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With the increasing adoption of Cloud Computing, we observe an increasing
need for Cloud Benchmarks, in order to assess the performance of Cloud in-
frastructures and software stacks, to assist with provisioning decisions for Cloud
users, and to compare Cloud offerings. We understand our paper as one of the
first systematic approaches to the topic of Cloud Benchmarks. Our driving princi-
ple is that Cloud Benchmarks must consider end-to-end performance and pricing,
taking into account that services are delivered over the Internet. This require-
ment yields new challenges for benchmarking and requires us to revisit existing
benchmarking practices in order to adopt them to the Cloud.

1 Introduction

Creating good benchmarks has been considered a “dark art” for a long time
because of the many subtleties that ultimately may influence the adoption (and
consequently the success) of a benchmark. Nevertheless, the body of related re-
search work suggests a number of widely accepted guidelines and quality criteria
which have to be considered in the design and execution of computer system
benchmarks.

In this paper, we seek to extent these quality criteria for benchmarking in
the Cloud. For the purposes of our discussion, by benchmarking in the Cloud
we mean the use of Cloud services in the respective (distributed) system under
test (SUT). We believe that building the benchmark is only half of the story
and execution (operation) deserves at least as much attention, especially in the
discussed complex distributed systems context.

Our work is mainly inspired by The art of building a good benchmark [1] by
Karl Huppler and How is the Weather tomorrow? Towards a Benchmark for the
Cloud [2] by Carsten Binnig, Donald Kossmann, Tim Kraska and Simon Loesing.
The Dagstuhl Seminar on Information Management in the Cloud held in August
2011 was the starting point for the actual work on the paper. We would like to
thank Helmut Krcmar and André Bögelsack who pointed out the business aspect
of the topic, as well as Nick Lanham and Dean Jacobs for their suggestions and
feedback.

The paper is structured as follows. Section 2 gives an overview of benchmark-
ing in general. Section 3 introduces the topic of benchmarking in the Cloud. In



Section 4 and Section 5 we present use cases in the Cloud and go through the
necessary steps for building respective benchmarks. Section 6 highlights the chal-
lenges for building a good benchmark in the Cloud and proposes first solutions.
Finally, Section 7 concludes and presents ideas for future research.

2 Benchmarking in a Nutshell

This section gives a brief overview on the topic of benchmarking. We will dis-
cuss the objectives of benchmarks, see how benchmarks operate, and then will
elaborate how benchmarks try to meet their objectives.

2.1 What is the task of a benchmark?

Benchmarks are tools for answering the common question “Which is the best
system in a given domain?”. For example, the SPECCpu benchmark [3] answers
the question “Which is the best CPU?”, and the TPC-C benchmark [4] answers
the question “Which is the best database system for OLTP?”.

The concrete interpretation of “best” depends on the benchmarking objec-
tive and is the first question that has to be answered when designing a new
benchmark. As a systematic approach for answering this question, Florescu and
Kossmann suggest to look at the properties and constraints of the systems to
be benchmarked [5]. The number one property has to be optimized while lower
priority properties give rise to constraints. A benchmark therefore can be seen
as a way to specify these priorities and constraints in a well-defined manner. The
task of the benchmark then is to report how well different systems perform with
respect to the optimized priority under the given constraints.

In practice, benchmarks are used to assist decisions about the most econom-
ical provisioning strategy as well as to gain insights about performance bottle-
necks.

2.2 How do benchmarks do their task?

Benchmarks pick a representative scenario for the given domain. They define
rules how to setup and run the scenario, and how to obtain measurement results.

Benchmark definitions often refer to the concept of a System Under Test
(SUT). The SUT is a collection of components necessary to run the benchmark
scenario. The idea of a SUT is to define a complete application architecture
containing one or more components of interest. In a typical SUT, however, not
all components are of principal interest for the benchmark. We refer to the
remaining SUT components as purely functional components.

Benchmarks measure the the behaviour of a complete SUT. In order to iso-
late information about the component of interest, complete knowledge about all
components involved is essential. That is why all SUT components are subject to
strict run and disclosure rules. Benchmark components initiating the workload
are called drivers, and are not part of the SUT.



2.3 Benchmark Requirements

A benchmark is considered to be good if all stakeholders believe that it provides
true and meaningful results. There are a number of publications that try to pro-
vide guidelines on the subject of benchmark design and implementation. Almost
all of them are based on Gray’s seminal work [6]. Huppler recently provided a
good survey on different benchmarking criteria in [1]. Workload requirements
are investigated in [7–10]. Based on this previous work, we define the following
three groups of requirements:

1. General Requirements – this group contains generic requirements.
(a) Strong Target Audience – the target audience must be of considerable

size and interested to obtain the information.
(b) Relevant – the benchmark results have to measure the performance of

the typical operation within the problem domain.
(c) Economical – the cost of running the benchmark should be affordable.
(d) Simple – understandable benchmarks create trust.

2. Implementation Requirements – this group contains requirements regarding
implementation and technical challenges.
(a) Fair and Portable – all compared systems can participate equally.
(b) Repeatable – the benchmark results can be reproduced by rerunning the

benchmark under similar conditions with the same result.
(c) Realistic and Comprehensive – the workload exercises all SUT features

typically used in the major classes of target applications.
(d) Configurable – a benchmark should provide a flexible performance anal-

ysis framework allowing users to configure and customize the workload.
3. Workload Requirements – contains requirements regarding the workload def-

inition and its interactions.
(a) Representativeness – the benchmark should be based on a workload sce-

nario that contains a representative set of interactions.
(b) Scalable – Scalability should be supported in a manner that preserves

the relation to the real-life business scenario modeled.
(c) Metric – a meaningful and understandable metric is required to report

about the SUT reactions to the load.

In the following sections, we evaluate our results using these requirements
and discuss how they can be fulfilled in our scenarios.

3 Benchmarking in the Cloud

For a definition of Cloud Computing, we refer to the NIST Definition of Cloud
Computing [11]. This definition comes with three different service models: In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
service (SaaS). These service models are commonly referred to as Service Levels
and can be understood as different levels of software abstraction. These layers do
not define a fixed homogeneous set – authors and businesses often introduce new



Something as a Service (XaaS) terminologies. Due to space limitations, here we
only mention Youseff et al. [12], who extend the three layer model with Hardware
as a Service, Data as a Service, and Communication as a Service concepts.

Under Benchmarking in the Cloud, we understand the process of benchmark-
ing services provided by the Cloud. A Cloud Benchmark therefore for us is a
benchmark in which the SUT contains a Cloud service as component of interest.
A good summary of this topic was provided in [13].

3.1 Cloud Actors

To introduce the different Cloud actors, we take a business orientated view of
Cloud Computing going beyond the simple consumer/provider model. We claim
that each service layer brings its own actors who add value to the level below.
Different types of actors might have different benchmark requirements for the
same SUT. To have a strong target audience, a benchmark has to address the
appropriate actors.

Leimeister et al. [14] argue that the actors in the Cloud form a business
value network rather than a traditional business value chain. We identify the
following actors in a Cloud-centric business value network (Figure 1): IT Ven-
dors develop infrastructure software and operate infrastructure services; Service
Providers develop and operate services; Service Aggregators offer new services by
combining preexisting services; Service Platform Providers offer an environment
for developing Cloud applications; Consulting supports customers with selecting
and implementing Cloud services; Customers are the end-users of Cloud services.

Note that [14] uses the term Infrastructure Provider for what we call IT
Vendor. We deviate from [14] to stress the fact that vendors that offer software
that enables Cloud services should also be considered part of this actor group.
We also use the term Customer where others might use the term Consumer. We
decided to adhere to [14] in this case because service aggregators and service
platform providers are consumers just as customers are.

3.2 The System Under Test

The above definition of a cloud benchmark requires that at least one component
of interest within the benchmark SUT is a cloud service. This leads to several
implications, which we now briefly discuss.

SUT Disclosure. A common benchmark requirement is to lay open all prop-
erties of the involved SUT components. This requirement is no longer realistic
when the SUT contains public cloud services. We therefore propose to consider
the following relaxation: All properties of SUT components visible to their clients
should be laid open. In terms of white-box vs. black-box benchmarking this leads
to nearly white-box IaaS benchmarks, grey-box PaaS benchmarks and black-
box SaaS benchmarks. Overcoming the SUT disclosure issue was also recently
discussed by the SPEC OSG Cloud Computing Workgroup. Their White Paper
[15] provides further information.



Fig. 1. Cloud Actors and their Value Network

SUT Uniqueness. Traditional benchmarks run on SUT components copied
into an isolated test environment. In a cloud environment, components are mod-
eled as services. These are single instance entities, cannot be copied, and a clear
isolation is not possible. During a benchmark run the SUT services most likely
will be shared with third party clients, and avoiding external clients is neither
possible nor desired.

Carving out a SUT. One possible approach to deal with the disclosure and
uniqueness issues discussed above is to carve out a dedicated set of servers within
a public cloud and have these deliver the services for the SUT. We believe that
this will not lead to relevant results.

4 Use Cases

In this section we present a list of sample use cases. The list does not intend to be
complete, but rather should help us illustrate the layers and actors defined above
and motivate the discussion of different optimization questions. In Section 5
we show how appropriate Cloud benchmarks help answer these questions, and
in Section 6 we identify and discuss the most important challenges that these
benchmarks should resolve.

4.1 Simple IaaS

Businesses use Cloud IaaS for outsourcing of non-critical processes like testing,
training and reference landscapes. They buy IaaS resources and install the de-
sired systems, but do not use them all the time. The expected load is moderate
to low, being created mainly by non-critical offline processes. Our experience
with such scenarios shows systems with 100GB disk space, 32GB memory, and 4



CPU cores. The average load of a running system uses about 10% CPU resources
and 25% of memory or disk space.

The IaaS resources are not expected to scale with regard to the load per
system. Scalability is expected with regards to the number of systems that can
be started and shut down.

4.2 Online Gaming Platform

GameX is produced by ACME Games.
ACME Games runs its own server clusters which should host on average

hundreds of game and mini-game sessions, each with varying number of users
(say between 0 and 5,000 for the core game, and from 5 to 50 for the mini- or
smaller game instances [16]), and length ranging of 20-30 mins to several hours.

When players overload the servers, no new player sessions can be established.
Waiting to login is one of the worst breaches of the expected Service Level
Agreements for GameX, so ACME Games has to avoid these situations at all
cost. Because the resource consumption of interaction operations between players
does not always scale linearly with the number of players, and, in fact, in some
cases may grow cubically in the number of players, ACME Games has to be
either overly-conservative in its server capacity estimates or risk severe overloads
in some circumstances [17].

Instead of over-provisioning, which as seen is highly undesirable, ACME
Games can use Cloud technology. They can lease machines on-demand to allevi-
ate sudden surges in their workload. This solution needs to fulfill strict Service
Level Agreements in terms of response time, which includes a non-trivial network
latency component, and computing workload distribution and interference. For
its new games, ACME Games may also lease (reserve) instances from a Cloud
until the game is properly measured and future workloads can be predicted.

4.3 High Workload Analytical Platform

ACME Analytics is a start-up that wants to provide Big Data analytics services.
Their target customers produce large amounts of data and want to analyze it
on a daily or weekly basis. Potential customers may be smart grid or mobile
phone providers. The company expects up to 500 TB data per client and as
much as 1 PB of data shared among clients. An average task is expected to use
50TB of the private and 1 TB of the shared data. Clearly, using a massively-
parallel data processing platform, such as MapReduce, as an off-the-shelf Cloud
service is the most lucrative technical solution for ACME Analytics because of
the low upfront investment and maintenance cost. The first technical decision
that ACME Analytics has to make therefore is which PaaS to use.

5 Building Benchmarks in the Cloud

In this section we go through the previous use cases and try to envision how
benchmarks in the respective area could be build.



5.1 Simple IaaS

First, we need to refine the optimization question for the use case. The consumer
needs many parallel instances of some application for their test or training sys-
tems. There is no necessity to scale up a single application instance. It is expected
to save cost by shutting down application instances. We can therefore recap the
optimization question posed by the use case as follows: Which IaaS does most
effectively host a bunch of parallel mid-size application instances? This includes
reducing cost when fewer application instances are active.

Next, we discuss how the SUT and the workload should look like. We are
not interested in a distributed or cluster scenario, so we can adapt a well known
workload, say TPC-C, and run it independently on all instances.

To adapt TPC-C, we first pick a tpmC value representative for a mid-size
load. In addition, we also set the maximum number of independent applica-
tion instances that will participate for a single benchmark run. Let us put
maxInst=250.

We will consider two workload variants: (1) running all instances with the
same tpmC, and (2) running a varying amount of instances over the benchmark
runtime. Workload (1) is intended to measure how many IaaS nodes are required
to make maxInst instances pass the TPC-C SLA requirements. Because differ-
ent providers are expected to have different nodes, a final comparison of the
respective services will only be possible by comparing the price of the services
consumed. Workload (2) measures the elasticity of the underlying IaaS by com-
paring the price of the full workload with the price of the varying workload. For
the second workload, we propose a scheduling mechanism with number of active
instances defined by the formula:

actInstances(timeElapsed) =
∣∣∣∣maxInst

2 ×
(

1 − cos
(

3π × timeElapsed
totalRuntime

))∣∣∣∣
These are only a few ideas about a parallel load IaaS benchmark. We list

further design questions for such a benchmark.
1. As we are not benchmarking the database we can fix the database system

to be used. But this would violate the fairness and portability requirement.
2. Is it allowed to use different schemata of a database instance for different

TPC-C instances?
3. Is it allowed to migrate TPC-C instances between server nodes during a

benchmark run?
4. Should we rather not design for possible multiple TPC-C per node and scale

by increasing the tpmC until a node is fully loaded?
5. Where should the Remote Terminal Emulator (the driver) be located?

We discuss these questions in Section 6.

5.2 Online Gaming Platform

There currently exists no online gaming benchmark. Relevant prior work on the
prerequisites of designing online gaming benchmarks exists, either in the form



of game workload characterizations or of benchmarks built for other types of
media. The voluminous body of work on game workload characterization has
been recently surveyed [18]. For related benchmarks, we refer to ALPBench [19],
MediaBench [20], and MiBench [21].

We hold that the Gaming use case rather gives rise to parallel than a dis-
tributed scenario. Still, it is much more complex than the Simple IaaS use case.
In this case the various types of system operations necessary to fulfill various
requests may lead to widely different response times. Another fundamental dif-
ference is that requests need to be fulfilled in different amount of times before
the users consider their mental Service Level Agreement breached and decide
to move to another game. For example, role-playing requests may be fulfilled
within 1 second [22, 23]. For strategic decisions the response time needs to be
around 300 milliseconds [24], and requests for first-person activities need to be
fulfilled in under 100 milliseconds [23], [25].

Other important metrics for ACME Games are the 99th percentile of the
wait time distribution and the the 99th percentile of the distribution of fraction
of dropped requests. These high limits (vs the traditional 95th percentile) stem
from the way players join and leave games as the result of positive and negative
trends, respectively. Strong community ties between players [26], [27] indicate
that a percentage as low as 1% of unhappy players may trigger the departure
of 10-20% in a matter of days [17], e.g. via social media rants, in-game negative
adverts, and plain group-based discussions.

5.3 High Workload Analytical Platform

In this case, ACME Consulting acts as service aggregator and has two options.
They may either bundle services of an existing analytical platform or deploy
their own analytical tools on an existing infrastructure service. To compare the
resulting service they need a benchmark build around a set of representative
analytical tasks. Most research in the area in done on actual MapReduce bench-
marks like MRBench [28] or designing appropriate MapReduce workloads [29].
Pavlo et al. [30] show how to have analytical workload run by both MapReduce
and Distributed Databases and compare the results. These approaches make
considerable progress defining representative workloads. They do not deal with
services and do not intend to define Cloud benchmarks. Here are a few ideas
how an analytical Cloud benchmark could look like:

1. Start with a set of analytical tasks from the latest references.
2. For each task find an appropriate runtime SLA defining a 90% percentile.
3. Run the tasks concurrently. Run the whole workload several times.
4. Scale the tasks with the amount of data analyzed. Keep things simple by

scaling up all task data sizes with the same linear factor anScale.
5. We expect the SUT to acquire more server nodes as the amount of data to

be analyzed increases. The primary metric is the maximal anScale, that can
be reached.



6. Devise a maximal scaling factor maxAnScaleYYYY. The benchmark should
not scale the load further than maxAnScaleYYYY.

7. Also report the price of the services used so that services can be compared
if they reach the maximal anScale.

8. Periodically (for example once per year) revise and agree on a new (larger)
maxAnScaleYYYY.

9. Similarly to the Simple IaaS use case report elasticity by running with a
varying load.

In the next section we discusses the challenges for the hypothetical bench-
marks presented above in more detail.

6 The Art of Building and Running a Good Benchmark
in the Cloud

We believe, that there are four main steps for building and running a good
benchmark in the Cloud. These are Meaningful Metric, Workload Design, Work-
load Implementation and Creating Trust. In this section we discuss the inherent
challenges in these steps.

6.1 Meaningful Metric

A metric is a function that transforms measured results into a form that is easily
understood by the system analyst. The most simple metric is the runtime met-
ric, which reports either median, average, maximum or even minimum runtime
among transactions run by the SUT. When systems have to deal with concurrent
transactions, it makes more sense to consider a throughput metric reporting the
maximal number of transactions adhering to some runtime SLA. Some bench-
marks (mainly those designed to support business decisions) also report the cost
of the underlying system or the cost of running a single transaction at maximal
load. There is an ongoing debate if reporting cost makes sense [31]. Kossmann
et al. have devoted a sequence of papers to this topic in its Cloud context [5, 2,
32], arguing that in this case cost should be the primary metric. The argument
is motivated by the fact that in theory Cloud technology should provide infinite
scalability, which makes the classic throughput metric obsolete. However, in [32]
the authors observe that (to no surprise) infinite scalability is an illusion and
for most providers breaks down sooner or later due to bottlenecks in the SUT
architecture. In that case it makes perfect sense to report how far the load can
be scaled up.

Challenge 1: Price vs. Performance Metric. For the parallel load of the
Simple IaaS use case we had decided to report the number of nodes required to
run the 250 TPC-C instances. As nodes of different vendors will most probably
have different characteristics, the number of nodes is in fact not a suitable metric.
Money is the only possible yardstick and therefore we have to report the price



for these nodes. We propose to use the Price Metric as primary metric when
dealing with parallel load: Report the minimal cost to run maxInst of a given
application and a given workload on the SUT.
For a distributed load we propose to use a mixed Price/Performance Metric
as suggested by the High Analytical Workload Platform use case: Scale up the
load along a well defined dimension, but do not pass a very ambitious limit of
maxScaleYYYY which should be reconsidered annually. Also report the price of
the SUT. This enables comparison in case systems reach maxScaleYYYY.

Challenge 2: Elasticity Metric. We propose to use a Elasticity Metric as
secondary metric. How can elasticity of a service under test be measured? Pre-
vious work has introduced for this purpose concepts such as over- and under-
provisioning of resources [17, 33], or counted the number of SLA breaches [17]
during periods of elastic system activity. However, measuring and characteriz-
ing elasticity remain activities without theoretical support. Even understanding
which periods are elastic, that is, distinguishing between normal fluctuations
and significant elastic changes in the system behavior, requires advances in the
current body of knowledge. Moreover, the proposal in [17, 33] relies on the bench-
mark being able to collect CPU consumption information of the provider system.
In some cases these numbers might not be freely available to the consumer. Con-
sequently a consumer benchmark should not rely on these numbers. Binnig et
al. [2] define a Scalability Metric, which does not take into account CPU info
and solely relies on the successful interactions under an increasing load. This
methodology could be extended to also capture elasticity. Nevertheless, it is of
little interest to the consumer if the provider can deal effectively with a varying
load. What the consumer needs to know is whether a varied and reduced load
leads to a reduced bill. We therefore propose to measure elasticity by running
a varying workload and compare the resulting price with the price for the full
load. Some details can be found in the discussion of the Simple IaaS benchmark.

Challenge 3: Percentile. Which percentiles are appropriate for the response
time SLAs of Cloud like interactions? One might argue, that the Cloud calls for
higher percentiles. Disappointed users might just move to the next service of-
fered. We hold that percentiles depend on the respective scenario. For the Simple
IaaS scenario the 90% percentiles of TPC-C are fine. For the Gaming scenario
they are not. We propose not to run the same benchmark (scenario) with dif-
ferent percentiles but to have different benchmarks modeling different scenarios
and respective percentiles.

Discussing the metric topic in the Cloud community we were asked to also
consider several other metrics like consistency, security, user experience and
trust. In our opinion each scenario has its own consistency requirement. The
consistency level of a service has to fulfill this consistency requirement. If a ser-
vice promises a higher degree of consistency than required, this should be stated



in the benchmark report. The same more or less holds for security. User expe-
rience and trust are hard to capture. We intend to create trust by doing the
benchmarking right.

6.2 Workload Design

The workload of a benchmark must be designed towards the metric to be used.
It has to model real world workloads on a given application scenario. Workload
design is a traditional challenge in the design of benchmarks.

Challenge 4: Limit the Resources Acquired. Since many Clouds try to
provide the illusion of infinite scale, benchmarks cannot merely load the system
until it breaks down. This applies in particular for parallel load, where we expect
to be able to crash the complete service. This is not realistic and might violate the
benchmark requirement to stay within economical boundaries. We have to devise
a maximal scaling factor limiting the load. However, having this accepted by the
majority of stakeholders poses a serious challenge. We propose to annually renew
the maximal scaling factor. We expect a discussion about having a maximal
scaling factor or not. Those against could argue, that providers have to take
care not to have their services crashed. A benchmark would check implicitly, if
this kind of check is in place.

Challenge 5: Variable Load. As user-triggered elasticity and automatic adap-
tivity are expected features of Cloud services, benchmarks can no longer focus
solely on steady-state workloads. For the Simple IaaS use case we proposed to use
a harmonic variability of the load. In general, capturing and using characteristics
of real Cloud workloads might lead to better accepted benchmarks.

Challenge 6: Scalability. The benchmark requirements listed in Section 2.3
ask for Scalability. This means that the benchmark has to be enabled to have
the load against the SUT increased along a well defined scale. What is the best
candidate for a ’well defined scale’ for our use case? The answer to this question
is not obvious.

Let us return to the Simple IaaS use case and recap the design of its bench-
mark. The general question is: how well can a service host multiple instances of
a given application? To answer this question the benchmark increases the load
and reports how far it can get. We have several options to increase the load:

1. Increase the number of users per application instance.
2. Increase the size of the application instance.
3. Increase the number of application instances.
4. Increase the number of application instance per node.

As we do not model for high load per application instance the first two
options are not relevant. The third option leaves open the question where to set



the limit discussed in the previous challenge. We choose the last option because it
addresses resource sharing. Once we deal with distributed load we face different
options. In the case of MapReduce scenarios we choose the size of the data to
be analysed as ’well defined scale’.

6.3 Workload Implementation

Challenge 7: Workload Generation. The increased complexity of the work-
loads also imposes challenges for the implementation of workload generator pro-
grams. First, efficient scalability is a hard requirement because of the expected
workload sizes. Second, the workload generators should be able to implement all
relevant characteristics of the designed application scenario.

As an example, consider the analytical platform use-case from Section 5.3. A
relevant benchmark should use test data with similar order of magnitude, so a
natural problem that becomes evident here is how to ship benchmark data of that
magnitude to the SUT. Clearly, importing data from remote locations or using
sequential data generators are not feasible options due to the unrealistic amount
of required time (according to our estimates generating 1PB of TPC-H data for
instance will take at least a month). The most promising alternative to solve this
problem is to utilize the computational resources in the Cloud environment and
generate the data and the workloads in a highly parallel manner. Recent work
in the area of scalable data generation [34, 35] demonstrates how a special class
of pseudo-random number generators (PRNGs) can be exploited for efficient
generation of complex, update-aware data and workloads in a highly parallel
manner. In general, partitionable PRNGs can be used to ensure repeatability
and protect against unwanted correlations for all sorts of parallel simulations.

Challenge 8: Fairness and Portability. Like Binnig et al. [2] we propose to
have Cloud benchmarks model the complete application stack. In case we do not
benchmark SaaS services, some party has to provide an implementation of the
respective application to be deployed on the service under test. What kind of
rules and restrictions should apply for the implementation of this application?
We have to take care not to violate the Fairness and Portability requirements.
In the Simple IaaS use case we discussed the option to fix a database system for
the benchmark. In our opinion, this would violate the Fairness and Portability
requirements. Allowing different database systems increases the degrees of free-
dom. This in turn makes it hard to compare the underlying IaaS SUT. How can
this challenge be overcome? Here is our solution:

1. Set application specs without touching implementation details.
2. Service providers are free to provide their own optimal implementation of

the respective application.
3. Service providers can require submissions to be based on their own imple-

mentation.



With this solution services allowing for good implementations will have an ad-
vantage, but this is only fair.

PaaS providers offer a zoo of different languages, data stores and application
servers. Some of these follow standards, some do not and others are heading to
become the de facto standard. PaaS benchmarks have the choice either to be
generic enough to cover all or most of these offers or to restrict themselves to a
well defined standard, which is implemented by a considerable group of service
providers. We propose to handle the first option like the IaaS case discussed
above. This then leads to a single benchmark, which can be used for IaaS and
PaaS services. This is the approach of Kossmann et al. [32], who implement the
TPC-W benchmark for each of the services under test. The second PaaS option
might lead to a reuse of existing benchmarks like SPECjEnterprise in the Cloud.

We conclude the discussion with a short remark about SaaS benchmarks. We
cannot expect to have one benchmark for all SaaS offerings. Still, benchmarks
for an important application domain like Human Capital Management(HCM)
are worth consideration. Their biggest challenge would be to define a set of rep-
resentative transactions, which most HCM providers offer. The more specialized
the services under test are, the more difficult it is to find a common denominator.

6.4 Creating Trust

Trust, which is a major concern for any Cloud operation [36], is particularly im-
portant for benchmarking Cloud services. Choosing a representative benchmark
scenario and properly dealing with above design and implementation challenges
supports creating trust. We hold that we must also consider benchmark opera-
tions and list three operational challenges.

Challenge 9: Location. Benchmarking in the Cloud raises a non-trivial chal-
lenge in deciding where each component of the benchmark is located. Should
the Cloud provider host the driver? Should the request queues of the user [37]
be located close to the Cloud or even in different time zones? Does this decision
depend on the workload or not? If yes, is there a general rule of thumb that can
help us decide where to place the driver?

Challenge 10: Ownership. Which actor, from the group introduced in Section
3.1, should run the benchmark? How to prevent that the Cloud service provider
“games” the results, for example by putting more resources into the bench-
marked service? Should the Cloud service provider be informed about when the
benchmark is being run in their system?

Challenge 11: Repeatability. We expect a variability in the results reported
by a benchmark and list three possible reasons. a) The performance variability



of production IaaS Clouds has been investigated [38] and found to exhibit pro-
nounced time patterns at various time scales. The main reason is that Cloud
services time-share and may over-commit their resources. b) Ever-changing cus-
tomer load may affect the performance of Cloud infrastructures. c) Moreover,
providers are liable to change prices, which directly affects the proposed Pri-
cePerformance metrics. Thus, benchmarking results may vary significantly over
time. In contrast to traditional benchmarking of large-scale computing systems,
what is the value of numbers measured at any particular point in time? How to
ensure the repeatability of results? Should benchmarks be simply re-run periodi-
cally, therefore lowering the economical requirement, or should the repeatability
requirement be lowered or even not imposed?

Our first draft of a solution to these operational challenges is to set up an
independent consortium. The main tasks of this consortium would be to:

1. Provide a geo-diverse driver Cloud.
2. Run benchmarks without further notice to the provider.
3. Rerun benchmarks periodically.
4. Charge benchmark runs to the provider.
5. Offer different levels of trust by having runs repeated more or less frequently.
6. Store benchmark applications implemented (see Challenge 8) by the provider

or third party.

7 Conclusion

Benchmarking plays an important role in the wide-spread adoption of cloud
computing technologies. General expectations of ubiquitous, uninterrupted, on-
demand, and elastic cloud services must be met through innovative yet univer-
sally accepted benchmarking practices. In this work we described our under-
standing what benchmarking should, can, and cannot be. This understanding
is governed by general benchmark requirements listed in Section 2.3 . It is also
based on a sequence of papers [5], [2], [32] by Kossmann et al. and the respective
experiments performed.

We first defined the actors involved in cloud benchmarking, including their
value network, and the system under test (SUT). Unlike traditional benchmark-
ing, the SUT includes numerous components that are either black boxes or inher-
ently unstable. Next, we analyzed several use cases where benchmarking can play
a significant role, and discussed the main challenges in building scenario-specific
benchmarks. Last, we collected the challenges of scenario-specific benchmarks
and proposed initial steps towards their solution. Besides proposing solutions for
technical challenges we propose founding a consortium, which is able to tackle
the operational challenges. We hope to be able to discuss our solutions with
the TPC audience and are strongly committed to use our current presence in
the related SPEC working groups to foster the adoption of these benchmarking
technologies.
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