
BubbleStorm: Analysis of Probabilistic Exhaustive Search
in a Heterogeneous Peer-to-Peer System

TUD-CS-2007-2

Wesley W. Terpstra
∗

Christof Leng
†

Alejandro P. Buchmann

Technische Universität Darmstadt
D-64283 Darmstadt, Germany

{terpstra,cleng,buchmann}@dvs1.informatik.tu-darmstadt.de

ABSTRACT
Exhaustive search in large-scale peer-to-peer systems is com-
plicated by heterogeneity, crashes, node churn, hotspots,
and weakly structured data. While existing approaches solve
some of these problems, the BubbleStorm system offers a
naturally integrated and simple solution based on random
multigraphs. The simplicity of this mathematical structure
allows us to rigorously analyze even the heterogeneous case.

We present a new communication primitive, named bubble-
cast, which induces subgraphs (bubbles) of controlled size.
It can incrementally enlarge a bubble, but operates in par-
allel. Further, the underlying topology deals easily with
crashes and node churn as maintenance operations are lo-
cal, atomic, and minimally disruptive. In spite of this, it
preserves the global random structure of a simple permuta-
tion. When combined into the BubbleStorm system, bub-
blecast on this topology performs exhaustive search with
adjustable probabilistic guarantees and no hotspots. If ev-
ery query must rendezvous with every datum, this approach
has optimal per-node bandwidth complexity. Indeed, rather
than suffering from heterogeneity, it is exploited fully.

1. INTRODUCTION
Peer-to-peer systems typically execute queries in large and
heterogeneous networks. Most scalable approaches thus far—
distributed hash tables—can be categorized as key-value in-
dexes [14, 16]. Although keyword search, ranged search, and
fuzzy matching can be implemented via an index [19], it is
not clear how these scale on distributed indexes. Even if
these scale, a designer must still fix which queries can be ex-
ecuted and then implement his routing strategy according

∗Supported by the DFG Graduiertenkolleg 492, Enabling
Technologies for Electronic Commerce.
†Supported by the DFG Research Group 733, Quality in
Peer-to-Peer Systems (QuaP2P).

to these application-specific queries. Peer-to-peer searches
are predominantly run over weakly structured data; a sin-
gle search might simultaneously include keywords, range re-
strictions, and nested types. What is missing is an efficient
distributed version of the flexible linear-scan. Linear-scan
can be formulated as a rendezvous problem where the query
must meet every datum.

Furthermore, if data popularities are variable, hotspots may
arise. Popularity distributions in online applications1 are
often Zipf-like [4]. But, if the popularity of the most pop-
ular item is independent of the number of items (Zipf with
exponent > 1), then the accesses will grow linearly with
the system size. Unfortunately, popular items are both
more frequently updated and more frequently queried. If
the system supports publish-subscribe, every open subscrip-
tion for the popular item must be informed of every up-
date. Also, the more popular the item, the more associated
records each query must retrieve. These are rendezvous sub-
problems present within the hotspot. Therefore, even in
situations where a key-value index makes sense, access fre-
quencies might suggest that the more important factor is
solving the rendezvous problem for popular data efficiently.

As Godfrey and Stoica observe, heterogeneity, rather than
being an issue, can be an asset [10]. Due to constraints
on bandwidth, memory, and processing speed, nodes in a
network have very different capacities. However, most at-
tempts start with a naturally homogeneous system and then
graft in heterogeneity [8, 10]. While some systems [5, 13, 15]
(typically unstructured) are by nature heterogeneous, they
neither anticipate nor rigorously analyze the benefit.

A better approach is a naturally heterogeneous system engi-
neered with foreknowledge of the potential asymptotic gains.
For the rendezvous problem, when a node receives double
the queries and datum, it quadruples its usefulness to the
system, as it serves as rendezvous for four times as many
pairs. A related analytic bound [17] shows that the total
capacity of any rendezvous system can benefit at most from
the sum of squared downlink bandwidths. A system built
on these theoretical foundations could leverage the full po-
tential of heterogeneity.

1In file sharing the distributions are quite similar, but differ
by a fetch-at-most-once behaviour, likely because downloads
are resource-intensive [11].

1

ϕu

u v
Rendez-
vous

A ϕv
B

Figure 1: The intersection of a bubble originating
from u with a bubble from v is the rendezvous

BubbleStorm is such a system, designed specifically to solve
the rendezvous problem in a heterogeneous network. It per-
forms efficient exhaustive search, introduces no hotspots,
and is fully peer-to-peer. The specific contributions covered
in this paper include

• Bubblecast, a communication primitive which induces
subgraphs (bubbles) of controlled size. It can incre-
mentally enlarge a bubble and operates in parallel.

• A peer-to-peer topology based on random multigraphs,
modelled as a circular permutation. Its maintenance
operations are local, atomic, and minimally disruptive.

• An equation for choosing bubble sizes to control the
probability that bubblecast solves the rendezvous prob-
lem and exhaustive search.

• Rigorous, mathematical analysis proving the correct-
ness, latency, load, and optimality for bubblecast run
on this randomized topology.

Each of these contributions are tailored for heterogeneity.

2. OVERVIEW
To solve the rendezvous problem, BubbleStorm takes inspi-
ration from the birthday paradox. One consequence of the
birthday paradox is that two surprisingly small groups of
people (type-A and type-B) are likely to have a birthday
common to both groups. If children are more often born in
the spring, the chance of a common birthday goes up.

Applying this to networking, whenever a node inserts new
data (type-A), it replicates that data onto a random set of
nodes by sending them type-A messages. Each replica is
a person and the node storing that replica is the birthday.
Similarly, each query (type-B) is replicated onto another set
of nodes. Thanks to the birthday paradox, it is likely that
some node received both and can match the query against
the data. In the heterogeneous setting, powerful nodes are
like spring days, increasing the chance of a match, or ren-
dezvous.

Bubblecast is the communication primitive used to repli-
cate a message onto nodes; it creates a message bubble.
Match evaluation happens on nodes in the intersection of
type-A and type-B bubbles—the rendezvous shown in Fig-
ure 1. Bubblecast blows these bubbles by flooding the mes-
sage within a subgraph, whose size is specified as a parame-
ter. Like a group of people has random birthdays, a bubble
contains random nodes, thanks to the randomized topology.

We will model the randomized multigraph2 as a circular
permutation. It is modified solely by join, leave, and crash
events. Heterogeneity is incorporated into the topology by
setting node degree proportional to capacity. Thus, nodes
have a fixed size routing table and locally control their de-
sired workload. Furthermore, the join and leave operations
modify no more edges than the node’s eventual degree.

In heterogeneous networks, the bubble size required for a
match is smaller, reflecting the effect of spring days. We
will present an explicit equation, the match threshold, which
captures this relationship in Section 4.2. The unit bubble
size will be derived from this match threshold.

When a bubble is c times larger than the unit bubble, it
intersects bubbles of opposing type with probability at least

1−e−c2 . Analysis will prove this key result, that controlling
the bubble size controls the chance of intersection. Finally,
we will meet the theoretical lower bound for the rendezvous
problem by balancing the type-A and type-B bubble sizes.

3. TOPOLOGY
For a connected multigraph where every node has even de-
gree, Euler proved that a tour of all edges is possible. By
writing down nodes each time they are crossed in the tour,
one can untangle the multigraph into a circle. An example
of this correspondence is shown in Figure 2.

In our model, every node appears in deg
2

locations on the
circle, and every edge appears exactly once. Naturally, for
a given multigraph there are many such circles, but a given
circle describes exactly one multigraph. As mentioned in
Section 2, a node sets its desired locations proportional to its
capacity. However, every node must have minimum degree
of 4, in order to keep the network well connected.

The combined global state of a BubbleStorm network de-
scribes such a circle. This circle includes direction; a node’s
location has an edge connecting to it’s clockwise (CW) neigh-
bour and another to it’s counter-clockwise (CCW) neigh-
bour. These edges represent the TCP connections that link
the network together. With self-loops it is possible that the
neighbour of a node’s location is the node itself.

Each node stores neighbour state in a routing table. A node
v labels its locations, `(v), on the circle with location iden-
tifiers, for example `(v) = {v1, v2, v3}. Keyed by location
identifier, the routing table stores the network address and
remote location identifier of the CW and CCW neighbours.

The BubbleStorm graph is the random set G. As usual, we
write V (S) to mean the vertexes in subgraph S. For brevity,
V will be used as short-hand for V (G). Similarly, E(S)
denotes the edges in a subgraph and E = E(G). The circle
C is a permutation of the node locations, `(V). (u1, v1) ∈ C
if and only if v1 is the clockwise successor of u1. The edges in
directed multiset E(G) simply drop the location identifiers
from C. Denote the degree of v by dv. The observant reader
will notice that |E| = |C| = |`(V)|.

2Although potential self-loops and multi-edges are not useful
to bubblecast, they are rare and necessary for the model.

2

u2
u1

v1

v2

v3
w1

w2
x2

x1

w

u v

x

Figure 2: A network viewed as circle and multigraph

3.1 Membership Protocol
The very first node creates the network. It forms a permu-
tation of its desired number of locations and then connects
them cyclically to form the circle. For example, v2 → v1,
v1 → v3, and v3 → v2.

The join and leave algorithms are executed independently
(and in parallel) for each location a node has on the circle.
Conceptually, the join algorithm picks a random edge and
inserts the joining location into the middle of that edge.
Figure 3 shows the result of y joining Figure 2 twice. Once
inserted, the joining node has gained two neighbours at the
new location, without affecting the degree of other nodes.

The edge to split is chosen by a biased random walk starting
from a known participant. Thus, joining nodes must know
the identity of a node participating in the network. Our
prototype keeps a disk-backed cache of the most recently
seen nodes for this purpose.

In the simplified join protocol shown below, ax refers to the
network address of node x and lx refers to the relevant loca-
tion in the routing table of node x. SplitEdge(ay, ly) mes-
sages are routed via a random walk of logarithmic length.
The eventual receiver, u, randomly picks location lu where
it will splice the sender in as a CW neighbour. Then u con-
nects to the new node y. The Hello(ly, CCW, lu) messages
tell receiver y to set ly[CCW] = u, where lu is the sender’s
location identifier. If successful, the Redirect(ay, ly) mes-
sage tells the receiver v to cease communication on this edge
and connect instead to y. If v cannot connect to y, it can-
cels the complete operation. Otherwise, shutdown, the usual
TCP closure of writing, signals u that no more messages will
be sent, and the other end can safely close. After u closed
the connection, the join operation is complete. A cancelled
operation is restarted by the joining node by sending a new
SplitEdge message.

The join protocol
(y joins between u and v)

y u← . . .← SplitEdge(ay, ly)
u y ← Hello(ly, CCW, lu), v ← Redirect(ay, ly)
y ly[CCW] = u

v can connect to y otherwise
v y ← Hello(ly, CW, lv) u← Cancel

u← shutdown, lv[CCW] = y
y ly[CW] = v
u lu[CW] = y, v ← close y ← close

v u← close

u2

u1

v1

v2

v3
w1 w2

x2

x1

y1

y2

w

u v

x

y

Figure 3: Both views of the network after y joins

One invariant of these protocols is that only the location
CCW of an edge can modify that edge. This makes it rel-
atively easy to serialize concurrent joins and leaves. To
this end, the join protocol only sends Redirect messages
in the CW direction. Similarly, in the leave algorithm be-
low, MergeEdge messages (used by a leaving node to inform
neighbours about its departure) are sent to the CCW neigh-
bours. The CCW neighbour is responsible for the edge and
reconnects to the CW neighbour of the leaving node’s loca-
tion. If the CCW neighbour is already changing the edge
(splitting it or leaving itself), TryLater is used to tell the
node to wait for the change before retrying to leave.

The leave protocol
(y leaves between u and v)

y u← MergeEdge(av, lv)
u can process MergeEdge u will change

u y ← shutdown, lu[CW] = v y ← TryLater

v ← Hello(lv, CCW, lu)
v y ← shutdown, lv[CCW] = u
y u← close, v ← close

Theorem 1. The membership protocol maps circles to
circles. Or, the network is always a circle.

Proof. The first node establishes a circle. When a node
joins, it adds itself to a location on the circle. Therefore
the graph remains a circle. When a node leaves, it splices
together the edges at its location, preserving the circle.

Theorem 2. Every permutation of `(V) on the circle is
equally likely. There are (|E| − 1)! permutations.

Proof. The proof proceeds by induction on join/leave
events. The first node forms a permutated circle uniformly
at random, of which there are (|E|−1)!. Due to the random
walk, each new location splits one of the |E| edges, cho-
sen uniformly at random. As the network previously had
(|E| − 1)! permutations all equally likely, the resulting |E|!
permutations are also equally likely. When a location leaves,
it could have been in any of the |E − 1| slots between other
locations. Thus, each resulting permutation occurs |E − 1|
times, or with probability 1

(|E|−2)!
.

3.2 Crashes
As long as no nodes crash, the circle stays connected. Un-
fortunately, in a large system, nodes will malfunction. As
is typical for peer-to-peer systems, we consider only crash-
failures. When a node crashes, it quits without executing
the leave algorithm and creates gaps in the circle.

3

While it might be tempting to repair the circle, the circle
is only a mathematical model that fits our join/leave al-
gorithm. It turns out that the properties needed are also
provided by a broken circle. Therefore, we don’t bother re-
pairing the circle, as this would be quite costly and pointless.
Instead, we change the model to circles with broken edges.

Although we do not repair the circle, we must repair node
degree; those nodes adjacent to a broken edge have had their
degree reduced. If left alone, this would violate the invariant
that node degree is proportional to node capacity. Recall
that nodes only choose a desired number of locations; we
allow the actual degree to be one below the desired value.
Whenever the actual degree is two or more below the desired
degree, run the join algorithm to add two neighbours. Also,
shrink the routing table by dropping locations which have
both neighbour edges broken. However, two half-broken lo-
cations may not be merged, as this could make two circles.

Edges split by the join algorithm—including broken edges3—
must be chosen uniformly at random. Without any bias, a
random walk would choose a node proportional to the num-
ber of its faultless edges. We should adjust this probability
via techniques similar to [1], so that the random walk se-
lects a node proportional to the number of its locations. In
practise one might just omit this, as it has little effect.

Before we allowed broken edges, the network was always con-
nected. As we start breaking edges, the network could be-
come disconnected. In fact, normal random graphs are only
almost surely connected. The more edges that are broken,
the closer we come to the usual model of random graphs.

Theorem 3. When as many edges in the circle are bro-
ken as possible, the graph is a random perfect matching.

Proof. As a location with two broken neighbours is re-
moved, every location must have one neighbour. Let them
all have exactly one neighbour (the most broken possible),
then every second edge in the circle is broken. It would look
something like l1 → l2, l3 → l4, Let the connected
pairs of locations be matches. Every permutation describes
a matching of all the locations. The same perfect matching

can be arranged on the circle |`(V)|
2

! ways with 2
|`(V)|

2 ori-
entations for each pair. Thus they are all equally likely.

Corollary 4. The graph is almost surely connected.

Proof. Bollobás [2] proved almost sure connectivity for
regular graphs using perfect matchings. As the actual degree
can only be 1 less than the minimum desired degree of 4, we
have deg ≥ 3. Thus, his proof also applies to our graph.

4. BUBBLECAST
Within BubbleStorm, the job of bubblecast is to ensure a
rendezvous between every type-A and type-B message. It
does this by replicating both message types into the net-
work, where they will probabilistically meet. The replica-

3When a broken edge is split, the processing node connects
to the joining node. Thereby, the broken edge is moved to
the joining node, who receives only one neighbour.

tion subgraph for a given message is called its bubble, de-
fined as φA

u for a type-A message replicated from node u.
For two message bubbles with non-empty intersection, there
is a rendezvous node, r ∈ V (φA

u) ∩ V (φB
v), which received

both. When r exists, bubblecast has succeeded for this pair;
otherwise it has failed.

The process of blowing a bubble is similar to flooding. The
origin node sends the message to his neighbours, who send it
to their neighbours recursively until the desired replication is
achieved. The major advantage of this approach is that has
low latency, due to the extreme parallelism. Furthermore,
as small subsets in a random graph are very tree-like [2], the
process reaches many different nodes quickly.

Unlike flooding, bubblecast precisely controls the number of
edges in the bubble subgraph. This corresponds exactly to
the number of messages sent. We define this as the bubble
size, and denote it as |E(φA

u)| or just |φA
u |. For all type-A

messages, the replication factor |φA| is the same. Similarly,
all type-B messages have the same bubble size, which likely
differs from type-A. The probability of a rendezvous is di-
rectly related to the number of edges explored; it is therefore
important to carefully control this quantity (Section 4.2).

For this reason we reject the usual TTL or hop count that
limits the recursion depth; for example, see Gnutella. In-
creasing the TTL exponentially increases the nodes reached
and edges explored. Worse, in heterogeneous networks, the
TTL method reaches a wildly different number of nodes de-
pending on the interior node degrees. For these reasons,
bubblecast includes the bubble size in each message, speci-
fying exactly how many edges remain to be explored.

Not only can bubblecast control the total edges explored, it
can control when those edges are explored. If a search has
many hits, it might be a self-inflicted denial-of-service attack
to perform an exhaustive search. The traditional TTL ap-
proach would be to repeatedly reissue the query with a grow-
ing TTL. Unfortunately, this approach wastes bandwidth on
interior nodes and produces inaccurate bubble sizes.

Bubblecast solves this with resumable queries, viewing the
bubble as a pie. Each partial search explores only a pie-
slice, with a given angle. By varying the angle of the pie
slice, one can query with a controllable size (pie area). By
keeping the pie slices disjoint, very little traffic is incurred
on interior nodes. Naturally, once the entire pie is explored,
this method ceases to permit incremental search. Therefore,
the pie size should be chosen to be a bit larger than needed
to reach the desired probabilistic bound. This approach will
also be useful in dealing with collisions (Section 4.3).

Node split is the maximum number of messages forwarded to
neighbours. The split must be at least 2, but can be as large
as dv − 1. In Figure 4 all nodes have split = 3. A system-
wide split ensures that outgoing traffic stays proportional to
degree, rather than squared degree as seen in flooding.

Also, in today’s Internet, available uplink/downlink band-
width are not always symmetric (e.g. ADSL). Symmetric
nodes should use the fixed, system-wide split. Asymmetric
nodes can halve their split to send roughly half as much as

4

0 1 2
3

4

5

6
7891011

12

13

14

15
16 17

Figure 4: A size 18 bubble cut into three slice

received4. This marginally increases the uplink requirement
of many other nodes in the system.

4.1 The Algorithm
The header of a bubblecast message includes the desired
bubble size and the [start, end) pie interval of the slice to
fill. Each node divides the bubble into smaller bubbles and
forwards these to some of its neighbours. This is very sim-
ilar to building a search tree. The process is illustrated in
Figure 4. In that example the first pie-slice had [start, end)
= [0, 6) and size = 18. Users of bubblecast guarantee to fill
the pie clockwise, with no gaps, starting from 0.

The edges explored are chosen by taking the first ‘split’
neighbour edges out of a permutation. In this way, every
edge is equally likely to receive a sub-bubble. The permu-
tation of neighbour edges is chosen randomly, seeded by the
address of the original message sender. This ensures that a
future pie-slice in the same bubble will use the same neigh-
bours. Conceptually the message-id specifies a directed sub-
graph of the network for exploration.

The correctness of the bubblecast algorithm only requires
that |φ| edges be explored. The exponential division of
the bubble size is solely for low latency. Therefore, when
there is a double-edge, we can send the same size as for any
other neighbour. However, if we explored both halves of the
double-edge, we need to reduce the bubble size by one (for
the extra edge explored). Similarly, if we explore a self-loop,
the bubble size should be reduced. The whole algorithm is
shown in Figure 5.

Once a bubble has explored
p
|E| edges, it becomes quite

likely to have found a cycle. This can pose a problem as
a short cycle means that a node received the same bubble
twice. As both messages will explore the same subgraph, the
entire bubble size of the smaller sub-bubble is lost. Also, if
the permutation in Figure 5 picked only self loops (very short
cycles), bubblecast will not replicate the message at all. For
these reasons, collision counter-measures are important, and
will be discussed in Section 4.3.

4.2 Bubble Size
The larger the bubble, the more likely it will rendezvous with
all messages of the opposing type. For this reason, bubble

4To our knowledge, ours is the first P2P search system to
support asymmetric upstream/downstream bandwidth.

bubblecast (s i z e , s t a r t , end , msg) {
// The a r r i v a l edge comes f i r s t
i f (s t a r t == 0) match (msg) ;
l o c a l = 1 ;
// Es t a b l i s h the neighbours we send to
out = permute neighbours (o r i g i n o f (msg)) ;
out = remove sender (out , s end e r o f (msg)) ;
out = subarray (out , 0 , s p l i t) ;
out = r emove s e l f l o op s (out) ;
out = e l im i n a t e dup l i c a t e e d g e s (out) ;
// Remove l o c a l edges from remaining s i z e
l o c a l += s p l i t − out . l ength () ;
s t a r t = min (s t a r t − l o c a l , 0) ;
s i z e −= l o c a l ;
end −= l o c a l ;
i f (s i z e <= 0) return ;
// S p l i t the s i z e amongst chosen neighbours
out l en = out . l ength () ;
pos = 0 ;
for (i = 0 ; i < out l en ; i++) {

s i z e i = s i z e / out l en + (i<s i z e%out l en) ? 1 : 0 ;
s t a r t i = max(0 , s t a r t − pos) ;
end i = min (s i z e i , end − pos) ;
i f (s t a r t i < end i)
out [i] . bubblecast (s i z e i , s t a r t i , end i , msg) ;

pos = pos + s i z e i ;
}
a s s e r t (pos == s i z e) ;

}

Figure 5: The bubblecast algorithm

size is proportional to the controllable certainty factor c.
However, the required size of a bubble clearly depends on the
size of the network and its expansion factor. These aspects
are captured by the match threshold.

Definition 5. The match threshold, T , is defined as

T :=

`P
v∈V dv

´2P
v∈V dv(dv − 2)

=
(2|E|)2P

v∈V dv(dv − 2)
≤ 2|V |

Intuitively, the match threshold is the bubble size required
to reach an arbitrary node with probability ≥ 1 − 1

e
. In a

homogeneous network T = |V | d
d−2

. As d → ∞, bubble ex-

ploration becomes |V | independent choices out of V . Thus,
successful match probability is ≥ 1− 1

e
as expected.

As bubblecast works on heterogeneous systems, T must be
a bit more sophisticated. When |E| is held fixed, denomi-
nator

P
v∈V dv(dv − 2) has a minimum in the homogeneous

case (easy proof using Lagrange multipliers). Therefore, T
is maximized by the homogeneous case and heterogeneity
reduces the match threshold. This is the core of how Bub-
bleStorm benefits from heterogeneity.

Naturally, in real systems we are not interested in flooding
the whole network. Therefore, instead of one giant bubble
for type-A messages, we trade off type-A and type-B bub-
ble sizes while keeping their product equal to T ; Section 5.2
shows this is the right relationship. If the type-A/B work-
loads (measured in bytes) are WA and WB , then we want to
minimize WA|φA|+WB |φB |, the bandwidth cost after repli-
cation. With |φA||φB | fixed, WA|φA| = WB |φB | is the best
trade-off. It is shown optimal for rendezvous in Section 5.4.

5

Objective 6. For a given certainty factor c and work-
load WA, WB, the bubbles sizes should be

|φA| :=

&
c

r
T

WB

WA

’
|φB | :=

&
c

r
T

WA

WB

’

except where this would exceed cT , where it is dcT e.

While c is a system-wide parameter, T , WA, and WB must
be known to determine the correct bubble sizes. They are
found using an epidemic measurement protocol based on [12].
Alternately, the workload ratio can be a system-wide param-
eter based on projected usage. As the measurement algo-
rithm can only calculate averages and sums, T needs to be

rewritten as T =
D2

1
D2−2D1

, where Di =
P

v∈V di
v.

4.3 Collisions
When a bubble’s message is sent over the same edge twice,
that is a collision. Collisions can only occur if there is a
cycle contained in the bubble subgraph. Their effect is to
reduce the effective size of a bubble, thus decreasing success
probability. For this reason, if probabilistic guarantees are
required5, collisions must be prevented.

In order to detect collisions, every node remembers recently
seen bubbles. For each bubble, it stores a unique bubble
ID and the end of slice (if it differs from incoming size).
Receiving a bubble with a previously seen ID could lead to
a collision. However, when the start of slice equals the stored
end of slice, this is just a subsequent pie slice and should be
processed normally. Otherwise, there is a cycle in the bubble
subgraph. A cycle only causes a collision if receiving node
forwards the message over the same edge twice. To prevent
this, the receiving node must now take counter-measures.

When a collision is detected, the receiving node can report
the incoming size back to the original sender. The receiver
then ceases further processing. The sender can then make
an additional pie slice with the sum of reported sizes. This
requires that the sender’s first bubblecast is a partial slice. It
also increases the latency. Fortunately, most of the time the
problem can be fixed locally where the collision is detected.

If bubblecast uses only a fraction of a node’s neighbours for
forwarding (split < degree −1), a number of spare edges are
available. For example, with degree 10 and split 4, bubble-
cast uses 5 edges (one for the incoming message). So, there
are enough edges available to bubblecast twice from this
node without re-using an edge. When the ratio of degree to
split is higher, even more collisions are preventable.

Only when insufficient spare edges are available on a node
must collisions be reported back to the original bubblecaster.
As a generalization of the Birthday Paradox, the probability

of x collisions on node v is below
`|φ|

x

´ “
dv

2|E|

”x

. Therefore,

triple collisions are very unlikely for typical bubble sizes.
High degree nodes have a higher chance of seeing multiple
collisions, but their higher edge to split ratio compensates—
more collisions are needed to exhaust their spare edges.

5As cycles are quite rare, it is reasonable for applications
with failure tolerant requirements to do nothing.

5. ANALYSIS
While the algorithm used for rendezvous is relatively simple,
it was chosen to allow for rigorous analysis. There are four
important theorems about BubbleStorm. They relate to its
latency, correctness, maximal per-node load, and optimality.

In order to prove the results below, we will assume that the
bubble size is specified by Objective 6. That is, some tech-
nique, perhaps one from Section 4.3, has been implemented
to guarantee the correct number of edges are explored.

Keep in mind that the random variable in our proofs is the
topology. Thus, a node’s neighbour is a random variable, as
is the contents of a bubble like φA

u . However, the number of
neighbours a node has, and thus |E|, are fixed. The size of
a bubble, |φA

u |, is also fixed by our assumption above.

5.1 Latency
When doing an incremental search using bubblecast, one
must know when a slice has finished. If the size of the net-
work is known, the following theorem can be used to cal-
culate the time-out for a slice. The measurement algorithm
provides the network size (D0 = |V |). The latency in mil-
liseconds depends on the underlying network topology and
technology. As we do not possess this information, we in-
stead calculate latency in overlay hops.

Theorem 7. A bubblecast slice in φ has latency

LA ≤ dlog2 |V |+ log2 c + 1e = O(log |V |+ log c)

Proof. Each bubblecast invocation has a latency of the
longest path length. From nearly every node, the number
of neighbours reached is ≥ 2. Thus, bubblecast terminates
with depth ≤ log2 |φ|.

LA ≤ log2 |φ| ≤ log2 cT ≤ log2(2c|V |)

This worst-case dropped the usual 1
2

from bubble balance.

5.2 Correctness Probability
The algorithm is correct, or succeeds, for a type-A and type-
B bubble if there is some node which received messages of
both. The main result of this section is that failure proba-

bility depends on the certainty factor, c, as P(fail) ≤ e−c2 .

Throughout this section, we will assume a circle possibly
with broken edges. How these broken edges are formed was
discussed in Section 3.2. However, when one explores an
intact edge, as all permutations are equally likely, the lo-
cation reached is a uniform random sample chosen without
replacement. The broken edges do not prevent access to a
specific location when the graph is a random variable.

In order to prove the main result, we will first need a tech-
nical result about the expected size of the border or surface
of a bubble. To measure this quantity we will generalize
the degree function to operate not only on nodes, but also
on a subgraph. For a single node v, deg(v) the number of
half-edges incident on the node. This means that self-loops
get counted twice and other edges once. For a subgraph,
we also count the half-edges incident on subgraph vertexes,
excluding those in the bubble. This is illustrated in Figure 6.

6

u

Figure 6: A bubble’s degree/border as blue dots

Lemma 8. For a node u ∈ V chosen independently from
the connected graph, the border is normally distributed with

E(deg(φA
u)) ≥ |φA

u |
2|E|

X
v∈V

dv(dv − 2)− |φ
A
u |2

8|E|2
X
v∈V

d3
v

σ2(deg(φA
u)) ≤ |φA

u |
2|E| − 1

X
v∈V

d3
v ≈
|φA

u |
2|E|

X
v∈V

d3
v

Proof. The border starts with node u and degree = du.
Then, at each step, we explore an edge to reach nodes. When
a node is first added, it contributes its degree to the bor-
der. Naturally, each edge explored connects two nodes, one
that was in the border before, and one on the reached node.
Thus, every exploration decreases the border by 2. Let Iv

indicate that v ∈ φA
u (ie: P(Iv = 1) = P(v ∈ φA

u)).

deg(φA
u) =

X
v∈V

dvIv − 2|φA
u |

For indicator variables, E(Ik
v) = P(Iv = 1) for all k and

therefore, E((dvIv)k) = P(Iv = 1)dk
v . As the indicator vari-

ables are independent, we apply the central limit theorem:

E(deg(φA
u)) =

X
v∈V

dvP(Iv = 1)− 2|φA
u |

σ2(deg(φA
u)) =

X
v∈V

d2
vP(Iv = 1)(1−P(Iv = 1))

We now find bounds on P(Iv = 1) by running the algorithm.
We explore |φA

u | directed edges, and each edge added makes
one location unreachable CW and another CCW. Thus, at
step i, only |E| − 1 − i locations are reachable, all equally
likely thanks to the permutation. A given v has dv

2
locations.

It is unreached if and only if every exploration missed it.

P(Iv = 0) =

|φA
u |−1Y
i=0

„
1−

1
2
dv

|E| − i− 1

«
Whenever 1

2
dv > 1 (which it is by our minimum degree),

1− dv|φA
u |

2|E| − 1
≤ P(Iv = 0) ≤ 1− dv|φ|

2|E| +
1

2

„
dv|φ|
2|E|

«2

Expand the expectation using P(Iv = 1) = 1−P(Iv = 0).

E(deg(φA
u)) ≥ |φ

A
u |

2|E|
X
v∈V

d2
v −
|φA

u |2

8|E|2
X
v∈V

d3
v −
|φA

u |
2|E|

X
v∈V

2dv

σ2(deg(φA
u)) ≤

X
v 6=u

d2
vP(Iv = 1) ≤ |φ

A
u |

2|E|
X
v∈V

d3
v

For the variance, notice that (1−P(Iu)) = 0.

Definition 9. We measure degree heterogeneity with

H :=

P
v∈V d3

v

(
P

v∈V dv(dv − 2))3/2

While H seems to have no direct physical interpretation,
it somehow describes the phase-transition between a dis-
tributed system and a centralized one. Nodes with relative
capacity less than

p
|V | times the largest node are not useful

participants; they should be clients. This is because a node
which has a

p
|V | times larger degree serves as a rendezvous

point for |V | times more than the smaller node. Even if the
remainder of the network consisted solely of these smaller
nodes, they would still only serve as a rendezvous for half
of the load. The system would be have perfect rendezvous
success and be at worst twice slower if all the other nodes
just acted as clients to the larger node. This corresponds to
the fact that if dv = o(

p
|E|), then H = o(1).

The above is a worst-case bound, and for more uniformly
distributed dv, H decreases much more quickly. In fact, if
the degree relationship between nodes are fixed fractions6,
then H ≈ Θ(|V |−0.5). In our experience, H is an overesti-
mate in homogeneous and near-homogeneous systems.

Definition 10. We measure the extent to which a work-
load’s relative type-A and type-B traffic differ with

Υ :=
1

2

r
WA

WB
+

1

2

r
WB

WA

Theorem 11. For two arbitrary nodes, u and v, chosen
independently from the connected network topology, the bub-
bles φA

u and φB
v fail to reach a common node with probability

P(failure) = P(φA
u ∩ φB

v = ∅) ≤ e−c2+c3ΥH

where H → 0 as |E| → ∞ for dv = o(|E|
1
2).

Proof. We want to find a node which received both mes-
sages. One sufficient condition for this is that an edge in φB

v

reaches the border of φA
u . That would mean that this edge

transmitted the type-B message and is incident on a node
which saw the type-A message. That node must therefore
have received both.

We assumed that |φA
u | is not a random variable, but never-

theless deg(φA
u) is. Thus, we first examine the conditional

failure probability F (∆) = P(fail | deg(φA
u) = ∆). Later we

will apply E(F (deg(φA
u))) = P(fail) to eliminate this.

Imagine exploring one edge in φB
v at a time while holding

φA
u fixed. We stop exploring edges and declare victory once

we add reach an edge in E(φA
u) or incident on V (φA

u). This
must happen before step |E|−|φA

u |, at which point there are
no more edges. The first step where we succeed and stop,
we denote by the random variable S.

6This appears to be the case for Gnutella [5].

7

We notice that P(S ≥ 0 | deg(φA
u) = ∆) = 1 and find,

F (∆) = P(|φB
v | ≤ S | deg(φA

u) = ∆)

=

|φB
v |−1Y
i=0

P(S 6= i |S ≥ i ∩ deg(φA
u) = ∆)

P(S = 0 | deg(φA
u) = ∆) =

|φA
u |

|E| +2 ∆
2|E|−

∆2

(2|E|)2 >
1
2∆

|E| is the

chance that the first edge added was instant victory7. All
subsequent edges must be incident to the first, and therefore
can not be in φA

u , because first one must cross the border.

Let us make a few observations about the involved sets:

1. The set φA
u contains directed edges, each connecting

two locations. Without crossing the border, they are
unreachable. Thus, for an exploration direction, |φA

u |
locations are in the correct direction, but unreachable.

2. As we explore φB
v , at step i, i edges have been ex-

plored. So, for a given direction, i locations are also
unavailable. When S ≥ i, these locations are disjoint
from those in φA

u .

3. The border of φA
u contains half-edges. Exactly half

face clockwise. So, for a given exploration direction,
1
2
∆ border locations can be reached.

For i > 0, we explore an unbroken and unexplored edge
which is incident on an explored edge. The important value
is P (S = i |S ≥ i∩deg(φA

u) = ∆), the chance we just reached
a location in the border of φA

u (and are thus victorious). As
the circle filled slots by a permutation, all the options are
equally likely. Victory occurs for 1

2
∆ locations, and |φA

u |+ i
of |E| neighbours are not possible to select, having already
been assigned a place in the circle. Therefore,

P(S = i |S ≥ i ∩ deg(φA
u) = ∆) =

1
2
∆

|E| − |φA
u | − i− 1

>
1
2
∆

|E|

Filling in the values of P(S 6= i |S ≥ i ∩ deg(φA
u) = ∆),

F (∆) <

„
1−

1
2
∆

|E|

«|φB
v |

< e
−

1
2 |φ

B
v |∆

|E|

Let X be the normal random variable deg(φA
u). For normal

distributions, E(e−kX) = e−kµ+k2σ2/2. If k = |φB
v |/2|E|,

P(fail) = E(F (deg(φA
u))) < E(e−kX) = e−kµ+k2σ2/2

≤ e
− |φB

v ||φA
u |

4|E|2

„P
v∈V dv(dv−2)− |φA

u |+|φB
v |

4|E|
P

v∈V d3
v

«

= e
−c2+c2

|φA
u |+|φB

c |
4|E|

P
v∈V d3

vP
v∈V dv(dv−2) = e−c2+c3ΥH

Recall the bounds on H to complete the theorem.

The preceding proof bounded the chance that messages from
two nodes do not rendezvous. Subsequent queries between
those two nodes either succeed or fail depending on the pre-
vious result. One might be interested in the probability that
a BubbleStorm network always provides rendezvous for ev-
ery pair. Subsequent attempts in the same graph are not
independent, so such networks exist.
7The squared ∆ is simply due to self-loops on the border.

Corollary 12. A network always succeeds with chance

P(all pairs match) ≥ 1− |V |2e−c2+c3ΥH

where H → 0 as |E| → ∞ for dv = o(|E|
1
2).

Proof. We bound the chance that the opposite is true

P(∃u, v ∈ V : φA
u ∩ φB

v = ∅) ≤
X

u,v∈V

P(φA
u ∩ φB

v = ∅)

Apply Theorem 11 inside the sum |V |2 times.

By setting c = λ
p

2 log |V | as |E| → ∞, we can say this

happens with P ≥ 1−e−λ2
. So, by making c = Θ(

p
log |V |),

we can build systems which almost surely never fail.

5.3 Load
We will assume that load is injected at a node proportionally
to its degree. This assumption makes the message sources
independent and proportional to the edges, helping us derive
the load variance. However, this is also a fairness criteria, as
individual nodes contribute resources proportional to their
consumption. If this assumption is unacceptable, bubblecast
can be preceded by a simple random walk of logarithmic
length. The final probability distribution of a random walk
is proportional to node degree, as required.

A workload consists of a set MA of type-A messages. |m|
for m ∈ MA is the size of the message. The type-A work-
load is, as before, WA =

P
m∈MA

|m|. These messages are

replicated via bubblecast to form bubbles φA
m in the system.

Similar definitions apply for type-B workload.

Theorem 13. An edge, e, chosen independently of the
topology and load, carries type-A traffic TA, with

E(TA) = c

s
WAWBP

v∈V dv(dv − 2)

σ2(TA) ≈ E(TA)

P
m∈MA

|m|2

WA

Proof. The type-A traffic seen by an edge is the sum in
bytes of all type-A messages transmitted.

TA =
X

m∈MA

|m|Ie∈φA
m

As e was chosen independently from the source of the load,

P(e ∈ φA
m) =

|φA
m|
|E| for m ∈MA.

E(TA) =
|φA|
|E| WA =

c

|E|
√

TWAWB = c

s
WAWBP

v∈V dv(dv − 2)

The variance σ2(TA) = E(T 2
A)−E2(TA), or

σ2(TA) =
X

m1,m2∈MA

|m1||m2|
„
E(Ie∈φA

m1
Ie∈φA

m2
)− |φ

A
m|2

|E|2

«
We would like the cross-term P(e ∈ φA

m1 ∩e ∈ φA
m2) to equal

P(e ∈ φA
m1)P(e ∈ φA

m2) by independence. Unfortunately,

8

this is not true when the source of two bubbles is the same,
but we assumed a smooth load distribution. So,

σ2(TA) =
X

m∈MA

|m|2 |φ
A
m|
|E|

„
1− |φ

A
m

|E|

«
≤ |φ

A|
|E|

X
m∈MA

|m|2

Substitute in E(TA) = |φA|
|E| WA.

Now that we have both the expected load and the variance,
we can calculate how well distributed the load is. As usual,
dv ∈ o(

p
|V |). We will also assume a maximum message

size Mmax and that WA, WB are proportional to |V |.

Corollary 14. For edge e chosen independently of topol-
ogy and load, TA ≤ kE(TA) almost surely, for any k > 1.

Proof. We apply Chebyshev’s inequality, to find

P(|TA −E(TA)| ≥ (k − 1)E(TA)) ≤ σ2(TA)

(k−1)2E2
(TA)

≤
P

v∈V dv(dv−2)

(k−1)2c
√

WAWB

P
m∈MA

|m|2

WA

≤
q√

|V ||V |

(k−1)2c
√
|V ||V |

Mmax = O

„
1q√
|V |

«
Therefore, as |V | → ∞ the probability drops to zero.

5.4 Optimality
We cite here a lower-bound result proven in [17], with ad-
justed notation. γv is the download capacity of a node.

Theorem 15. Any system which guarantees rendezvous
of every type-A and type-B message must have a node which
spent relative load (load divided by capacity),

t ≥ 2

s
WAWBP

v∈V γ2
v

For comparison, Theorem 13 showed that when both type-
A/B traffic are combined for all edges at a node,

E(Tu) = 2duc

s
WAWBP

v∈V dv(dv − 2)
≤ 2
√

2duc

s
WAWBP

v∈V d2
v

As our topology was designed to set node degree propor-
tional to node capacity, t = Tu

du
. Therefore, our result is

within a constant factor of
√

2c of optimal on most nodes.

Static systems of the same complexity can be built with-
out a failure probability. However, our system is highly dy-
namic, and the failure probability is controllable. If a static
system were scaled to the same number of participants as
BubbleStorm, we doubt that its success probability would
still be 100%, due to downtime, etc.

6. RELATED WORK
Often understood as the ancestor of unstructured P2P sys-
tems, the original Gnutella [13] lacks scientific design. Its
simple hop-limited query flooding without any data replica-
tion is clearly not scalable and prompted widespread crit-
icism. Nonetheless, Gnutella demonstrated the astounding

potential of peer-to-peer systems and inspired most of the
research in unstructured P2P systems.

Gia [5] is a Gnutella-inspired system that combines biased
random walks for queries with one-hop data replication,
topology adaption, and flow control. Delivering promis-
ing simulation results for non-exhaustive searches, unfor-
tunately the authors do not provide mathematical analysis.
When dissatisfied with its current neighbour set, a node ac-
tively searches for new neighbours and connects to them.
This may disconnect other nodes, possibly making them
dissatisfied, and thus leading to a chain reaction, causing
non-local change in the topology.

Cohen and Shenker [6] analyze replication in unstructured
P2P systems. When queries terminate after the first match,
they show optimal replication is proportional to the square
root of an item’s popularity. Adjusting BubbleStorm to this
approach would be easy: use different bubble sizes for differ-
ent type-A messages. However, we do not take the popular-
ity into account, because exhaustive search does not benefit
from the extra replication of popular data.

Sarshar et al [15] enable exhaustive search on a Gnutella
topology with sub-linear complexity. They combine ran-
dom walk data replication with a two-phase query scheme.
Queries are first installed along a random walk and then
flooded with a probabilistic algorithm based on bond per-
colation. Traffic cost and success probability are analyzed.
However, the only heterogeneity permissible corresponds to
power-law graphs. While their system has O(

p
|V | log2 |V |)

query complexity, it does so by introducing nodes of degreep
|V |. They also consider nodes of degree O(|V |), well be-

yond the point where centralization is superior. Even then,
their system is log2 |V | off the optimum of the lower-bound
met by BubbleStorm. It remains unclear how close they
come to the bound under useful degree constraints.

An approach quite similar to BubbleStorm is described in [9].
Instead of bubblecasting, Ferreira et al use random walks of
length O(c

p
|V |) to sample a random set of nodes. In con-

trast to our system they do not exploit the heterogeneity of
node capacities, nor balance the random set sizes.

While most of the related approaches use random walks for
rendezvous, we argue that random walks have high latency
and are unreliable. Random walks do not exploit the natu-
ral parallelism of a distributed system. The latency of the
random walk is proportional to its length, which may be un-
acceptably high for interactive applications. Furthermore,
if a single node in the random walk crashes while process-
ing the message, the operation fails completely. In contrast,
bubblecasting offers a latency logarithmic to the bubble size.
Occasional message loss reduces bubble sizes and thus suc-
cess probability, but does not mean complete failure. In
BubbleStorm we do use random walks for join, but these
walks are short and not time-critical.

The topology maintenance of BubbleStorm has a join algo-
rithm similar to that used in SWAN [3]. However, Bourassa
et al are not trying to solve exhaustive search. Cooper et
al [7] proved that repeated application of this algorithm con-
verges to a random regular graph in the usual sense. This
proof is based on switchings caused by leaves which connect

9

different neighbours and can disconnect the graph. Bub-
bleStorm does not do this and is analyzed on the basis of an
entirely different model. Other differences are that our join-
s/leaves are atomic, we don’t need to repair crashed links,
and we add heterogeneous degree.

Bit Zipper [18] solves the rendezvous problem using dis-
tributed hash tables (DHTs). Because the correctness is
deferred to the underlying DHT, Bit Zipper itself has no
failure probability. However, the system is not able to adap-
tively balance query and storage traffic, nor does it exploit
heterogeneity. The usual, non-uniform allocation of DHT
key space will also likely induce hotspots. This aside, it
does meet the same lower-bound in the homogeneous case.

7. CONCLUSION
In this paper we presented the bubblecast algorithm and a
random multigraph topology which, when combined, enable
exhaustive search with adjustable probabilistic guarantees
in large-scale heterogeneous systems.

Bubblecast is a new low latency, communication primitive
that enhances traditional TTL-limited flooding by a precise
size parameter. Additionally, the bubble can be searched
incrementally slice by slice. Bubblecast could be easily used
in cases where TTL-limited flooding is used today.

Although modelled as a circle permutation, the BubbleStorm
topology is extremely robust against node failures. Yet to
achieve this, only two maintenance operations are needed—
join and leave—and they modify just a single edge. Still,
the topology sustains the modelled randomness at all times.

By bubblecasting data and queries over the BubbleStorm
topology the two components are combined into a search sys-

tem. The probabilistic success guarantee (1 − e−c2) of the
algorithm can be traded-off linearly with bandwidth con-
sumption (c) by adjusting bubble sizes. Furthermore, the
algorithm meets the lower-bound on per-node bandwidth.

All elements of the system are heterogeneity-aware. The
potential benefit from heterogeneity in node capacity is an-
alyzed and exploited. As every edge sees the same traf-
fic, a node can choose its degree according to its capacity;
hotspots are avoided. Thus, the combined algorithms offer
a scalable approach to exhaustive search in distributed sys-
tems for cases where key-value indexes are not appropriate.

8. REFERENCES
[1] A. Awan, R. A. Ferreira, S. Jagannathan, and

A. Grama. Distributed Uniform Sampling in
Unstructured Peer-to-Peer Networks. In Proceedings of
HICSS’06, pages 223–233, Washington, DC, USA,
2006. IEEE Computer Society.

[2] B. Bollobás. Random Graphs. Cambridge University
Press, 2nd edition, 2001.

[3] V. Bourassa and F. B. Holt. SWAN: Small-world wide
area networks. In Proceedings of SSGRR’03, 2003.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web Caching and Zipf-like Distributions:
Evidence and Implications. In Proceedings of
INFOCOM’99, pages 126–134, 1999.

[5] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,

and S. Shenker. Making gnutella-like P2P systems
scalable. In Proceedings of SIGCOMM’03, pages
407–418, New York, NY, USA, 2003. ACM Press.

[6] E. Cohen and S. Shenker. Replication strategies in
unstructured peer-to-peer networks. In Proceedings of
SIGCOMM’02, pages 177–190, New York, NY, USA,
2002. ACM Press.

[7] C. Cooper, M. Dyer, and C. Greenhill. Sampling
regular graphs and a peer-to-peer network. In
Proceedings of SODA’05, pages 980–988, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied
Mathematics.

[8] V. Darlagiannis, A. Mauthe, and R. Steinmetz.
Overlay Design Mechanisms for Heterogeneous, Large
Scale, Dynamic P2P Systems. Journal of Network and
Systems Management, 12(3):371–395, September 2004.

[9] R. A. Ferreira, M. K. Ramanathan, A. Awan,
A. Grama, and S. Jagannathan. Search with
Probabilistic Guarantees in Unstructured Peer-to-Peer
Networks. In Proceedings of P2P’05, pages 165–172,
Washington, DC, USA, 2005. IEEE Computer Society.

[10] P. B. Godfrey and I. Stoica. Heterogeneity and Load
Balance in Distributed Hash Tables. In Proceedings of
INFOCOM’05, 2005.

[11] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan. Measurement, Modeling
and Analysis of a Peer-to-Peer File-Sharing Workload.
In In Proceedings of SOSP’03, Bolton Landing, NY,
June 2003.

[12] D. Kempe, A. Dobra, and J. Gehrke. Gossip-Based
Computation of Aggregate Information. In
Proceedings of FOCS’03, page 482, Washington, DC,
USA, 2003. IEEE Computer Society.

[13] T. Klingberg and R. Manfredi. Gnutella, June 2002.
http://rfc-gnutella.sourceforge.net/developer/testing/.

[14] P. Maymounkov and D. Mazières. Kademlia: A
Peer-to-Peer Information System Based on the XOR
Metric. In IPTPS’01: Revised Papers from the First
Intl. Workshop on P2P Systems, pages 53–65,
London, UK, 2002. Springer-Verlag.

[15] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury.
Percolation Search in Power Law Networks: Making
Unstructured Peer-to-Peer Networks Scalable. In
Proceedings of P2P’04, pages 2–9, Washington, DC,
USA, 2004. IEEE Computer Society.

[16] I. Stoica, R. Morris, D. Karger, and M. F. Kaashoek.
Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of COMM’01,
pages 149–160, San Diego, California, United States,
January 2001. ACM Press.

[17] W. W. Terpstra. Distributed Cartesian Product.
Master’s thesis, Technische Universität Darmstadt,
Darmstadt, Germany, May 2006.

[18] W. W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju,
and A. Buchmann. Bit Zipper Rendezvous—Optimal
Data Placement for General P2P Queries. In
EDBT’04 Workshop on Peer-to-Peer Computing and
DataBases, March 2004.

[19] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 2nd edition, 1999.

10

