
Maintaining Replicas in Unstructured P2P Systems

Christof Leng
TU Darmstadt

cleng@dvs.tu-darmstadt.de

Wesley W. Terpstra
TU Darmstadt

terpstra@dvs.tu-darmstadt.de

Bettina Kemme
McGill University

kemme@cs.mcgill.ca

Wilhelm Stannat
TU Darmstadt

Alejandro P. Buchmann
TU Darmstadt

ABSTRACT
Replication is widely used in unstructured peer-to-peer sys-
tems to improve search or achieve availability. We identify
and solve a subclass of replication problems where each ob-
ject is associated with a maintainer node, and its replicas
should only be available as long as its maintainer is part of
the network. Such requirement can be found in various ap-
plications, e.g., when objects are directory lists, service lists,
or subscriptions of a publish/subscribe system.

We provide maintainers with proven guarantees on the
number of replicas, in spite of network churn and crash fail-
ures. We also tackle the related problems of changing the
number of replicas, updating replicas, balancing storage load
in a heterogeneous network, and eliminating replicas left by
crashing maintainers. Our algorithm is based on probabilis-
tic methods and is simple to implement. We show by simu-
lation and formal proof that our algorithm is correct.

1. INTRODUCTION
A common use of peer-to-peer systems is as an object

store. In its role as a client, a peer can create objects that
are stored in the system and inject queries that find objects
with certain properties. In its role as a server, a peer pro-
vides storage capacity for objects and it answers queries for
objects stored locally. If the peer-to-peer network is un-
structured, objects are not placed on any particular nodes.
Queries are forwarded to a subset of all nodes, and each
node receiving such a query request checks whether its local
objects fulfill the query. In comparison, in a structured net-
work each object is placed on a specific node (or subset of
nodes), typically the nodes whose hashed node ids are clos-
est to the hashed value of one or more attributes of the object.
Queries with search keys on these attributes can then be eas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

ily routed to the nodes that contain matching objects. How-
ever, other types of queries are usually not well supported.
In contrast, unstructured networks easily support complex
queries on arbitrary search attributes and any kind of query
language. This allows them to reuse traditional implementa-
tions for query execution and object storage.

In early unstructured systems, search used simple forward-
ing mechanisms such as flooding or random walks, and thus,
were often inefficient or unreliable. Modern unstructured
overlays like BubbleStorm [23] or the similar approach in [9]
provide reliable and exhaustive search even in very large net-
works. These systems use a large number of replicas for
each object placed randomly in the overlay to enable their
search algorithms (typically O(

√
n)). Maintaining the de-

sired number of replicas is challenging as peer-to-peer net-
works are very dynamic with nodes constantly joining and
leaving the system, often by failing silently. If no correc-
tive actions are taken, an object will loose replicas quickly,
spoiling search reliability. Replica maintenance must keep
the number of replicas for each object at the desired level.

In order to find appropriate replica maintenance mecha-
nisms one has to first understand the requirements of the
different applications. The most well-known application for
peer-to-peer systems is file-sharing. In file-sharing scenarios
it might be prohibitively expensive to create many copies of
the files themselves as they are typically large binary objects
such as videos. Thus, they usually have only replicas at few
nodes. Instead, what is widely replicated are file descriptors
and directory lists. A file descriptor contains the file id and
a set of attributes describing properties of the file. A direc-
tory list contains for a peer the file ids of the files it stores.
A user who wants to find files with certain properties first
poses a query over the file descriptors retrieving the file ids
of matching files. Then it poses a query over the directory
lists to find the peers that store the matching files. Finally, it
connects to these peers to download the files.

Although looking similar in concept, file descriptors and
directory lists have different requirements regarding their life-
time. The directory list of a node should only exist in the sys-
tem as long as this node is up and running. When the node
leaves, all the copies of its directory list should disappear
as the node cannot serve any file requests anymore. When

a peer joins the system, its directory list should be posted
again. In contrast, the file descriptors should always remain
in the system independently of which peers are currently up
and running. With this, we identify two types of replica
maintenance: collective and maintainer-based. In the col-
lective mode, sustaining the desired number of replicas is the
shared responsibility of all nodes. In the maintainer-based
mode each object has a single node, called the maintainer,
that is responsible for sustaining its replication degree. If
a maintainer leaves the network, its objects should cease to
exist. In the above example, the file descriptors might use
collective maintenance while the directory lists should use
maintainer-based maintenance.

Collective replication has been a subject of research al-
ready (see Section 8) but the maintainer-based approach is
a new category. There are many more applications for the
maintainer-based approach beyond file-sharing. For exam-
ple, nodes might want to publish service lists, indicating
the services they provide, and users query the system for
nodes that offer certain services. In this case, the lifetime
of the replicated object, namely the service list, is tied to
the lifetime of the node offering these services. A dual to
the query/store paradigm is the publish/subscribe paradigm.
Here, a node puts out a persistent query, called subscrip-
tion, which represents a request to be notified about cer-
tain events. For instance, a subscription could be “report
Air Canada flights arriving in New York”. When an event is
published, all the subscriptions that match this event must be
found. Thus, in some sense, the roles of data and query have
been flipped; the query is persistent and replicated instead of
the information. However, subscriptions are only relevant as
long as the subscribing node is connected. They should be
removed when the node leaves the system.

The question arises whether maintainer-based replication
needs a special solution or can be modeled as a special case
of collective replication. We argue for an independent solu-
tion as a maintainer-based approach has very different needs
and implementation options. Subscriptions and service lists
should disappear from the overlay quickly after the departure
of their owner while collective replication should ensure that
objects remain in the system no matter which set of nodes
leaves. Manually deleting replicas on departure seems an
obvious solution, but crashing nodes would not execute this
leave algorithm. The resulting outdated junk replicas must
be eventually removed. It is here that our solution departs
significantly from collective replication.

Furthermore, maintainer-based replication solutions can
take advantage of the existence of the maintainer. For in-
stance, concurrent updates are not a problem because the
maintainer can be used to serialize them. Also, the main-
tainer can easily keep track of nodes holding replicas. This
makes it easy to update objects in place and to delete objects
before a planned departure. Finally, a maintainer ensures
that not all replicas of the maintained object disappear (it
stores one itself). This provides durability.

Motivated by above discussion, this paper proposes a com-
plete solution for maintainer-based replication in unstruc-
tured peer-to-peer networks. A particular challenge is that
churn (i.e. continuous changes in the network configuration)
is a major issue in peer-to-peer systems. Any solution must
cope with frequent joins and leaves (voluntary or by crash),
intermittent connectivity, and lost messages. Our general ap-
proach to this challenge is to adopt probabilistic methods
that offer guarantees with high probability but do not block
or leave inconsistencies in case of failures. The paper splits
the discussion in several sub-topics.

Section 4 will discuss how to preserve the replication de-
gree for valid objects, i.e., objects whose maintainer is on-
line. We express the desired replication degree for an object
in terms of density, i.e., the percentage of online peers in the
network that should have a replica. Maintaining the replica-
tion density requires action when the network configuration
changes. Additionally, maintainers have the ability to dy-
namically increase or decrease the desired density of each of
their objects with little overhead. This property is important
as the desired replication could depend on the popularity of
the object or the type and size of the network.

Then, Section 5 discusses how to clean up replicas from
leaving maintainers. While voluntarily leaving maintainers
can actively eliminate their object replicas, the object repli-
cas of crashed maintainers remain as junk. Our solution lim-
its the amount of junk left in the system. We do this by let-
ting each peer periodically flush its stored replicas and load
new replicas. Although this seems expensive, our analysis
shows that the overhead is quite acceptable. Furthermore,
this section outlines why the more traditional approaches,
such as storage leases or ping-mechanisms will not work
well in peer-to-peer overlays with no reliability guarantees.

Section 6 presents additional functionality in our system.
First, we discuss how updates can be performed in the sys-
tem. We do this in place. Second, we show how the ap-
proach handles a heterogeneous environment where nodes
can specify their capacity. Only powerful nodes will be-
come peers storing replicas, and their capacity will deter-
mine the number of replicas the peer will store. Still, even
weak nodes which cannot become peers due to insufficient
storage or bandwidth capacity can be maintainers, pushing
their objects into the system. Section 7 examines a simu-
lated implementation of our solution. The results confirm its
correctness and give insight into the performance costs.

In summary, our solution for maintainer-based replication

• keeps the replication degree at the desired level;

• can dynamically adjust the replication degree;

• eliminates replicas of offline maintainers over time and
bounds the total amount of such junk;

• allows objects to be deleted and updated;

• balances load even in heterogeneous environments.

2. MODEL AND ASSUMPTIONS
In our model of an unstructured peer-to-peer network, any

node can create objects that are then replicated in the system.
These replicas must be maintained until that node leaves,
whereupon all replicas should disappear. Each node with at
least one associated object is called a maintainer. Maintain-
ers are responsible for creating the initial set of replicas for
their objects. They can decide to change the replication den-
sity of each of their objects at any time. An object can be
changed or deleted by its maintainer.

We further distinguish between peer and client nodes. A
peer is a node willing to store object replicas and provide
processing capacity to run queries over its replicas. In con-
trast, a client does not contribute storage space or processing
power. The reason to let a node opt out of being a peer is
that many nodes come with too little bandwidth or process-
ing capacity to perform peer tasks. Nevertheless, we want
to allow them to be maintainers (post their objects) and pose
queries on the objects in the system.

Our solution requires the underlying infrastructure to pro-
vide certain functionality. First, we require a mechanism that
computes distributed sums and maxima. We use these to es-
timate a few global statistics, e.g., the number of peers in the
system and the maximum desired replication density. There
exists substantial prior work [13, 16, 18] for providing these
services. We must also be able to independently sample
nodes with uniform probability. Biased random walks [2, 8]
are one solution. Finally, we require a push algorithm for
injecting replicas onto many peers at the same time. In our
solution, the maintainers use this algorithm whenever they
create an object or increase replication.

3. BUBBLESTORM EXAMPLE
As an example unstructured peer-to-peer network, con-

sider the BubbleStorm system [23]. Peers are interconnected
by a random graph. Whenever an object is created, a set of
object replicas, called the object bubble, are pushed onto ran-
dom peers using the bubblecast algorithm. When a query is
posed, it is likewise pushed to a random set of peers, called
the query bubble. Each peer in the query bubble checks
whether it holds object replicas that match the query. By
making both the object and query bubbles large enough, the
probability is very high that for any object that matches the
query, the query and object bubbles overlap on at least one
peer. Bubble sizes are normally on the order of the square
root of the number of peers, depending on query frequency
and object type. For instance, for a network of 1000000, an
object bubble of 3000 and a query bubble of 3000, the proba-
bility to reach an object replica is nearly 99.99%. Using this
technique, BubbleStorm achieves quite reliable search with a
much lower overhead than traditional unstructured networks.
However, BubbleStorm does not properly maintain the ob-
ject bubble’s required replication degree under churn. Our
work presented here will close this gap.

BubbleStorm uses a gossip protocol in the spirit of [13]
that is able to provide the sums and maxima we require.
Furthermore, BubbleStorm already has a push mechanism to
efficiently create replicas on nodes at random. BubbleStorm
will serve as a running example during our discussion. How-
ever, our solution also applies to other modern unstructured
networks such as [9, 20].

4. MAINTAINING REPLICATION
When a maintainer creates a new object, it decides on its

replication degree d and pushes d replicas into the network
using the system’s push algorithm. Thereafter, this level of
replication must be maintained as long as the object is valid,
i.e., until the object is deleted or the maintainer leaves the
network. This section looks at this maintenance task.

If there were no crashes in the system, replica mainte-
nance would be easy: Before leaving, a peer contacts the
maintainers of object replicas it stores and these maintainers
create replacement replicas. Similarly, when a maintainer
leaves it informs all replica holders to delete their copies.
However, node crashes and intermittent network disconnec-
tions are very frequent in peer-to-peer systems, making any
such agreement or coordination protocol complex and costly.

Thus, our solution follows a different strategy based on
probabilistic methods. Instead of trying to keep a fixed num-
ber of replicas, maintainers hold the probability distribution
of replication fixed. Maintainers express their desired repli-
cation in terms of an object density, p. Every object can
potentially have a different density. The density is the per-
centage of peers which should store a replica of the object.
If there should be d replicas and n peers in the system, then
the desired density of an object is p = d/n. As long as
the system remains in an equilibrium (i.e., churn occurs but
n remains roughly the same), keeping the density at p will
lead to the desired number of replicas. Given a fixed density,
our algorithm causes replication to grow linearly with the
system size, which is undesirable for some systems. There-
fore, density can be changed dynamically. For instance, for
the BubbleStorm system it could be adjusted as a function
of system size n, i.e., p = 1/

√
n. Density could also be ad-

justed with changing document popularity or with the time
of day. But we assume that it does not fluctuate excessively.

Replica maintenance must keep the object density at the
requested level. This entails distinct tasks. First, a given ob-
ject density has to be preserved when peers join or leave the
system. Second, when the maintainer increases (decreases)
the density p of an object, replicas must be created (deleted).
In the following, we describe these tasks in detail.

For now, we assume that all nodes have equal capacity and
participate as peers. We remove these restrictions in Sec-
tion 6. When peers have the same capacity, each peer stores
on average the same number of replicas. Thus, if the density
of an object is p, then the probability that an arbitrary peer
stores a replica of the object is also p.

4.1 Peers: Preserving Replica Density
Leaving Peers. Leaving peers are a simple case since
nothing needs to be done. Although the system loses replicas
residing on the peer, the expected density p of each object
remains the same, because every remaining peer still has a
replica with probability p.

Having nothing to do on peer departure is attractive. As-
sume corrective actions were required. Since a crashing node
by definition does not perform any actions when it leaves,
such corrective actions would need to be initiated by surviv-
ing nodes, for example, by the maintainers of the replicas
that just disappeared. This would require pings or a similar
technique to detect the missing replica. Until the reparative
measures are taken, correctness is compromised. To mitigate
this effect, pings would need to be frequent, which is ex-
tremely costly when there are many replicas. Recall that the
BubbleStorm scenario maintains in the order of

√
n replicas

per object. Furthermore, transient network failures could in-
terfere with replica failure detection. Transient failures are
discussed in more detail in Section 5.2.

Even if peers could execute a proper exit procedure, this
is not really beneficial. Assume, for example, they inform
maintainers about their departure. As they store replicas for
many maintainers, this could be time consuming. When a
user quits a program or closes the laptop, there is little time
available for a clean exit. Reliably informing maintainers of
termination is also impossible. The peer cannot distinguish
a crashed maintainer from a live maintainer with a transient
failure and must block indefinitely. If the peer gives up af-
ter some timeout, this is no different from a crash. By not
requiring leaving peers to act, we avoid these concerns.

Of course, leaving peers decrease the total number n of
peers in the system, if new nodes don’t join with the same
rate. In the case of an actually decreasing n, maintainers
might eventually change the requested density. However,
this happens lazily. Maintainers are periodically informed
about changes in n through the distributed sum calculation
and without the need to know which peers exactly have left
or whether these peers held replicas of their objects.

Joining Peers. In principle, if a peer leaves the system
and rejoins, it could retain the replicas from its previous
membership. However, in the maintained scenario, this has
little benefit unless a peer is down for very short time. If a
peer is offline for more than the median uptime, more than
half of its replicas are junk, i.e., from maintainers who have
left during the downtime. In practice, according to [19, 22]
peers have a median online time of approximately 60 min-
utes while 2/3 of all peers did not return online within a
month. Additionally, as maintainers can update or delete
objects, even replicas from still live maintainers might be
obsolete. Thus, in our approach each peer joining the sys-
tem receives a completely new set of fresh replicas.

In contrast to the initial push of replicas when an object
is created, assigning replicas to newly joining peers uses a
pull strategy. In particular, when a peer v joins the system,

/ / upda ted by u n d e r l y i n g s y s t e m :
m = sum (1) / / sum over a l l m a i n t a i n e r s
n = sum (1) / / sum over a l l p e e r s
maxp = max (p) / / max over a l l d e n s i t i e s

f (p) : re turn c e i l (l n (1−p) / l n (1−1/m))

Upon j o i n i n g ne twork : / / by j o i n i n g peer
x = f (maxp) ;
f o r i i n [0 , x) :

send p u l l (i , myAddress) t o random m a i n t a i n e r ;

Upon r e c e i v i n g p u l l (i , add r) : / / by m a i n t a i n e r
f o r o b j i n o b j e c t s m a i n t a i n e d :

i f i < f (o b j . g e t p ()) :
send (o b j) t o add r

Figure 1: Replicate on Join Algorithm

it must preserve the density of every valid object. Thus, for
an object o with density p, peer v must create a replica of
o with probability p. A brute-force approach would contact
all maintainers and pull replicas of objects according to their
required densities. Clearly, this is not scalable. Instead, we
contact only a random subset of maintainers and replicate
all of their objects. The question is how many maintainers
to pull to preserve the density of objects in the system.

Assuming for the moment that all objects have the same
density p, the number of maintainers to pull f(p) depends on
density p and total number m of maintainers in the system.
A replica is created if and only if its maintainer is pulled. An
object o is not replicated with probability,

P(maintainer of o not pulled) =
(

1− 1
m

)f(p)

Set f(p) = ln(1−p)/ ln(1−1/m) ≈ pm then this probability
is 1− p. Thus, a replica of o is created with probability p.

In our join algorithm (Figure 1), a joining peer v calcu-
lates the number x = f(maxp) of maintainers to pull using
the maximum density of all objects in the system. Then it
sends pull requests to maintainers. Since it calculates the
number of maintainers to be pulled using the maximum den-
sity, we have to be careful to not transfer too many replicas to
the joining peer. For an object with density p < maxp, less
than f(maxp) maintainers should have been pulled. There-
fore, the pull request includes how many other maintainers i
were already contacted. Then, for an object with density p,
a maintainer only sends the object when i < f(p).

The algorithm described holds the probability distribution
of replication degree fixed. In the Appendix we prove that
any sequence of peer join and crash/leave events causes the
replication distribution for an object with density p to con-
verge to the binomial distribution Bn,p. In practise, this
means the expected number of replicas is np as required
and the standard deviation is ≈ √

np. When many replicas
are required, it is quite likely the actual number of replicas
is close to the required replication. At least for the Bub-

bleStorm system, this level of variance is acceptable and
does not impact correctness. For systems requiring very few
replicas, this variance might be too high, and ping methods
are correspondingly cheaper. Thus, our solution is most ap-
plicable for systems with replication degree above 20.

4.2 Maintainers: Increasing the Density
The existence of a maintainer makes it easy to increase

p. If p should be increased to q, the maintainer can create
new replicas using the system’s push algorithm. Assuming
that pushed replicas can collide with each other and with old
replicas, the new chance that a peer has a replica is,

1− (1− p)
(

1− 1
n

)x

= q when x =
ln(1−q)− ln(1−p)

ln(1− 1
n)

Therefore, x replicas have to be pushed to peers to reach the
new density. The resulting distribution will not be binomial.
Nevertheless, over time the distribution will again converge
to the binomial. Until then, the distribution has less variance.

4.3 Maintainers: Decreasing the Density
To decrease the replication from p to q, replicas must be

eliminated. Suppose that every peer flips a coin with heads
probability q/p. Peers with a replica keep it on heads (doing
nothing) and delete it on tails. Peers without a replica do
nothing. Peers now have a replica with probability p∗q/p =
q; the density has been correctly decreased.

We want to achieve exactly this behaviour but initiated by
the maintainer. The maintainer could flip the coin for each
peer and tell it to delete or keep the replica and the result
would be the same. As an optimization, if the peer should
do nothing, the maintainer does not need to notify it. Thus,
the maintainer needs to contact only those peers that have a
replica that should be deleted according to the coin toss.

For that purpose, the maintainer keeps a list of all peers
which might have a replica. To build the list, a maintainer
records the names of peers it pushes copies to. Also, joining
peers pull their replicas directly from maintainers, allowing
the maintainer to add them to the list. When p should be
decreased, the maintainer flips a coin for each entry in the
list and only contacts peers that should delete the replica.

When peers leave, the list is unchanged and remains a su-
perset of peers with replicas. This does no harm because
sending a delete request to an offline peer has no effect. If a
peer in the list leaves and rejoins the system, it discards all
the replicas of its old membership. If the maintainer asks it
to delete the replica, it can simply (and correctly) ignore the
request. It is easy to show that this mechanism converts the
binomial distribution from Bn,p to Bn,q .

For efficiency reasons the list should not contain a large
fraction of peers that don’t have replicas. Therefore, the
maintainer regularly uses ping to check if replicas still exist,
and shortens the list accordingly. This is correct as departed
peers do not rejoin with replicas. Our simple rule of thumb
is to ping whenever the list doubles in size.

In case of message loss or temporary disconnection the
maintainer might remove peers from the list while in fact the
peer is up and still has a replica. In this case, the system
is over-provisioned, having more replicas than the requested
density would imply. Such inconsistencies will be elimi-
nated by the flush policy described in the next section.

5. CONTROLLING JUNK
Replicas need to be eliminated from the system when the

maintainer goes offline. We call replicas with an online
maintainer valid; the rest are junk. Junk not only costs peers
storage space and traffic, but might also appear in query re-
sults. Junk cannot be completely avoided due to the unreli-
ability of the peer-to-peer network. However, the amount of
junk must be controlled.

Our approach provides a probabilistic bound on the junk
in the system. For that we introduce the goodness factor
g ∈ (0, 1). The parameter controls the desired percentage
of valid replicas a peer stores on average. For instance, if
g = 0.8, then on average 80% of replicas a peer stores are
valid. When g is used as a system-wide parameter, then 1−g
is the expected percentage of junk responses to a query. As
junk accumulates, we have to remove it in order to keep it
at the desired proportion. The goodness factor is a tradeoff
between the overhead of removing junk and seeing an unac-
ceptable high rate of junk appearing in query results.

5.1 Maintainers: Delete on Leave
Maintainers should delete replicas before leaving if they

can in order to not produce unnecessary junk. We refer to
this as a clean leave. Maintainers already know which peers
store their replicas, so this is easy to implement. Unlike the
converse situation where we rejected action on peer depar-
ture, here the deletes do not need to be reliable. Some or
all of the delete messages can be lost, creating junk, but not
compromising correctness. Thus clean maintainer departure
can be very fast, sending unacknowledged delete requests to
as many replica-storing peers as there is time to contact.

5.2 Peers: Periodically Flush
Crashing maintainers leave all their replicas in the system.

Thus, junk accumulates over time. Unfortunately, maintain-
ers often fail silently, so a peer can never know exactly which
replicas are junk. A conventional eviction scheme might
simply use pings as a failure detection mechanism. Using
a ping a peer checks if a replica’s maintainer is online and
evicts the replica if the ping does not return. Within a peer-
to-peer setting, however, such failure detection mechanism
is very unreliable. It would eventually bias the system to-
wards preferentially storing replicas from either reliable or
short-lived maintainers. The problem is that an intransient
network failure could cause the peer to incorrectly conclude
that the maintainer is down. This false deduction will never
be corrected, because once the replica is removed, neither
party will place that replica onto the peer again. Temporary

failures thus become permanent failures. For particularly
long-lived maintainers, these errors will slowly accumulate,
decreasing the replication degree.

Thus our solution takes the simple but effective approach
of flushing all replicas from long-lived peers (those who have
enough junk to warrant action) and letting them re-execute
the replica loading algorithm. This approach has less over-
head than it appears at first view. Firstly, maintainer-based
objects are typically small and relatively cheap to replace;
e.g. service lists or subscriptions will rarely be larger than
a few KB. Furthermore, junk is created by maintainer crash
churn. Normal peer churn is probably significantly faster,
implicitly flushing all replicas from affected peers (recall
that a leaving peer removes all its replicas before rejoining).
Thus, only long-lived replicas introduce additional overhead.

With this approach, we side-step the issue of temporary
failures becoming permanent, not by making the system re-
liable, but by making the system forget. A transient failure
could still cause the peer to miss a replica it should have
stored, but on its next attempt it has a fresh chance to store
it. Section 5.3 and the simulations show that our intuition is
correct and flushing small objects is relatively inexpensive.

A junk eviction policy must also determine when to evict
replicas. One could associate a lifetime with replicas or flush
replicas from peers with a certain frequency. However, if the
system behaviour changes old timers no longer maintain the
correct junk level. Therefore, we observe the junk level and
flush accordingly. The idea is as follows. Each peer es-
timates the number of replicas D =

∑
o po, po being the

density of object o, that the peer is supposed to store. On-
line maintainers know the density of objects they maintain,
so this sum can be periodically calculated using a sum over
the maintainers. Furthermore, the peer keeps track of the
number of replicas it actually stores. With this, it can esti-
mate the percentage of junk it has. A naı̈ve approach would
now evict junk once the junk level exceeds some threshold.
This is nearly the approach we take, but there is a subtle con-
dition for correctness. By reloading replicas after flushing,
we obtain a replica of object o with probability p. To keep
the density unchanged, we must also have had a replica with
probability p before flushing. This is only true if peer v’s
decision to flush is independent of the replicas it stores (*):

P(o loses replica | v flushes) = P(v stores o | v flushes)
∗= P(v stores o) = p

Simply flushing when the threshold is reached is unsafe be-
cause peers with the most replicas flush first. So when v
flushes, it is more likely to be storing a replica of o and in-
dependence is lost. For this reason we use a two-bucket ap-
proach. Objects are randomly assigned either type #1 or #2
(e.g., using the last bit of a hash of the identifier). When a
peer receives a replica of a type #1 (#2) object it stores it in
bucket #1 (#2). When it has to delete a replica it removes
it from the according bucket. This division makes it safe to
use the traffic flow through bucket #1 in determining when

to flush bucket #2 and vice versa. That is, when one bucket
reaches the threshold, we flush the other bucket.

The threshold equation is quite simple to derive. We want
to bound the junk j, j being the replicas that are not valid,
such that the goodness factor g is met. We expect each
bucket to have half of a peer’s replicas. Let r be the number
of replicas in one bucket. The bucket contains the expected
D/2 valid replicas plus the junk j, i.e., r = D/2 + j. The
goodness factor g requires that g ∗ r, i.e., g(D/2 + j) repli-
cas are valid on average. As the bucket has D/2 replicas,
we have D/2 = g(D/2 + j), which can be rewritten as
j = D/2(1/g − 1). We set the threshold when twice the
desired junk is reached, so that the average will be correct.
Thus, we flush when r = D/2 + 2j = D/g −D/2.

We also consider that the measurement D of the number
of replicas a peer is supposed to store arrives with a time lag.
It reports the value which was correct when the calculation
started. In order to take this into account, we compare it to
equally old junk information.

5.3 Cost Analysis
Flushing is surprisingly cheap. Consider counting every

object transfer, which seems a reasonable metric. Any sys-
tem which preserves the replication degree, must create new
replicas when peers join the system, and thus transfer at least
as many objects as ours. The same argument applies when
the density is increased. However, flushing and reloading
adds additional transfers to recover flushed valid replicas.

To measure this cost, consider a system where only nec-
essary transfers occur. Initially, peer v pulls an average D/2
replicas into bucket #1. Thereafter, v receives x replicas
from maintainers performing a push. Unfortunately, v now
decides to flush, wasting transfers. For simplicity, assume
v again pulls D/2 replicas and receives x pushes before
its next flush. Before the F th flush, peer v has performed
F (D/2 + x) transfers, when only D/2 + xF were needed.
Letting F grow, the percentage of wasted transfers is,

F (D/2 + x)
D/2 + xF

−1 =
D(F − 1)
D + 2xF

≈ D

2x
, amortized for large F

To make this equation useful, we need to find x. Suppose
that for every object created, another object is on average
deleted. This is the case for a network in equilibrium. Peer
v saw x pushes, so it should also have seen x deletes. How-
ever, if c is the percentage of maintainers which crash (and
thus don’t delete their replicas properly), peer v’s bucket
has j = cx junk replicas when it flushes. When v flushes,
j = D(1/g − 1). Solve for x to find the overhead is,

Percentage of wasted transfers ≈ D

2x
=

c

2/g − 2

For example, consider g = 0.8, requiring 80% of replicas
to be valid. With no crashes (c = 0), there is no overhead.
With 10% crashes, the overhead is 20% on the longest lived
peers. The reality will be even better, because most peers
have a much smaller F than infinity.

6. EXTENSIONS
This section briefly discusses some extensions to the base

algorithm that we consider both useful and easy to add.

6.1 Update in Place
Given that each valid object has a single live maintainer,

updates can be easily controlled by the maintainer. Dele-
tion is considered a special case of an update. Although in
most applications, the maintainer will be the only node up-
dating its objects, others can be allowed to update by simply
sending their update requests to the maintainer. By tagging
each object with its maintainer’s address, the maintainer of
an object can be found easily.

As maintainers keep a list storing a superset of the peers
with their replicas, we can take advantage of this list for up-
date management. Whenever an update occurs, the main-
tainer sends the update (or the changed delta) to all peers on
the list. In principle, this updates all replicas in the system.
However, recall that maintainers ping peers to see if they are
still alive, and if they can’t be reached, delete them from the
list. If a transient network failure occurs, then the maintainer
might incorrectly remove a peer from the list and later fail to
update it. This leaves temporarily inconsistent replicas in
the network. However, all peers eventually either leave the
system or flush. Thus, inconsistent replicas will eventually
be removed, guaranteeing eventual consistency.

6.2 Heterogeneity
Usually not all peers have the same capacity. Thus, peers

should have the possibility to only provide as much service
as their capacities allow. In some unstructured systems [23],
peers can control their relative load. To support this, every
peer v picks a capacity `v , such that if one peer has twice
the capacity of another, it can store approximately twice as
many replicas (and serve requests on these replicas).

To be compatible with this approach, our replica mainte-
nance algorithms require four changes. First, the sum over
all capacities, L =

∑
v∈V `v , must be computed. The dis-

tributed sum-calculation algorithm can be used for that pur-
pose. A peer v’s relative capacity is thus h = n`v/L. Sec-
ond, the push algorithm has to be adjusted. When all peers
have the same capacity, the push algorithm should choose
each peer with the same probability 1/n. In a heterogeneous
setting, in contrast, it should choose a peer v with relative
capacity h with a probability of h/n. Similarly, the pull al-
gorithm has to be adjusted. A joining peer must pull replicas
with probability ph instead of p. To effect this, we have to
change f(maxp) to f(h ∗maxp). Finally, the flush thresh-
old must substitute rh/g for r/g.

6.3 Client Maintainers
In hierarchical super-node networks, some participants are

clients behind a NAT; they can establish outbound connec-
tions, but not receive inbound connections. This means that
if they need to talk to some peer in the system they can es-

tablish a connection. However, other nodes cannot directly
connect to them. To use the system, a client connects to
some peer which then operates as a proxy or super-peer, ex-
ecuting queries for the client. This connection remains until
either the peer or the client leave the system.

Clients should maintain their objects themselves, as they
might outlive their proxy. We can support client maintain-
ers in such a super-node network without any adjustments
to our algorithms. We assume the underlying network al-
ready supports a client-initiated replica push. To preserve
those replicas, joining peers must be able to pull replicas
from client maintainers. According to Figure 1 new peers
send messages to random maintainers, i.e., they must reach
also the clients that are maintainers. These random main-
tainers are found by the sampling algorithm of the underly-
ing network which are typically based on random walks. As
clients are connected to the network via their proxies these
random walks can already traverse these client-peer edges.
Thus, clients can be found without the need for a direct con-
nection to them. Thereafter, a client maintainer receiving a
pull request must send its object replicas to the joining peer.
Although this is a direct connection, it is not a problem as
the client maintainer initiates the connection to the peer.

As peers take no action on leave, we again avoid the need
to connect directly to maintainers. When maintainers leave,
they can send delete requests to peers as these are outgo-
ing connections. Similarly, they can initiate update requests.
Thus, clients can perform all maintainer tasks.

7. SIMULATION
To validate the combined algorithms, we implemented a

simulator which manages replicas but abstracts away the un-
derlying network. By assumption in Section 2, the system
provided a push algorithm for placing replicas. We imple-
ment pushes by storing replicas on random peers.

Except when the network changes size, the simulation is
a renewal process. When a node’s lifetime expires, it leaves
and is immediately replaced by a new node. Simulated nodes
have the lifetime distribution measured in Gnutella by Saroiu
et al. [19] and fitted in [23], with a median lifetime of 60
minutes. This distribution is extremely heavy-tailed; some
nodes are very long-lived, but most are short-lived.

The simulator distinguishes between peers and maintain-
ers. Conceptually, all maintainers are clients which do not
store any replicas. This allows us to separate the effects of
maintainer churn and peer churn. In most experiments, there
are half a million peers and half a million maintainers, re-
flecting the enormous size of real-world P2P networks. Un-
less otherwise stated, each maintainer provides one object
with density p = 0.02%.

7.1 Convergence
In the first experiment (Figure 2(a)) we confirm that the

replication degree distribution converges to the binomial dis-
tribution. Maintainers push out their initial replicas and then

 0

 10000

 20000

 30000

 40000

 50 60 70 80 90 100 110 120 130 140 150

do

cu
m

en
ts

replicas

0:10h

0:30h

1:00h

2:00h
Bn,p

(a) Object replication

 0

 10000

 20000

 30000

 40000

 50 60 70 80 90 100 110 120 130 140 150

pe

er
s

replicas

0:10h

0:20h

0:30h

2:30h
Bd,p

(b) Peer load

Figure 2: Convergence under theoretical conditions

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200

do

cu
m

en
ts

replicas

replication
Bn,p

(a) Realistic convergence

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 15 30 45 60 75 90

re

pl
ic

as

time (h)

peers join peers leave maint’s join maint’s leave p increase p decrease

replication degree

dead entries

(b) Under extreme conditions

Figure 3: Replication in steady-state and under massive peer, maintainer, and density changes

stay online forever. As peers flush replicas and join and leave
the system, replicas are discarded and pulled. As proven in
the Appendix, this should cause the number of replicas per
object to converge to the binomial distribution. After ten
minutes, the replication has converged completely.

The second experiment (Figure 2(b)) changes the perspec-
tive to the peer’s point of view. In order to measure valid
replica load only (without junk), maintainers do not crash in
this test but always exit cleanly. Furthermore, peers neither
leave nor flush, because this would reset their load. Upon
joining the network, a peer pulls f(P) replicas. Under these
restrictions, the load per peer quickly converges towards the
binomial distribution with a mean of 100 replicas.

While the last two simulations validate our analysis, it is
interesting to test somewhat more realistic scenarios. Aside
from making both maintainers and peers subject to churn,
50% of maintainer leaves are crashes where replicas are not
deleted. Over time, junk replicas build up at peers and need
to be flushed. We set the goodness factor to 80%, allowing
20% of replicas (25 per peer) to be invalid. Instead of one
object per maintainer, we assign the half million objects to
a reduced total of 125000 maintainers, uniformly at random.
Thus, maintainers are responsible for 4 objects on average,
but some have more and others less.

The system relies on several collectively computed sums.
They are used in the pull and push algorithms and the flush
threshold. Imprecise values could affect the correctness of
the system. Hence we add a simple simulation of the gossip
algorithm [13]. Every 5 minutes the summed values are up-
dated, not with the current value, but with the value it had 5
minutes ago. This reflects the time that the gossip algorithm

needs to converge. We will see from the results that this does
not affect the correctness of our algorithm.

First, compare the replication degree in Figure 3(a) to the
previous artificial settings in Figure 2(a). The more realis-
tic distribution is narrower than the binomial. This is due to
maintainers leaving and rejoining the network, which resets
their replica counts with the push algorithm. Thus, the real
distribution never completely converges away from the ini-
tial state, and more objects are close to 100 replicas than in
the binomial distribution.

If only considering the valid replicas stored, the load (Fig-
ure 4(a)) converges completely to the predicted binomial dis-
tribution. Taking junk into account, the actual load of peers
is 25% higher (1/g = 1.25) and more spread out. The vast
majority of peers carry junk of no more than 50%, showing
the junk control algorithm from Section 5 effective.

7.2 Effect of large-scale Events
To test system performance under extreme conditions, we

make some unrealistic but challenging changes to the envi-
ronment. These include sudden changes in peer count, ob-
ject count, and object densities. Peer capacities have the het-
erogeneous distribution from [23].

Figure 3(b)) shows the average replicas per object and
the average dead entries in a maintainer’s object replica list;
dead entries correspond to peers that no longer store a replica
or have left. Figure 4(b) shows the total replicas a peer stores
(its load) and the junk replicas per peer.

The network starts with 250000 peers. Over the first 5
hours, 62500 maintainers carrying 250000 objects join. Each
object has a replication degree of 100, and the load on peers

 0

 4000

 8000

 12000

 16000

 20000

 0 50 100 150 200 250

pe

er
s

replicas

Bd,p

valid

total

(a) Realistic convergence

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 15 30 45 60 75 90

re

pl
ic

as

time (h)

peers join peers leave maint’s join maint’s leave p increase p decrease

peer load

junk

(b) Under extreme conditions

Figure 4: Peer load in steady state and under massive peer, maintainer, and density changes

 0

 1

 2

 3

 4

 5

 0 15 30 45 60 75 90#
op

er
at

io
ns

 /
(p

ee
r

*
m

in
)

time (h)

peers join peers leave maint’s join maint’s leave p increase p decrease

obj transfer
ping
push

delete
pull

Figure 5: Network operations under extreme conditions

grows with the number of objects to a final value of 100
replicas. Maintainer crashes cause junk to begin accumu-
lating. There is an overshoot in the junk as the peers syn-
chronously approach the flush threshold. After the first round
of flushes the synchronization is dissolved.

After 15 hours another 250000 peers are added to the sys-
tem. The average load initially drops because new peers do
not yet carry any junk. Due to the pull on join approach,
replication degree immediately adjusts to the new situation
by doubling. The doubled replication pushes the replica list
of many maintainers past their ping threshold, leading to an
initial dip in the number of dead entries after cleaning up.

After another 15 hours, the new peers leave the network
permanently. The load of the remaining peers is unaffected.
Replication of objects drops back to 100 automatically. The
peers leave behind a large number of dead entries, which are
cleaned up by the maintainers over time.

At 45 hours 62500 additional maintainers join the net-
work, doubling the number of objects. Their initial push
immediately sets the objects’ replication to the correct value.
The flushing of peers gets synchronized again because they
increased their threshold simultaneously. As in the initial
overshoot this is cleared after a round of flushing.

The new maintainers depart 15 hours later. Replication
degree of the remaining objects is unaffected. The peer load
drops when leaving maintainers delete their replicas, but the
junk initially increases as half of the maintainers crash in-
stead of leaving properly. This triggers the flush threshold of
all peers and removes all junk from the system. Afterwards
the junk builds up again, including some barely visible wavi-
ness from the synchronization.

Such an eager cleanup after large crashes might be un-
desirable in a real implementation. It would cause a traf-
fic spike immediately after catastrophic network failures and
bring the system even closer to collapse. There are simple
solutions against this problem. When peers detect a large
drop in the density sum (obtained through the summation
protocol), they can defer their flushing by random delay.
This would smooth out the traffic and result in a lazy junk
adjustment similar to when replica population increases. For
a clearer understanding of the algorithm’s behaviour we have
not included this enhancement in the simulation.

After 75 hours we try changing object density on-the-fly.
Half of all objects are selected randomly and their density is
tripled. The maintainers push out new replicas to provide the
desired replication degree. As the network now has hetero-
geneous densities, the variance of replication increases. In
fact, there are two binomials, one for the large density and
one for the small. At 90 hours, the densities are reset. The
behaviour is similar to the maintainer population changes.

Figure 5 shows the network operations used during the
test. For readability the values are averaged over ten min-
utes. The plot includes the number of object transfers, peers
pinged by maintainers, replicas pushed and deleted by main-
tainers, and maintainers pulled by peers. Under normal con-
ditions, a peer sees approximately 5 operations per minute.
In a real system the object transfers (∼40% of all operations)
would probably dominate the bandwidth requirements. Even
the extreme events only push the traffic to 25-45 operations
per minute, still very reasonable.

Ping frequency starts to oscillate in Figure 5. This hap-
pens when many maintainers are added with an empty dead

entry list or change their ping threshold due to simultane-
ous density changes. Their ping thresholds are subsequently
reached at more-or-less the same time. The correlation will
slowly disappear and seems unlikely to occur in practise.

In closing, our simulations validate our theoretical analy-
sis and show that the algorithm precisely meets its guaran-
tees, as well as being resilient to extreme network changes.

7.3 Bandwidth Cost Example
The actual bandwidth costs depend heavily on implemen-

tation details and application workloads. However, we can
sketch an example bandwidth cost based on our simulation
results. The message plot shows that in our scenario peers
see on average less than 2 object transfers and 2 pings per
minute. Assume an object is a directory list of files. A list
with 100 file ids 20 Bytes each would be 2KB total. Sub-
scriptions in a pub/sub system would probably be smaller. A
ping message is very small, probably less than 100 Bytes in-
cluding overlay and IP headers. The combined traffic from
2 transfers and 2 pings adds up to 4.2KB/min. The other
message types are even smaller and less frequent.

8. RELATED WORK
We are not aware of any work that considers maintainer-

based replication, which assures that all replicas are removed
from the system when the object maintainer leaves. The
closest approach is described in [17], where the authors pro-
pose a replica placement protocol for unstructured networks
which borrows matching techniques from DHTs. The main-
tainer places object replicas in local minima, i.e., on a peer
v whose identifier is the closest to the object identifier in v’s
neighbourhood. This allows search using random walks to
locate local minima. The maintainer adjusts the number of
replicas according to the average search length. Controlling
junk, updating objects, and heterogeneity are not addressed.

Ferreira et al. [10] address the problem of maintaining k
replicas in an unstructured system from a different direction.
They assume that at least k replicas exist (e.g., through au-
tonomous replication), and develop coordination algorithms
to reduce the number to the desired k. As we assign repli-
cas to peers, we only need to eliminate objects for which the
maintainer has left the system.

In [5, 15] the authors determine that for unstructured net-
works using search techniques such as flooding or random
walks, the average search size is minimized if the number of
replicas for an object is chosen proportional to the square-
root of its request rate. The authors then approximate this
replication rate by placing replicas along the reverse path of
successful random walks. Replicas are discarded by replace-
ment strategies, but no replica update takes place. Searches
will also cost more than if replicas were randomly distributed.
Our approach creates a uniform distribution of replicas and
includes object maintenance. Furthermore, we support any
replication degree, not only the square-root of request rate,
which is only optimal for first-hit semantics.

In [7], Datta et al. discuss a push/pull update propaga-
tion scheme for P2P systems. An update is pushed via con-
strained flooding that only propagates to nodes with repli-
cas and avoids redundant messages. The pull phase allows
nodes to get the latest version of an object after restart. This
work does not consider preserving the required number of
replicas against churn. We could use their epidemic push
propagation instead of our update propagation scheme.

Some systems, such as [11, 14], create and delete replicas
dynamically when demand changes. Decisions to create or
delete replicas are often made locally. This approach is not
appropriate for systems that require a minimum amount of
replicas in the system, such as BubbleStorm [23] and [9].

Path replication has also been proposed for structured sys-
tems [6], where query results are cached on the reverse path.
Akbarinia et al. [1] provide DHT-based replication using k
hash functions to create k replicas for each data item. They
present algorithms to keep replicas consistent despite churn.

[12] analyze when and how many replicas should be kept
within a relatively close community in order to avoid access
to remote content and distribute the load across local nodes.

Large-scale file systems maintain replicas for availabil-
ity [3, 21]. Solutions can be reactive and create new replicas
once too many replicas were lost. Or they could be proactive,
creating new replicas whenever the system is idle in order
to compensate for lost replicas. Most solutions are heavily
based on probing to check replica availability – a mecha-
nism that we try to avoid as much as possible. Furthermore,
all these approaches only look at collective replica mainte-
nance. Thus, in most of these solutions rejoining peers keep
the replicas they acquired during their last memberships as
they usually all remain valid.

9. CONCLUSION
We have presented a solution for maintaining replicas in

unstructured peer-to-peer systems where object lifetimes are
tied to maintainer lifetimes. From a maintainer’s point of
view, it is easy to change replication degree, update replicas,
and operate behind a firewall. From a peer’s point of view,
the solution bounds junk served, distributes load fairly, and
permits crashes. From a system designer’s point of view, the
algorithms are simple to implement and only require build-
ing blocks available in existing literature.

We have proven that replication degree converges to the
binomial distribution over time and that storage load is also
fairly shared/binomial. Simulation results validate that our
implementation is correct and meets the required bounds on
junk. Finally, large-scale peer and maintainer join and leave
events do not appreciably affect correctness.

10. REFERENCES
[1] R. Akbarinia, E. Pacitti, and P. Valduriez. Data

Currency in Replicated DHTs. In SIGMOD, 2007.
[2] A. Awan, R. A. Ferreira, S. Jagannathan, and

A. Grama. Distributed Uniform Sampling in

Unstructured Peer-to-Peer Networks. In HICSS, 2006.
[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M.

Voelker. TotalRecall: Systems Support for Automated
Availability Management. In NSDI, 2004.

[4] P. Billingsley. Convergence of Probability Measures.
Wiley-Interscience, second edition, July 1999.

[5] E. Cohen and S. Shenker. Replication Strategies in
Unstructured Peer-to-Peer Networks. In SIGCOMM,
2002.

[6] F. Dabek, M. F. Kaashoek, D. R. Karger, R. Morris,
and I. Stoica. Wide-Area Cooperative Storage with
CFS. In SOSP, 2001.

[7] A. Datta, M. Hauswirth, and K. Aberer. Updates in
Highly Unreliable, Replicated Peer-to-Peer Systems.
In ICDCS, 2003.

[8] S. Datta and H. Kargupta. Uniform Data Sampling
from a Peer-to-Peer Network. In ICDCS, 2007.

[9] R. A. Ferreira, M. K. Ramanathan, A. Awan,
A. Grama, and S. Jagannathan. Search with
Probabilistic Guarantees in Unstructured Peer-to-Peer
Networks. In IEEE P2P, 2005.

[10] R. A. Ferreira, M. K. Ramanathan, A. Grama, and
S. Jagannathan. Randomized protocols for duplicate
elimination in peer-to-peer storage systems. IEEE
TPDS, 18(5), 2007.

[11] V. Gopalakrishnan, B. D. Silaghi, B. Bhattacharjee,
and P. J. Keleher. Adaptive Replication in Peer-to-Peer
Systems. In ICDCS, 2004.

[12] J. Kangasharju, K. W. Ross, and D. A. Turner.
Optimizing File Availability in Peer-to-Peer Content
Distribution. In INFOCOM, 2007.

[13] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based
Computation of Aggregate Information. In FOCS,
2003.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. E. Czerwinski,
P. R. Eaton, D. Geels, R. Gummadi, S. C. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Y.
Zhao. Oceanstore: An architecture for global-scale
persistent storage. In ASPLOS, 2000.

[15] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search
and Replication in Unstructured Peer-to-Peer
Networks. In ICS, 2002.

[16] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and
A. Ganesh. Peer Counting and Sampling in Overlay
Networks: Random Walk Methods. In PODC, 2006.

[17] R. Morselli, B. Bhattacharjee, A. Srinivasan, and
M. A. Marsh. Efficient Lookup on Unstructured
Topologies. In PODC, 2005.

[18] D. Mosk-Aoyama and D. Shah. Computing Separable
Functions via Gossip. In PODC, 2006.

[19] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Multimedia Comp. and Networking, 2002.

[20] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury.
Percolation Search in Power Law Networks: Making

Unstructured Peer-to-Peer Networks Scalable. In
IEEE P2P, 2004.

[21] E. Sit, A. Haeberlen, F. Dabek, B. Chun,
H. Weatherspoon, R. Morris, M. F. Kaashoek, and
J. Kubiatowicz. Proactive Replication for Data
Durability. In IPTPS, 2006.

[22] M. Steiner, T. En-Najjary, and E. W. Biersack. A
Global View of Kad. In IMC ’07, 2007.

[23] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P.
Buchmann. BubbleStorm: Resilient, Probabilistic, and
Exhaustive Peer-to-Peer Search. In SIGCOMM, 2007.

APPENDIX
This section proves that by taking the approach of Section 4
any sequence of peer join and crash/leave events causes the
replication distribution to converge to the binomial, Bn,p.
Symmetrically, if all objects share p, then any sequence of
object creation and deletion events with d undeleted objects
converges peer load distribution to Bd,p. We only prove the
first claim as the second is analogous.

Let nt ≥ 0 be the network size for time t ∈ Z. For
simplicity, we require that every unit of time corresponds
to exactly one event: join or leave. A joining peer causes
nt+1 = nt + 1, while a leaving peer causes nt+1 = nt − 1.
The sequence of joins and leaves is chosen by an adversary.

For an arbitrary object, consider the evolution of the num-
ber of replicas Rt over time. Rt is a random variable taking
values in [0, nt]. If nt+1 = nt + 1, then a peer joined the
system, increasing Rt by 1 with probability p;

P(Rt+1 = i) = P(Rt+1 = i |Rt = i−1)P(Rt = i−1)
+ P(Rt+1 = i |Rt = i)P(Rt = i)

= pP(Rt = i−1) + (1− p)P(Rt = i)

Let rt = (rt(0), rt(1), . . . , rt(nt)) be Rt’s probability
vector, where rt(i) = P(Rt = i) for i ∈ [0, nt]. We use the
notation rt(i) to emphasize that rt plays a dual role as both
a vector and a function of i. Set Jn to the [0, n]× [0, n + 1]
join transition matrix where rt+1 = rtJnt

,

Jn =

1−p p 0 . . . 0

0 1−p p
. . .

...
...

. 0
0 . . . 0 1−p p

When one peer out of nt leaves (or crashes), it destroys

a replica with probability Rt/nt. Like Jn, define Ln as the
[0, n]× [0, n− 1] transition matrix mapping rt+1 = rtLnt .

Ln =
1
n

n 0 . . . 0

1 n−1
. . .

...

0 2
. . . 0

...
. 1

0 . . . 0 n

Using these two matrices we can finally formulate the
transition matrix rt+1 = rtTt for all t,

Tt :=

{
Jnt if nt+1 = nt + 1
Lnt

if nt+1 = nt − 1

THEOREM 1. If there exists some upper-bound n∗ on the
network size, such that n∗ > nx for all time x, then, for any
initial replication distribution r and fixed t, the replication
distribution rt converges to Bnt,p as the mixing time grows;

rt = r
t−1∏
x=t0

Tx → Bnt,p as (t− t0) →∞

where Bn,p = (Bn,p(0), Bn,p(1), . . . , Bn,p(n)) and

Bn,p(i) =
(

n

i

)
pi(1− p)n−i

We first prove three lemmas needed for this result. The
first lemma explains why the binomial is the limit.

LEMMA 1. The binomial distribution is an invariant flow;

Bnt+1,p = Bnt,pTt

PROOF. The transition matrix is a join Jn or leave Ln:

(Bn,pJn)(0) = (1− p)Bn,p(0) = (1− p)(1− p)n

= Bn+1,p(0)
(Bn,pJn)(i) = pBn,p(i− 1) + (1− p)Bn,p(i)

= pi(1− p)n+1−i

[(
n

i− 1

)
+

(
n

i

)]
= Bn+1,p(i)

(Bn,pLn)(i) =
n− i

n
Bn,p(i) +

i + 1
n

Bn,p(i + 1)

= Bn−1,p(i) [(1− p) + p]

The next two lemmas show the transition matrix forces
any two states Rt, St towards each other. We will measure
the distance between E(f(Rt+1) |Rt) and E(f(St+1) |St)
for arbitrary function f using the Lipschitz norm,

||f ||` = max
i>j

|f(i)− f(j)|
i− j

LEMMA 2. For all time t and any f : Z → R,

||Ttf ||` ≤ ||f ||` ·

{
1 if nt+1 = nt + 1
1− 1

nt
if nt+1 = nt − 1

PROOF. There are again two cases. Interpret function f(i)
as a column vector on [0, nt]. Then, for all i > j,

Jnf(i) = (1− p)f(i) + pf(i + 1)
|Jnf(i)− Jnf(j)|
≤ (1− p)|f(i)− f(j)|+ p|f(i + 1)− f(j + 1)|
≤ (1− p)||f ||`(i− j) + p||f ||`(i− j)
= ||f ||`(i− j)

By carefully regrouping terms,

Lnf(i) = i
nf(i− 1) + n−i

n f(i)
|Lnf(i)− Lnf(j)|
≤ j

n |f(i− 1)− f(j − 1)|
+ i−j

n |f(i− 1)− f(j)|+ n−i
n |f(i)− f(j)|

≤ ||f ||`(i− j)
[

j
n + i−1−j

n + n−i
n

]
= ||f ||`(i− j)

(
1− 1

n

)
LEMMA 3. If there exists some n∗ such that n∗ > nx for

all time x, then for f : Z → R with ||f ||` < ∞ and fixed t,∣∣∣∣∣
∣∣∣∣∣

t−1∏
x=t0

Txf

∣∣∣∣∣
∣∣∣∣∣
`

→ 0 as (t− t0) →∞

PROOF. Reformulating the bound on network size,

nx < n∗ =⇒
(

1− 1
nx

)
<

(
1− 1

n∗

)
There are at most nt more joins than leaves, so there are
infinitely many leaves. Repeatedly apply Lemma 2 to find,∣∣∣∣∣

∣∣∣∣∣
t−1∏
x=t0

Txf

∣∣∣∣∣
∣∣∣∣∣
`

< ||f ||`
(

1− 1
n∗

)[(t−t0)−nt]/2

→ 0

PROOF OF THEOREM. Rt0 has initial probability distri-
bution r. From the definition of expectation, E(f(Rt0)) =
rf where f is a function interpreted as a column vector. Sim-
ilarly, E(f(Rt)) = r

∏t−1
x=t0

Txf . So, the Lipschitz term
from Lemma 3 can be reformulated for all i > j as,

|E(f(Rt) |Rt0 = i)− E(f(St) |St0 =j)|
i− j

≤

∣∣∣∣∣
∣∣∣∣∣

t−1∏
x=t0

Txf

∣∣∣∣∣
∣∣∣∣∣
`

Condition on events Ei = (Rt0 = i) and Fj = (St0 =j),

|E(f(Rt))− E(f(St))|
= |

∑
i P(Ei)E(f(Rt)|Ei)−

∑
j P(Fj)E(f(St)|Fj)|

= |
∑

i,j P(Ei)P(Fj)(E(f(Rt)|Ei)−E(f(St)|Fj))|
≤

∑
i,j P(Ei)P(Fj)|E(f(Rt)|Ei)−E(f(St)|Fj)|

≤
∣∣∣∣∣∣∏t−1

x=t0
Txf

∣∣∣∣∣∣
`

∑
i,j P(Ei)P(Fj)|i− j|

≤
∣∣∣∣∣∣∏t−1

x=t0
Txf

∣∣∣∣∣∣
`
n∗ → 0

The Portmanteau theorem (Theorem 2.1 in [4]) proves con-
vergence in distribution given this limit for the expectation.
Alternately, for arbitrary i, set f(k) = 1 for k = i and 0
otherwise. Now E(f(Rt)) = P(Rt = i) = rt(i). Give St0

binomial distribution. By Lemma 1, St also has binomial
distribution, so E(f(St)) = Bnt,pf = Bnt,p(i).

|rt(i)−Bnt,p(i)| = |E(f(Rt))− E(f(St))| → 0

