconnection message. From there, pi joins again
and then sends any message it might have locally queued.

6 Reasoning for Correctness

In this section we argue about the correctness of DistributedGCS. For this, we
show that many common join requests, leave requests and failure cases are han-
dled correctly by our approach. But we also show that some cases in Distribut-
edGCS are not handled as well as they were in MobileGCS that we presented
in [17]. We will illustrate some of these failure cases by assuming a group of six
processes A,B,C,D,E, F . In each of the situations below, we assume there are
no further joins, leaves and failures than the ones explicitly mentioned.



One Failure. Assume only one process pi fails. Then pi’s successor pi+1 will
detect the failure by not receiving heartbeat messages from pi. As a result, pi+1

will set pi to down and send a view change message. As no further process fails,
all these actions will succeed, and everybody adjusts the circle of responsibility
guaranteeing that process pi−1 monitored by pi will receive as new monitor pi+1.
Although all nodes will still send application messages to the failed node for a
time period after exclusion (as long as the down flag is set), the failed process is
removed from the view.

Several Failures. Assume some processes fail. If the failures are not consecutive
corresponding to the circle of responsibility, they will be detected concurrently.
Every monitor process detects the failure of its predecessor and sends a view
change message. For example, if processes B and D fail, C detects B’s failure
and E detects D’s failure. C sends a view change message setting B to down
and E sends a view change message setting D to down. Theses view change
messages are sent to every member and as no consecutive processes fail, the
adjustments to the circle of responsibility are independent of each other. If there
are consecutive failures (for e.g., pi and pi+1), the last process in row (pi+1) will
be detected first (by pi+2). After a new view was sent and the responsibilities
were adapted, the next process (pi) will be detected (again, by pi+2) and so on.
For our example, if B and C fail, D first detects C’s failure. After C is excluded,
D becomes monitor of B. But as B has also failed, it does not receive the view
change and does not send heartbeats. Thus, D detects B’s failure. Additional
non-consecutive process failures are detected concurrently.

Concurrent Joins and Leaves. Concurrent joins and leaves are not a problem. As
shown in Figure 4, concurrent joins are handled simultaneously. The same applies
for one or more simultaneous leave requests. Since a joining process waits for
acknowledge messages of members, the missing acknowledge message of a leaving
process could be a problem. There are three cases we have to analyze. Assume a
group of five processes A,C,D,E, F which have the view Vi = {A,C,D,E, F}
(with identifier i) installed. Process D sends a leave request to C and process
B wants to join the group. Let’s take a look at three cases. First, process B
requests the leaving process D to join the group and D does not react. Process
B will timeout receiving the view change and send the join request to another
process. Second, B requests process A and A distributes the new view Vi+1 =
{A,B,C,D,E, F}. Process D sends a leave request to C. If C receives Vi+1

after the leave request, C’s acknowledge message to B already contains the leave
request of D and, hence, B does not wait for D’s acknowledge message. Third,
if C receives Vi+1 before the leave request, C automatically forwards D’s leave
request as it has Vi+1 already installed. Therefore, concurrent joins and leaves
are handled properly.

Concurrent Join and Failure. Assume a view Vi = {A,B,C,E, F} and process
D joins the group. If D sends the join request to a process that does not fail,
this process sends a new view including D. At the same time, the monitor of the



failed process sends a view excluding the failed process. Similar to a concurrent
leave request as explained in the previous paragraph, D gets informed about the
failure and does not expect an acknowledge message from the failed process. The
join request and the failure detection will succeed.
If the successor pi+1 of a joining process pi fails, pi+2 will detect pi+1’s failure.
After excluding pi+1, the circle of responsibility adapts. Hence, pi monitors pi−1
and pi+2 monitors pi.
If the predecessor pi−1 of a joining process pi fails and pi has not sent its first
heartbeat message, then pi+1 will detect the failure and pi might detect it. Both
processes send the same resulting view. If pi has already sent its first heartbeat
message, only pi excludes pi−1 from view and sends a view change message. In
both cases, pi−1 will be correctly excluded from the view.
In fact, processes might fail in any combination concurrently to the join, and as
long as the process that processes the join request does not fail, every process
might combine view changes. All failed processes are detected and removed and
at the end the circle of responsibility is set correctly at all the remaining pro-
cesses.
Let’s have a look at an interesting case. If D requests a process, e.g., A, that
fails while it sends the view change message Vi+1 including D, D will timeout
receiving the view change and send the join request to another process. Within
the failure of A and the second join request of D exists a period of time with
different installed views. Some processes have already installed Vi+1 and some
have Vi installed. If D’s successor E has already installed the view Vi+1, it de-
tects that D is not in group and send Vi+2 excluding D. If E and C have still
Vi installed, the unsuccessful join of D is not detected. If D does not try to
join the group again, there will be two different views installed until a new view
change message is sent. In the current version of the system, we do not handle
this problem properly. Since heartbeat messages contain the originator’s view, a
view including D will be propagated slowly and D isexcluded when E is receiving
this view. This might take some time.

Failure while Sending View Change Message The previous example depicts a
general problem of DistributedGCS. The distributed approach works fine unless
a process fails during view change transmission. In MobileGCS, if the master
process fails, a new master is elected and sends a new view to all members. The
previously installed views are dropped and, thus, it is not important which view
a non-master member had installed before. In DistributedGCS, a new view is
the union of the previous view and the incoming view. Therefore, it is important
which view was installed before. If a process fails while sending a view change
message containing Vi, some processes have more actual information than oth-
ers. If a further view change Vi+1 does not contain the information sent before
because its originator has not received Vi, group members have still different
views installed. Exchanging view information by sending heartbeat messages
helps finding a consensus, but since they are only sent to a process’ successor,
the information flow is very slow.



In particular, there are two cases of missing events: a mistakenly included
(join) or a mistakenly excluded (leave, down) process which is only installed at
a subset of group members. Let’s start with the mistakenly included process.
Assume a process pi likes to join the group and process pj which processes the
join request fails while transmitting the view change and, thus, the view change
is not distributed among all group members. If pi retries to join the group and
the new requested process does not fail while transmitting, the join will succeed.
If pi does not retry to join, there could be two situations. First, pi+1 already
received the view change from pj and detects a failure of pi. Process pi+1 will
send a new view excluding pi and pi is completely excluded from the group.
Second, pi+1 has not received the view change from pj but at least from one
other group member. In this situation, pi+1 does not monitor pi and, hence, it
does not recognize the failure of pi, but other processes which have received the
view including pi assume that the join succeeded. In this case, pi is mistakenly
included in some views. By adding the current view to each heartbeat message
and treating inclusions of each incoming heartbeat message like a view change,
the group members that have received pi’s join will propagate its inclusion to
their successors along the circle of responsibility. With every set of heartbeat
messages sent among the group the mistaken inclusion of pi is forwarded towards
pi+1. In worst case, if n denotes the total number of processes in the group and
pi+2 is the only process that has received the join of pi, it takes n− 2 steps until
pi+1 is informed about the mistaken inclusion of pi and, thus, it will exclude
pi because it does not receive heartbeat messages from it. In summary, if no
further view changes occur, a mistakenly added process is eventually detected
after n− 2 heartbeat steps in the worst case.

A mistaken exclusion could occur when a process pi suspects its not-failed
predecessor pi−1 to have failed and fails while transmitting the view change. As
a result of pi’s failure, pi+1 will send a view change message excluding pi. If
pi+1 received the view change from pi before it failed, the failure assumption of
pi−1 will also be propagated within the group and pi−1 will be excluded. If pi+1

has not received the view change before, it will propagate a view including pi−1.
Processes which have received the previous exclusion of pi−1 will ignore the up
information until Tleave/down exceeded and they have completely deleted pi−1
from their view. Once pi−1 is deleted, an incoming heartbeat message including
this process will add it again. In worst case, a mistakenly added process will be
eventually detected after n−2 heartbeat steps as soon as Tleave/down is exceeded.
We would like to mention here that exclusion information carried by a heartbeat
message are discarded which emphasizes our assumption to focus more on the
inclusion than on the exclusion of processes.

7 Performance Analysis

We only want to provide a rough overhead analysis for simple multicast mes-
sages, and single joins and leaves. We consider both the number of messages as
well as the communication steps needed to finish the operation. The overhead



of heartbeat messages is ignored. In our analysis, we would like to make an as-
sumption that we have a group of n phones. Each multicast takes n-1 messages
as each group member receives its own copy of a message. As messages can be
sent concurrently, there is only one time step. For a join, the joining process
contacts a group member by sending a join request (1 message and 1 step). Upon
receiving this request, a view change message is sent to all group members in-
cluding the new process except the sending process itself (n messages in 1 step).
All group members, except for the requested process, send an acknowledge mes-
sage to the joining process (n − 1 messages and 1 step). Once the successor of
the joining process p receives the first heartbeat from p (1 step) it sends a stop
heartbeat message to p’s predecessor (1 message and 1 step). Thus, we have a
total of 2n messages in 3 steps until the joining process is included and 5 steps
until the circle of responsibility is completely adjusted. A leave request takes
n− 1 messages and two time steps. One message for the request itself and n− 2
view change messages to all group members except the requested process. For
processing a failure, DistributedGCS takes one process down message and n−1
messages for the view change to all group members including the failed process.
Thus, we have a total of n messages and 2 steps. These two time steps, however,
do not contain the delay until a failure is detected.

8 Implementation

Our GCS layer and a corresponding chat application layer have been fully imple-
mented based on Java ME [10]. We decided for Java ME as it is a very common
environment for applications running on mobile devices. It allows us to test our
GCS on many different devices. Additional toolkits [11, 5] for Java ME supported
our analysis. Java ME is divided into two base configurations: Connected Limited
Device Configuration (CLDC) and Connected Device Configuration (CDC). We
use CLDC as it is designed for devices with limited capabilities like mobile phones
and best fits our purpose. For incoming messages, we utilize a synchronous mes-
sage listener that listens at SMS port 2000. Thus, messages are redirected to the
GCS layer and do not end up in the mailbox of the user. We have thoroughly
tested scenarios on a testbed consisting of up to four phones.

9 Conclusions

This paper presents a novel, completely decentralized group communication ar-
chitecture for mobile devices that uses SMS-based message passing. Compared to
our MobileGCS, DistributedGCS inherently distributes the management over-
head and does not need special master move operations. It’s main target ap-
plication is chatting but we believe that it can be used for other applications
with similar reliability requirements. The system has a thorough failure detection
mechanism that keeps the overhead for failure handling very low, while at the
same time handling the most common failure scenarios. Our approach handles
short disconnections, as this is a common phenomenon in mobile environments.



Furthermore, failure handling is equally distributed over all nodes. For future
work we will focus on integrating additional communication channels and, hence,
supporting a wider spectrum of applications.

References

1. Y. Amir and J. Stanton. The Spread Wide Area Group Communication System.
The Johns Hopkins University, 1998.

2. K. Birman and R. Cooper. The ISIS project: real experience with a fault tolerant
programming system. In EW 4: Proceedings of the 4th workshop on ACM SIGOPS
European workshop, pages 1–5, New York, NY, USA, 1990. ACM.

3. K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Trans. Comput. Syst., 17(2):41–88, 1999.

4. G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications:
a comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

5. S. Ericsson. SDK 2.5.0.3 for the Java ME Platform. http://developer.

sonyericsson.com/wportal/devworld/article/java-sdk-versionhistory,
2010. [Online; accessed 28-October-2009].

6. P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M.
Kermarrec. Lightweight probabilistic broadcast. ACM Trans. Comput. Syst.,
21(4):341–374, 2003.

7. R. A. Golding. Weak-Consistency Group Communication and Membership. PhD
thesis, Santa Cruz, CA, USA, 1992.

8. Horus. The Horus Project. http://www.cs.cornell.edu/Info/Projects/HORUS/

index.html, 2009.
9. M. Larrea, S. Arevalo, and A. Fernandez. Efficient algorithms to implement un-

reliable failure detectors in partially synchronous systems. In Proc. 13th Sym-
posium on Distributed Computing (DISC’99), Bratislava (Slovakia), pages 34–48.
SpringerVerlag, 1999.

10. S. Microsystems. Java ME. http://java.sun.com/javame/index.jsp, 2009.
11. S. Microsystems. Java Wireless Toolkit. http://java.sun.com/products/

sjwtoolkit/, 2009.
12. L. Moser, P. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-

papadopoulos. Totem: A Fault-Tolerant Multicast Group Communication System.
Communications of the ACM, 39:54–63, 1996.

13. R. Prakash and R. Baldoni. Architecture for Group Communication in Mobile
Systems. In SRDS ’98: Proceedings of the The 17th IEEE Symposium on Reliable
Distributed Systems, Washington, DC, USA, 1998. IEEE Computer Society.

14. G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group membership in ad hoc
networks. In ICSE ’01: Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 381–388, Washington, DC, USA, 2001. IEEE Computer
Society.

15. A. Schiper. Early consensus in an asynchronous system with a weak failure detec-
tor. Distrib. Comput., 10(3):149–157, 1997.

16. A. Schiper, K. Birman, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314, 1991.

17. C. Seeger, B. Kemme, and H. Wu. SMS based Group Communication System for
Mobile Devices. ACM Workshop on Data Engineering for Wireless and Mobile
Access, 9, 2010.



18. SMSGupShup. SMS Gup Shup Chat. http://www.smsgupshup.com/apps_chat,
2009.


