
On Quality-of-Service and Publish-Subscribe
Stefan Behnel

Databases and Distributed Systems Group,
Technische Universität Darmstadt (TUD),

Darmstadt, Germany,
behnel@dvs1.informatik.tu-darmstadt.de

Ludger Fiege
Siemens AG,

Munich, Germany,
ludger.fiege@siemens.com

Gero Mühl
Communication and Operating Systems,

Technische Universität Berlin,
Berlin, Germany,

gmuehl@cs.tu-berlin.de

Abstract— Publish-subscribe is a powerful paradigm for dis-
tributed communication based on decoupled producers and
consumers of information. Its event-driven nature makes it
very appealing for large-scale data dissemination infrastructures.
Various architectures were proposed in recent years that provide
very diverse features. However, there are few well-defined metrics
in the publish-subscribe area that would allow their evaluation
and comparison.

In this paper, we provide a broad overview of relevant
quality-of-service metrics and describe their specific meaning in
the context of distributed and decentralized publish-subscribe
systems. Our goal is to provide a common base for future
evaluations of emerging systems and for the design of quality-
of-service aware publish-subscribe infrastructures.

I. INTRODUCTION

The system model of the publish-subscribe communication
paradigm is surprisingly simple. The figure shows its three
roles: publishers, subscribers and brokers. Publishers (aka
producers) provide information, advertise it and publish no-
tifications about it. Subscribers (aka consumers) specify their
interest and receive relevant information when it appears. Bro-
kers mediate between the two by selecting the right subscribers
for each published notification. Additionally, we use the term
“client” for both publishers and subscribers to distinguish their
roles from the broker infrastructure.

Broker
Infrastructure

Subscriber
notify

Subscriber

notify

notify

Subscriber
notify

Publisher
publish

advertise

Publisher
publish

advertise

subscribe

subscribe
subscribe

subscribe

The two major approaches for notification filtering are
subject-based publish-subscribe, where consumers subscribe
to a subject that producers explicitly assign to their notifi-
cations, and content-based publish-subscribe, where subscrip-
tions include more general filters on the actual content of
notifications.

An important property of the publish-subscribe model is
the level of abstraction at which publishers and subscribers
communicate. They are not aware of organization and size of
the system. There can be a single centralized broker, a cluster
of them or a distributed network of brokers. All that clients see
is their specific brokers through which communication partners
are self-selecting by interest. This makes this model appealing
for highly scalable systems that must hide varying complexity
and adaptable infrastructures from the participants.

Designing efficient, scalable infrastructures has been a ma-
jor research interest in recent years. Various systems were pro-
posed, including [4, 18, 22]. However, they have rather diverse
characteristics and none of them answers all requirements of
the various possible applications of publish-subscribe. This pa-
per tries to provide a common ground for the comparison and
evaluation of these systems. To this end, we survey the relevant
quality-of-service metrics and describe their meaning within
the very specific context of the publish-subscribe model. To
the best of our knowledge, this is the first comprehensive
evaluation of QoS metrics in the publish-subscribe area.

The publish-subscribe model suggests a number of different
quality-of-service metrics. Some are related to subscriptions
and single notifications while others describe end-to-end prop-
erties of flows of notifications. The following sections de-
scribe the different metrics and their meaning when requested
by publishers or subscribers. Each description starts with a
definition (+) of the metric with respect to subscriptions,
notifications and advertisements. Their implementation in a
distributed publish-subscribe system has mainly two dimen-
sions: The topological organization of the brokers and the local
decisions of each broker regarding filtering, scheduling, etc.
They are briefly summarized in figure 1.

II. QOS AT THE GLOBAL INFRASTRUCTURE LEVEL

End-to-end latency, bandwidth and delivery guarantees form
low-level properties of the broker infrastructure. In a cen-
tralized infrastructure in which the client connections also
implement QoS, there are ways to impose hard limits on them.
In any less predictable environment, especially distributed
multi-hop infrastructures, they should not be understood as
real-time guarantees. Here they become probabilistic options
or even hints about preferences of clients. Note that even hints
can be helpful to the infrastructure if it has to determine which
notifications to drop from overfull queues or which broken
inter-broker connection to repair first.

A. Latency

+ Subscriptions - Subscribers request a publisher that is
within a maximum latency bound.

The end-to-end latency between producers and consumers
depends on the number of broker hops between them, the
travel time from hop to hop and the time it takes each broker
to forward a notification.



QoS Metric Topology Impact Local Broker Decisions
Latency end-to-end network latency and hop count, reorganization delays,

global load distribution, adaptation to physical topology, degree of
freedom in routing

time complexity of filter evaluation, local
routing choices

Bandwidth end-to-end bandwidth, global load distribution, path independence,
adaptation to physical topology, degree of freedom in routing

local routing choices

Message priorities topology shortcuts local scheduling
Delivery guarantees reliability, reorganization, path redundancy, trusted or reliable

subgraphs
persistency and caching, routing decisions
based on reliability, trust or reputation

Selectivity of sub-
scriptions

adaptation to subscription language (e.g. subject grouping) decidability, local load

Periodic/sporadic - conversion
Notification order single/multi-path delivery, consistency during reorganization reordering
Validity interval deterministic delivery paths for follow-ups message drops after delay or on follow-ups
Source redundancy path convergence identity decision
Confidentiality trusted subgraphs encrypted filtering
Authentication and
integrity

- client authentication, access control

Fig. 1. Relation of topologies and local broker decisions to the QoS metrics: Impacts and implementation choices

In a centralized system, the minimum travel time between
broker and clients provides a hard lower bound and the
additional forwarding time depends on the broker load. Even
in a distributed broker infrastructure, measured lower bounds
can give hints if a requested QoS level is achievable at all. In
general, however, they do not allow for absolute guarantees.
One way of dealing with latency requirements is by pre-
allocating fixed paths between senders and receivers. This
avoids the overhead of having to establish connections on
request and allows for meaningful predictions.

A further speed-up in content-based systems can be
achieved by tagging notifications and merging them into
channels [11]. This simplifies the routing on each broker on
the path by avoiding content-based filtering. Note that this
approach effectively maps content-based filtering to subject-
based filtering, which is not always possible as it can lead to
state explosion [14]. The most efficient form obviously is a
mapping to native IP-Multicast [8].

Systems could further reduce the path length by skipping
those brokers that only forward a stream to one or very few
connections. This obviously requires a certain freedom in the
routing choices of brokers. Still, the observed latency may
vary considerably over time, as Internet paths commonly serve
multiple concurrent streams. The optimal case is a physical
network that supports native quality-of-service allocation and
IP-Multicast.

B. Bandwidth

+ Advertisements - Producers specify upper/lower
bounds for the stream they produce.

+ Subscriptions - Subscribers restrict the maximum
stream of notifications they want to receive.

The overall bandwidth used by the system depends on the
throughput per broker and the size of each notification. Today’s
Internet-level connections tend to be sufficiently dimensioned
to allow many concurrent high-traffic streams, but they usually
do not provide physical quality-of-service and bandwidth
provisioning. This holds especially when streams cross the
borders of autonomous systems.

Therefore, bandwidth requirements should rather be re-
garded at a per-broker level. If each broker knows the band-
width that it can make locally available to the infrastructure,
this gives an upper bound for the throughput of a path.
Although not necessarily accurate, such an upper bound allows
to route notifications based on the highest free bandwidth on
the neighbouring brokers. It can be used to avoid high-traffic
paths and to do local traffic optimization. If channel merging
is applied (as for latency), the channels can be tested for
their end-to-end capacity. However, the observed bandwith in
general purpose networks may show high variations over time
that cannot be foreseen.

The subscriber’s point of view is most important in mobile
settings. Here, it makes sense to let the infrastructure restrict
the delivery bandwidth to reduce the resource consumption of
subscribers [15].

C. Message priorities

+ Notifications - Producers specify relative priorities be-
tween their own notifications or their absolute priority
compared to other (foreign) notifications.

+ Subscriptions - Subscribers specify the relative priority
between their subscriptions.

As with latency and bandwidth, message priorities have both
a per-broker side and an end-to-end side to them. They are,
however, easier to establish in a distributed broker network
than latency bounds, as their conception does not aim to
provide absolute or real-time guarantees.

Priorities between notifications can be used to control the
local queues of each broker which will eventually lead to their
end-to-end application along a path. Again, channels can be
used to shorten the path for high-priority notifications, the
extreme case being to send them directly from the system entry
point to the recipients. More commonly, however, notifications
will be allowed to overtake those with a lower priority during
the forwarding and filtering process at each broker, subject to
a weighted scheduling policy. This underlines the importance
of their per-broker part.



D. Delivery guarantees

+ Subscriptions - Subscribers specify which notifications
they must receive, which are less important to them, and
where duplicates matter.

+ Notifications, Advertisements - Producers specify if
subscribers must receive certain notifications.

Implementations can be as simple as a tag for notifications
that may be dropped on the delivery path. This is even trivially
merged from multiple subscriptions along the delivery path by
a simple boolean “and”. A combination with message priorities
allows the least important message to be dropped first.

More demanding guarantees regard the completeness and
duplication of delivery. Subscribers can receive notifications
at least once, at most once or exactly once, the latter being the
combination of the first two. If the infrastructure is not reliable
itself, the first requirement can be achieved by meshing which
increases the delivery probability at the cost of generating du-
plicates and thus increasing the message overhead. A request
for at most one delivery encourages either single path delivery
or duplicate filtering before the arrival at the subscribers.

In infrastructures with unreliable brokers, reputation sys-
tems or availability histories may allow to route notifications
through more reliable brokers. This lowers the chance of
brokers failing during delivery or maliciously suppressing
notifications. However, this is rather a hint than a guarantee
since a history does not allow a reliable prediction of the future
availability or behaviour of network and brokers.

Another problem with delivery guarantees regards temporar-
ily disconnected subscribers [6], e.g. in a mobile environment.
The broker infrastructure must store notifications that were
guaranteed to be delivered at least once until the subscribers
become available again. Note that this may be after an arbi-
trarily long time or never, so in practice, the infrastructure will
only store notifications for a sensible time interval.

Finally, it is possible to define a quorum, i.e. to specify
the minimum or maximum number of subscribers that must
receive a notification or the minimum or exact number of
publishers that a subscriber wants to subscribe to. In a de-
coupled environment like publish-subscribe systems, where
publishers and subscribers are not supposed to know anything
about each other, this measure should only be available at an
administrative level, e.g. within scopes [12].

III. QOS AT THE NOTIFICATION AND SUBSCRIPTION LEVEL

A number of QoS properties touch the semantics of sub-
scriptions and notifications, including periodic or sporadic
delivery, priority and order of delivery, limited validity and
redundancy of producers. Security issues like authentication
or confidentiality also fall into this scheme. A very important
factor is the selectivity of subscriptions.

A. Selectivity of Subscriptions

+ Subscriptions - Subscribers define their subscriptions
in a specific language.

Subscriptions can be expressed in different classes of lan-
guages. Simple subscriptions can contain a subject for identity

matches, whereas more complex ones can support attribute
matches, ranges or even Turing complete computer programs.

All of these languages have a specific level of complexity
with respect to filter identity tests and merging, distributed
matching, global message overhead and false positives on
delivery. The filter language therefore represents a tradeoff be-
tween local overhead at brokers or subscribers and distributed
overhead inside the broker infrastructure. In general, more
complex languages can reduce the number of false positives by
allowing more accurate subscriptions, but tend to make filter
optimizations and distributed matching more difficult.

The language is not necessarily the same within the entire
infrastructure. Scoped subgraphs [12] may decide to provide
languages internally that differ from the outside capabilities
and then convert between the two at the interfaces. Similarly,
a broker may decide to accept complex subscriptions from
its local subscribers and forward simplified versions that
are understood by remote brokers or more suitable for the
topology. If it then filters incoming notifications based on the
more expressive subscriptions, it can increase the satisfaction
level of the local subscribers.

B. Periodic or sporadic delivery

+ Advertisements - Producers advertise their output.
+ Subscriptions - Subscribers specify which notifications

they want to receive sporadically and which they need
periodically.

This captures the difference between an interest in changes of
information and the information itself. Periodically published
notifications become a data flow that represents the status
of requested information at the moment of each publication.
Sporadically published notifications occur only when this
information changes. One way of looking at them is as
prefiltered events that pass when the data change exceeds a
certain threshold. This is an interesting option for reducing the
amount of data sent by accepting a certain inaccuracy [15].

The infrastructure may either match subscriptions to corre-
sponding publishers or try to emulate the requested state by
itself. Periodic notifications may be emulated by storing and
repeating the latest sporadic notification. Sporadic delivery can
be based on a configurable threshold that blocks the delivery
of periodically published static values. Note that in a content-
based system with arbitrary filters, the required comparison of
notifications may be restricted to an identity test or may not
be possible at all.

C. Notification order

+ Advertisements - Producers advertise for which of their
notifications the ordering matters.

+ Subscriptions - Subscribers specify which matching
notifications they want to receive in order.

The order in which notifications arrive may or may not be
relevant. In many cases, ordering is easy to achieve by either
using centralized ordering, ordered transports (ATM, TCP) or
by letting the producer (or its broker) impose an explicit order
and sorting the notifications on delivery.



Special care must be taken if the broker topology is allowed
to change during the delivery process, as this may impact
the order in which notifications arrive and may even result
in message loss. Since ordered delivery does not imply guar-
anteed delivery, a very efficient solution is to deliberately drop
notifications if a successor has already been delivered. If this is
not acceptable, notifications must be reordered before delivery,
which may introduce arbitrarily long delays.

The distributed ordering of events coming from different
sources is another problem. For content-based subscriptions,
it is even hard to define a meaningful ordering in this case.
It is therefore largely dependent on the subscription language
and the application if such an order is applicable. A generic
approach is the deployment of a dedicated, central broker
to enforce a global ordering, which can in turn limit the
scalability of the overall infrastructure.

D. Validity interval

+ Notifications, Advertisements - Producers advertise or
specify a timeout for their notifications, or a successor
message that renders them irrelevant.

It is important for the infrastructure to know how long a
notification stays valid, either specified in terms of time or
infered by the arrival of later messages. A validity based on
a hop count would be meaningless in the decoupled publish-
subscribe model. If only the most recent event is of interest, the
validity specification by follow-up messages is a particularly
efficient approach. It allows the infrastructure to reorder and
shorten its queues in high traffic situations.

E. Source redundancy

+ Subscriptions - Subscribers request redundant sources
for the same event.

Redundant sources increase the fault tolerance and allow the
subscribers to double check events. In some cases, they may
be sufficient to replace guaranteed delivery. Note that a request
for redundacy requires the notifications or advertisements of
publishers to be comparable. Complex subscription languages
may hinder or prevent this (decision problem1).

F. Confidentiality

+ Subscriptions - Subscribers encrypt their subscriptions
or send them only to trusted brokers.

+ Notifications - Publishers connect only to trusted bro-
kers or send (partially) encrypted notifications.

Confidentiality is obviously achievable in (sub-)networks of
only trusted brokers [13]. Similarly, messages can be hidden
from untrusted brokers on the delivery path by using standard
encryption mechanisms between trusted brokers. Untrusted
brokers are then forced to broadcast to all their neighbours.
Apart from higher load at those brokers, this also introduces
potentially large numbers of duplicates in the system.

Confidentiality becomes difficult where untrusted brokers
must participate in the matching process. This is a minor

1http://en.wikipedia.org/wiki/Entscheidungsproblem

problem in subject-based publish-subscribe, where the low
selectivity of subscriptions makes the actual content of no-
tifications opaque to the matching process. It can just as
well be encrypted, which may be exploited within untrusted
broker networks. The information gain of untrusted brokers
then depends on the amount of information revealed by the
subject. The selectivity of subjects can therefore be seen as a
tradeoff between message overhead and reveiled information.
However, malicious brokers can still suppress messages in this
case.

Content-based matching requires much higher insight into
the content of notifications. A number of recent publications
from the database area show ways for matching encrypted
data against certain queries [1, 2] without revealing any of the
two. Publish-subscribe systems could apply similar schemes to
allow blind matching on untrusted brokers. However, solving
this problem for arbitrary queries and data without reveiling
any information about them is likely impossible.

G. Authentication and Integrity

+ Subscriptions - authenticated by Subscribers.
+ Notifications - authenticated by Publishers.

If publishers want to enforce access control mechanisms [3],
it becomes necessary for subscribers to authenticate their
subscriptions using techniques like digital signatures. On the
other side, publishers can sign or watermark their notifications
to assure data integrity. The evaluation can then either be done
end-to-end or within the broker infrastructure.

IV. EVALUATION OF PUBLISH-SUBSCRIBE SYSTEMS

This section briefly evaluates a number of existing systems
by their quality-of-service characteristics. Following an im-
portant development in recent years, we focus on overlay
networks as distributed broker infrastructure [17, 23]. They
provide interesting new filtering approaches as well as a design
simplification for distributed publish-subscribe systems. First
attempts were targeted at replacing application-level multicast,
while later approaches support content-based filtering.

A. Multicast and subject-based approaches

The selectivity of subjects (or multicast groups) is relatively
low. This means that subscribers are left to do their own
filtering after delivery (mailing lists are a good example).
On the other hand, if expensive subscription languages ren-
der matching and optimizations difficult, it may be worth
considering a combination with subjects to provide a fast
fallback through subject matches. Such an optimization can
considerably reduce the overhead of messages and filtering.

Overlay multicast allows for two general approaches for
publish-subscribe systems. They can build group dissemina-
tion trees inside a global overlay (overlay internal), or they
can build a separate broadcast overlay for each group (overlay
external). The major advantage of external multicast is that
each group overlay only has to scale with the size of a group. A
disadvantage is the increased overhead of maintaining multiple
independent overlays simultaneously [5].

http://en.wikipedia.org/wiki/Entscheidungsproblem


Overlay internal multicast uses features of the respective
overlay to emulate or establish groups within the overlay
itself. Especially the class of key-based routing overlays (KBR,
commonly used in distributed hash tables) provides efficient
intrinsics for lookup operations. The obvious approach is
therefore to have notifications and subscriptions meet at the
node that a lookup yields for the multicast address (or subject),
the so-called rendez-vous node. Examples are Hermes [17] and
Scribe [20], which deploy the Pastry KBR overlay [19].

Nodes in the internal scheme must forward messages they
are not interested in. Intermediate schemes, as proposed for
Scribe [20], can try to skip nodes by merging their children.
Since this deviates from the original overlay topology, ad-
ditional maintenance is necessary to handle these optimiza-
tions. Consequently, this approach can also be seen as the
construction of a new overlay where the bootstrap overhead
is reduced by reusing known nodes. We can therefore suspect
the transition between the two methods to be rather seamless.

Latency: The rendez-vous node in internal multicast repre-
sents a bottleneck, although it may not even be interested in
the subject. It must see all notifications and subscriptions for
the group to assure correctness and completeness of delivery.
In general, the total number of subscriptions of a node’s
neighbours is likely to be higher near the rendez-vous nodes
than elsewhere in the network. This increases the load of these
important nodes and therefore the overall latency.

External group overlays, on the other hand, have the same
size as the group of interest and commonly feature very
good load balancing. This minimizes the end-to-end hop
count, which most likely becomes smaller than in the global
overlay. Obviously, this reduces the number of required routing
decisions and minimizes the end-to-end latency for the given
topology. Note that the group overlays are independent of
the global overlay and may even use a different topology to
optimize for their group size and specific requirements.

Delivery guarantees: Delivery guarantees can exploit the
fact that all participants in an external group overlay are
interested in all messages. This reduces the cost of deliberate
duplications which can be used to increase the probability
of delivery, even under topological reorganization. The re-
dundancy that is already available in a resilient overlay can
directly be exploited to assure the broadcast delivery to all live
parties as long as the network stays connected. If duplication
is undesirable, most broadcast schemes for KBR overlays can
efficiently avoid message duplication as long as there are no
reorganizations during the delivery process [23].

If a subset of the group members caches the received noti-
fications, a node that missed notifications during a temporary
failure can try to ask any of the other members for passed
notifications, possibly using a random walk or an attenuated
broadcast scheme. Similar ideas have been presented in [6].

The higher load near rendez-vous nodes may impact the
delivery in internal multicast. Message duplication and loss is
more likely than in the external scheme, as the probability
of topological reorganization increases with the number of
brokers. On the other hand, a higher number of brokers

provides higher redundancy in the overall network. Algorithms
can exploit this to re-enhance the probability of delivery.

Confidentiality: Only the external scheme effectively pre-
vents non-subscribers from receiving notifications. If some
form of access control is available for the subscriptions, nodes
can be prevented from joining the network. This enables
networks of trusted brokers. In internal multicast, untrusted
brokers must either broadcast encrypted notifications or the
infrastructure can reveil the subject and only encrypt the
content of the notification.

B. Hermes and IndiQoS

Hermes [17] was the first to exceed the limitations of
overlay multicast by implementing a form of content-based
publish-subscribe (named type and attribute based filtering)
on top of overlay networks. It deploys the Scribe internal
multicast scheme, but additionally installs content-based filters
along the delivery path that filter on additional attributes of
the notifications. Filter merging is possible along the path to
reduce the status overhead per node.

IndiQoS [4] augments the Hermes design with QoS aware-
ness. QoS requirements are expressed as additional attributes
of subscriptions and advertisements that are evaluated dur-
ing forwarding. As further improvement, IndiQoS replicates
rendez-vous nodes and selects one based on QoS subscriptions.
This is obviously payed with a multiplication of the message
overhead per notification.

Selectivity: Filtering on arbitrary attributes along the mul-
ticast paths substantially increases the selectivity of subscrip-
tions and therefore reduces the number of false positives. This
is bought with an increased message overhead for filter updates
when compared to multicast systems.

Confidentiality: Hermes brokers can exploit the content of
notifications in different granularities. The system can either
reveil subjects and certain attributes to untrusted brokers or
encrypt everything and require them to broadcast.

Latency: Only IndiQoS allows subscribers to specify max-
imum latencies. Brokers then forward subscriptions according
to latencies known from prior advertisements. The rendez-vous
node replication then yields a lower average latency.

C. Choreca

Choreca [23] is an extension of the REBECA system [14,
18], a content-based publish-subscribe system that exemplifies
filter merging and distributed administration. Choreca routes
REBECA’s content-based subscriptions and notifications over
Chord broadcast trees [9], one rooted in each publisher. The
binomial redundancy of these trees avoids any single point of
failure and allows to exploit filter similarities to reduce the
forwarding overhead.

Selectivity: REBECA and Choreca support arbitrary filters as
subscriptions, which allows for a high selectivity and therefore
low rate of false positives. On the downside, highly expressive
filters may prevent filter merging.



Delivery guarantees: The path redundancy in Choreca’s
Chord graph lies within O(log N). To assure the eventual
delivery of a notification in the case of a lower number of
link failures, it is sufficient to reroute it through a different
neighbour than the failed next hop. This allows Choreca to
provide a very high probability for delivery.

V. RELATED WORK
We presented a general overview of relevant quality-of-

service metrics in the publish-subscribe area. There have been
few publications on this topic so far. The IndiQoS system [4]
distinguishes a content profile (such as the precision of a
sensor) and a QoS profile, allowing to request periodic or
sporadic delivery, as well as bandwidth requirements and
latency bounds. No other metrics are considered.

In a section of a well-known paper by Eugster etal. [10],
the authors refer to persistence, transactions and priorities
as relevant metrics. In this paper, we grouped persistence
under the more general concept of delivery guarantees. While
message priorities have found their place, transactions are not
regarded. They place very high requirements on the broker
infrastructure and it is generally questionable if they are
suitable for a decoupled system model like publish-subscribe.

Outside the field of publish-subscribe, there is a large
body of literature on quality-of-service in the networking and
Internet environment [24], especially regarding differentiated
services (DiffServ) and resource reservation (RSVP etc.).
Another area of interest is messaging middleware, including
CORBA [16] and JMS [21], that support quality-of-service
levels for their communication services. The selection of
metrics presented in this paper largely follows previous work
in these areas. The application to the publish-subscribe model,
its roles and distributed infrastructures, however, has not been
considered before in a comparatively extensive way.

VI. CONCLUSION
In large publish-subscribe systems with thousands of par-

ticipants we will necessarily face very diverse demands from
different users. Different applications have similarly diverse
requirements. This calls for quality-of-service support in in-
frastructures and for means to express requirements and sys-
tem capabilities in a meaningful and well-defined way.

Our analysis provides extensive insights into the diversity
of requirements in publish-subscribe systems. We give a
comprehensive overview of relevant quality-of-service metrics
and describe their application to the publish-subscribe model,
its roles and selected implementations. A general side effect of
this model allows the requirements of subscribers to override
the advertised requirements of publishers. The infrastructure
has the freedom to ignore the latter if all subscribers agree
to accept lower quality levels. Publisher requests therefore
become more of a hint or default to the infrastructure.

This paper provides a solid foundation for future work on
scalable publish-subscribe services. The described quality-of-
service metrics allow their comparison and the definition and
integration of forwarding domains that adhere to user-provided
QoS parameters.

REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proc. of the ACM SIGMOD Int.
Conference on Management of Data, Paris, France, June 2004.

[2] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence
comparisons. In WPES ’03: Proceedings of the 2003 ACM workshop
on Privacy in the electronic society, 2003.

[3] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and
K. Moody. Role-based access control for publish/subscribe middleware
architectures. In DEBS03 [7].

[4] N. Carvalho, F. Arajo, and L. Rodrigues. Scalable QoS-based event
routing in publish-subscribe systems. Technical report, Departamento de
Informática, Faculdade de Ciências da Universidade de Lisboa, Lisbon,
Portugal, Feb. 2005.

[5] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman. An evaluation of scalable application-level
multicast using peer-to-peer overlays. In INFOCOM 2003, 2003.

[6] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. Buchmann. Looking into
the past: Enhancing mobile publish/subscribe middleware. In DEBS03
[7].

[7] Second Intl. Workshop on Distributed Event-based Systems (DEBS’03),
San Diego, CA, USA, June 2003. ACM Press.

[8] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis,
Stanford, CA, USA, 1991.

[9] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Efficient broadcast
in structured P2P networks. In Proc. of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS03), Berkeley, CA, USA, Feb. 2003.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

[11] L. Fiege. Visibility in Event-Based Systems. PhD thesis, Technical
University of Darmstadt, Darmstadt, Germany, 2005.

[12] L. Fiege, M. Cilia, G. Mühl, and A. Buchmann. Publish/subscribe
grows up: Support for management, visibility control & heterogeneity.
IEEE Internet Computing: Special Issue - Asynchronous Middleware
and Services, January 2006.

[13] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Mühl.
Security aspects in publish/subscribe systems. In A. Carzaniga and
P. Fenkam, editors, Third Intl. Workshop on Distributed Event-based
Systems (DEBS’04), Edinburgh, Scotland, UK, May 2004. IEEE.

[14] G. Mühl, L. Fiege, and A. P. Buchmann. Filter similarities in content-
based publish/subscribe systems. In H. Schmeck, T. Ungerer, and
L. Wolf, editors, International Conference on Architecture of Computing
Systems (ARCS), pages 224–238, Karlsruhe, Germany, 2002.

[15] G. Mühl, A. Ulbrich, K. Herrmann, and T. Weis. Disseminating
information to mobile clients using publish/subscribe. IEEE Internet
Computing, 8(3), May 2004.

[16] Object Management Group. CORBA notification service, version 1.0.1.
OMG Document formal/2002-08-04, 2002.

[17] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware
architecture. In Proc. of the 1st Int. Workshop on Distributed Event-
based Systems (DEBS’02), Vienna, Austria, July 2002. IEEE Press.

[18] Rebeca Event-Based Electronic Commerce Architecture.
http://www.gkec.informatik.tu-darmstadt.de/rebeca/.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale Peer-to-Peer systems. In Proc. of
the Int. Middleware Conference (Middleware2001), Nov. 2001.

[20] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. In
J. Crowcroft and M. Hofmann, editors, Proc. of the 3rd Int. Workshop
on Networked Group Communications (NGC’01), London, UK, 2001.

[21] Sun Microsystems, Inc. Java Message Service (JMS) Specification 1.1,
2002.

[22] W. W. Terpstra, S. Behnel, L. Fiege, J. Kangasharju, and A. Buchmann.
Bit Zipper Rendezvous - Optimal Data Placement for General P2P
Queries. In Proc. of the 1st Int. Workshop on Peer-to-peer Computing
and Databases, Heraklion, Crete, Mar. 2004.

[23] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. Buchmann. A
Peer-to-Peer Approach to Content-Based Publish/Subscribe. In DEBS03
[7].

[24] W. Zhao, D. Olshefski, and H. Schulzrinne. Internet quality of service:
An overview. Technical Report CUCS-003-00, Columbia University,
Feb. 2000.


	I Introduction
	II QoS at the global infrastructure level
	II-A Latency
	II-B Bandwidth
	II-C Message priorities
	II-D Delivery guarantees

	III QoS at the notification and subscription level
	III-A Selectivity of Subscriptions
	III-B Periodic or sporadic delivery
	III-C Notification order
	III-D Validity interval
	III-E Source redundancy
	III-F Confidentiality
	III-G Authentication and Integrity

	IV Evaluation of Publish-Subscribe Systems
	IV-A Multicast and subject-based approaches
	Latency
	Delivery guarantees
	Confidentiality

	IV-B Hermes and IndiQoS
	Selectivity
	Confidentiality
	Latency

	IV-C Choreca
	Selectivity
	Delivery guarantees


	V Related work
	VI Conclusion
	References

