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Abstract. The event-based approach is well suited for integrating autonomous components or ap-
plications into complex systems by means of exchanging events. Event-based systems need an event
dissemination mechanism to deliver relevant events to interested consumers. These events encapsulate
data which can only be properly interpreted when sufficient context information about its intended
meaning is known. In general, this information is left implicit and as a consequence it is lost when
data/events are exchanged across system or institutional boundaries. For this reason, to exchange and
process events in a semantically meaningful way, explicit information about their semantics in the form
of additional metadata is required. This paper presents a solution to this problem and its application
to an existing open source event notification service called Rebeca.
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1 Introduction

Since the last few years the development of enterprise applications is moving away from tightly-coupled
applications and towards systems of loosely-coupled, dynamically bound components. This trend fits the
event-based application paradigm. The event-based approach is well suited for integrating autonomous com-
ponents into complex systems by means of exchanging events. Because event-based systems do not require
a-priori knowledge about the consumers of events they are easy to evolve and scale.

Notice that the exchanged events encapsulate data about a given happening of interest, which can only
be properly interpreted and used when sufficient context information is known. In traditional centralized
systems, this context information is typically known by the users and left implicit. When data and events are
exchanged across component or institutional boundaries contextual information is usually lost. To process
events in a semantically meaningful way, explicit information about the semantics of events and data is
required.

Event-based systems need an event dissemination mechanisms (or notification service) with the purpose
to timely deliver relevant events to interested consumers. Since a couple of years, the publish/subscribe
interaction paradigm is gaining relevance. It basically consists of a set of clients that asynchronously exchange
events, decoupled by a notification service that is interposed between them. Clients can be characterized
as producers or consumers. Producers publish notifications, and consumers subscribe to notifications by
issuing subscriptions, which are essentially stateless message filters. Consumers can have multiple active
subscriptions, and after a client has issued a subscription the notification service delivers all future matching
notifications that are published by any producer until the client cancels the respective subscription.

To the best of our knowledge (see Section 2 for details), in almost all publish/subscribe mechanisms only
the data structure of events (data to be exchanged) is exposed to all participants. This reflects a low level
support for event consumers that based on this scarce information must express their interest without having
a concrete definition of meaning nor explicit assumptions made by event/data producers. Without this kind
of information event producers and consumers are expected to fully comply with implicit assumptions made
by participating software components or applications. Even in the cases of a very small set of applications
within an enterprise this approach is questionable.

Since publish/subscribe mechanisms decouple producers and consumers, it must be noticed that they
should share a common understanding in order to express their mutual interests. In other words, events
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must be understandable beyond the closed confines of a single component or application. That includes the
case when dealing with applications that interact across traditional borders regardless of economic, cultural
or linguistic differences (e.g. system of units, currency or date time format). Because the source of an event
cannot anticipate who is interested in a given event and where and when it must be delivered, a higher-
level publish/subscribe infrastructure is needed. This basically adds to the current pub/sub mechanisms the
following two requirements:

– the usage of a common vocabulary for defining interests, and
– the correct interpretation of information independently of its origin and place of consumption.

We have initially proposed the use of the concept-based addressing [1] as a part of a high-level dissemina-
tion mechanism for distributed and heterogeneous event-based applications. Its goal is to provide a higher
level of abstraction to describe the interests of event producers and consumers [4]. This is achieved by sup-
porting from the ground up ontologies which provide the base for correct data and event interpretation.
Rather than requiring every producer or consumer to use the same homogeneous namespace (as is common
in other publish/subscribe systems) we provide metadata and conversion functions to map from one context
to another. This last feature allows event consumers to simply specify the context to which events need to
be converted before they are delivered for client processing.

The initial implementation [3] was built on top of a commercial publish/subscribe product. Today we
are moving our concept-based implementation to an open platform by extending an open source pub-
lish/subscribe notification service (called Rebeca [10]). In this paper we describe precisely how these exten-
sions were carried out.

Notification services for large-scale environments cannot simply use flooding algorithms to route the
notifications from producers to consumers [9]. However, clever strategies exist like covering and merging that
allow the network’s brokers to neatly select what to forward and what not. Our approach recognizes the
existence of these strategies and shows how they can be exploited with the concept-based addressing model.

The rest of this paper is organized as follows. In section 2, related work on publish/subscribe systems
is presented. In section 3, a background on the ideas that were combined in this work is given. Section 4
describes the proposed extensions to Rebeca providing details about how the data model is extended and
how filters are represented, rewritten and evaluated. Finally, conclusions and future work are presented in
section 5.

2 Related Work

Notifications about events and their timely delivery to the user represent valuable information. The dissem-
ination of events is usually under the responsibility of notification/event services.

In CORBA, a primitive event service [7] was introduced to provide a mechanism for asynchronous inter-
action between CORBA objects. Here, an event channel acts as a mediator between suppliers and consumers
of events. To overcome deficiencies of this service specification, the notification service [14] was proposed as
a major extension with support for quality of service specifications and basic event filtering.

The Java Message Service (JMS) [16] provides the Java technology platform with the ability to pro-
cess asynchronous messages. JMS was originally developed to provide a common Java interface (API) to
legacy Message Oriented Middleware (MOM) products like IBM MQ-Series (called today WebSphere MQ)
or TIB/Rendezvous. In this way, the JMS API provides portability of Java code allowing the underlying mes-
saging service to be replaced without affecting existing code. JMS provides two models for messaging among
clients: point-to-point (using a queue) and publish/subscribe (by means of topics). Under the topic model,
consumers not only subscribe to a channel but can also specify additional boolean predicates by means of
a restricted set of SQL WHERE expressions [8]. As a recognition of the relevance of publish/subscribe for en-
terprise applications, JMS was incorporated as integral part of the Enterprise Java Beans (EJB) component
model in the EJB 2.0 specification [5].

In recent years, academia and industry have concentrated on publish/subscribe mechanisms because they
allow loosely coupled exchange of asynchronous notifications, facilitating extensibility and flexibility. The
channel model has evolved to a more flexible subscription mechanism, known as subject-based addressing,
where a subject is attached to each notification [13]. Subject-based addressing features a set of rules that
defines a uniform name space for messages and their destinations. This approach is inflexible if changes to
the subject organization are required, implying fixes in all participating applications.
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To improve expressiveness of the subscription model the content-based approach was proposed where
predicates on the content of a notification can be used for subscriptions. This approach is more flexible but
requires a more complex infrastructure [2, 9]. Many projects in this category concentrate on scalability issues
in wide-area networks and on efficient algorithms and techniques for matching and routing notifications to
reduce network traffic [15, 11, 6]. Most of these approaches use simple boolean expressions as subscription
patterns since more powerful expressions cannot be treated.

As it was mentioned before, only the data structure of events is exposed to all participants. This puts
in evidence the low level support regarding data exchange which directly impacts on the broad usability of
such an important piece of the communication infrastructure.

3 Background

This section provides the background to understand the ideas that were combined in this work.

3.1 The Concept-based Addressing Model

As it was mentioned before, the publish/subscribe paradigm provides two important benefits: it naturally
decouples producers and consumers and makes them anonymous to each other. However, it must be noticed
that producers and consumers should share a common understanding in order to express their mutual
interests. But, this may be not the case when dealing with loosely-coupled applications that interact across
traditional borders. It implies that the information to interpret message content is left implicit. Thus, it
would be desirable to add meta information to the data or, in other words, information that describes the
information.

The goal of concept-based publish/subscribe is to provide a higher level of abstraction to describe the
interests of publishers and subscribers and to make assumptions explicit. It provides a flexible interaction
mechanism for open, distributed and heterogeneous event-based applications. This is achieved by supporting
from the ground up ontologies (see the MIX Model in section 3.3) which provide the base for correct data
and event interpretation. Rather than implicitly assume an homogeneous namespace among publishers and
subscribers (as is common in other publish/subscribe systems) it provides metadata and conversion functions
to solve data heterogeneity issues. The concepts specified in the ontology provide a common vocabulary (or
dictionary) for which no further negotiation is necessary.

3.2 Rebeca Architecture

Next we describe the current implementation of the Rebeca notification service [9], so as to show the starting
point where changes were applied.

The Rebeca communication interface to the service is rather simple. The set of producer clients inter-
acting with the system publish notifications by invoking the pub(n) operation, giving the notification n as
parameter. The published notification can potentially be delivered to all connected consumers via an output
operation called notify(n) (a callback function called on the registered subscribers to deliver a notification).
Consumers register their interest in specific kinds of notifications by issuing subscriptions via the sub(F)
operation which takes a filter F as parameter. Each client can have multiple active subscriptions which must
be revoked separately by using the unsub(F) operation.

The service implementation is distributed to meet scalability considerations. The communication topology
of the publish/subscribe system is given by a graph, which is assumed to be acyclic and connected. Figure
1 shows an example of this graph with the basic components. Each client consists of the application logic
itself and a local broker proxy. The edges are point-to-point communication links that obey FIFO message
ordering. Inside the broker’s network there are inner or border brokers, which are processes that route the
notifications along multiple hops to the appropriate clients, using the content-based addressing model with
several routing strategies.

Data Model Rebeca is an event notification service framework. Its data model is an essential part of
it and it’s composed by two closely interrelated components: Notifications and Subscriptions. The former
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Fig. 1. Rebeca architecture

are messages that reify and describe Event occurrences emitted by publishers, while the latter are message
Filters that express subscribers interests.

The Event class is the base class of all notifications. Basically it encapsulates message data. The Filter
class is the base class of all filters. Its most important functionality is to determine if a given event matches
a filter. Also, it defines other important methods to detect similarities between filters (more details later in
this section).

Routing Strategies The Rebeca event notification service has a routing algorithm framework which
allows several routing strategies to be implemented.

Probably, the simplest way to implement a distributed publish/subscribe system is by flooding notifica-
tions across the brokers network. This implies that any published notification is processed by every broker.
Although it could be well suited to systems in which subscriptions are changing at a very high rate, a
high volume of notifications may be forwarded unnecessarily because a notification is sent to every broker
(regardless of whether or not it has a local client with a matching subscription).

This drawback led to the idea of filter-based routing. Here, each broker has a routing table that is used to
route notifications based on their content to local clients and neighbors. Compared with flooding, filter-based
routing reduces the quantity of notifications that are forwarded, but introduces the necessity to maintain
routing tables.

With Simple Routing, new and cancelled subscriptions are simply flooded into the broker network such
that they reach every broker. This strategy is simple but it implies that every broker has global knowledge
about all active subscriptions (i.e., any routing table contains a routing entry for every active subscription).

By taking into account similarities among the subscriptions, global knowledge of active subscriptions is
avoided. In this way, the notification service performance and scalability is enhanced (for concrete results
the reader is referred to[12]). The following strategies do so but differ in the resulting routing table size.

When using Identity Routing, a subscription is not forwarded to a neighbor if an identical subscription
is already forwarded to that neighbor. Two filters are said to be identical if they match exactly the same set
of notifications.

Another strategy is Covering Routing. A filter covers another filter if the former matches at least all
notifications the latter matches. A subscription is not forwarded to a neighbor if a subscription that covers
the former is forwarded to that neighbor.

A different approach is Merging Routing. A broker can merge the filters of existing routing entries and
forward this merger to a subset of its neighbors. The generated mergers are forwarded in a way such that
only interesting notifications are delivered to a broker.

Routing with Advertisements implies that advertisements are issued by producers to indicate their in-
tention to publish certain kinds of notifications. Similar to subscriptions, each publisher can have multiple
advertisements.
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3.3 Model for Data Exchange

To exchange data among loosely coupled systems, it must be taken into account that the structure and
semantics of individual data items may vary, even if they describe objects of the same class of real world
phenomena. Therefore, context information concerning the organization and meaning of data has to be given
on an extensional level, i.e., on the level of data values. For this reason, we need description models that
allow a flexible association of metadata with the available data items. We next describe MIX, the model
used to extend Rebeca to support semistructured data.

Metadata based Integration model for data X-change, or MIX for short, can be understood as a self-
describing data model. This is because information about the structure and semantics of the data is not
provided as a separately specified data schema, but is given as part of the available data itself. Thus, MIX
allows a flexible association of context information in the form of metadata.

This model is based on the concept of a SemanticObject. It represents a data item together with its
underlying SemanticContext which consists of a flexible set of meta-attributes that explicitly describe the
implicit assumptions about the meaning of the data item. However, because we cannot explicitly describe
all modelling assumptions the semantic context always has to be understood as a partial representation. In
addition, each semantic object has a concept label associated with it that specifies the relationship between
the object and the real world aspects it describes. These labels have to be taken from a commonly known
vocabulary, or Ontology. In the MIX model, an ontology is a finite set of concepts and their relationships.

The association of context information with a given data value serves as an explicit specification of the
implicit meaning of the data. This allows the determination of semantically equivalent semantic objects even
if they are represented differently, i.e., relative to different contexts. For example

<Distance, 3850, { <Unit, “mile” >, <Scale, 1 >} >, and
<Distance, 3.85, { <Unit, “mile” >, <Scale, 1000 >} >

are semantically equivalent, because they represent the same information and we can specify a conversion
function by which one representation can be transformed into the other. Such conversion functions are a
prerequisite for the integration of semantic objects coming from different sources, by converting these objects,
as far as possible, to a common context. In detail, two kind of conversion functions can be distinguished.
The first are those embedded (or are defined) in the concept. The second are those defined in a function
conversion manager (because they change along time). These conversion functions are automatically called
to appropriately evaluate expressions.

4 Extending the Rebeca Data Model

The Rebeca data model was extended to support concept-based addressing by adopting the MIX model.
The following subsections explain this extensions in detail.

4.1 Events

The basic idea was to specialize the Event class with the purpose to support the MIX model, delegating
to a semantic object the required functionality. Thus, a new SemanticEvent class was defined, which has a
SemanticObject instance variable actually containing the information.

To enable Rebeca events to be transported among TCP-connected event brokers, they must implement
the Java Serializable interface. Thus, each event’s attribute must in turn be serializable. Fortunately,
Ontology objects were implemented with this in mind, so nothing was needed with this respect. Figure 2
(a) shows a UML diagram of the new subclass.

4.2 Filters

Similarly, the idea was to specialize the Filter class with a new SemanticFilter subclass (figure 2 (b)). This
new subclass makes use of one of the Ontology’s packages that represents expressions as concepts. Hence, this
subclass has an Expression instance variable. Just like every other Ontology concept, these expressions have
their associated semantic context. This allows expressions to make explicit assumptions about the contained
values. For instance, a temperature sensor would use a Temperature object, specifying the unit of measure
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Fig. 2. Partial class diagram of the Rebeca data model

used, such as Celsius. The evaluation of expressions take into consideration this meta-information (semantic
context) avoiding a wrong interpretation of events.

As every Filter subclass, this new subclass implements several methods such as the matching method,
and other operations used to check relationships between filters: identity, overlapping, covering and merging.
These methods are explained later in this section.

aSemanticEvent

aTemperature
“10.00”

a) b)

aSemanticContext
aUnitOfMeasure(“Celsius”)

aBinaryExpression

aValueRef
Ontology.Car.Temperature

aFloatNumber
“65.00”

aValue

aSemanticFilter

aSemanticContext
aUnitOfMeasure(“Celsius”)

aGreaterThan

< >Temperature,10, { < Unit,"Celsius" >, <Scale,1> } < >Temperature > 65, { < Unit,"Celsius" >, <Scale,1> }

Fig. 3. Rendering of a SemanticEvent (a) and a SemanticFilter (b) objects, their relationships and MIX represen-
tations

In Figure 3 we exemplify the described classes with a static snapshot of their object representation,
their relationships at a point in time and their MIX representation: a SemanticEvent with a Temperature
SemanticObject (a) and a SemanticFilter with a BinaryExpression (b).

Event matching: A filter can be thought of as a stateless boolean function that is applied to the content
of a notification. Formally, a notification n matches a filter F if F (n) evaluates to true. Consequently, the
set of matching notifications N(F ) is {n | F (n) = true}.
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The functionality to determine whether an event matches a filter (or not) is located in the SemanticFilter’s
match() method. This functionality is usually required by a routing engine in order to deliver the messages.
The SemanticFilter delegates its work to two methods already defined in the Expression class:

– resolveValueRefs(...), which searches the expression for ValueRef objects and binds them to the
appropriate message values.

– eval(), which calculates the result in a bottom-up fashion. This evaluation implies the correct interpre-
tation of the context of the event in question.

1.match(..)

boolean result

1.1.resolveValueRef(..)

1.2.eval()

aBinaryExpression

BinaryExpression

aRoutingEngine

RoutingEngine

aSemanticFilter

SemanticFilter

Fig. 4. Decomposition of Event Matching steps

Thus, each time a new notification arrives, the following steps are carried out (illustrated as a UML
sequence diagram in Figure 4):

1) The broker’s routing engine calls the match() method on the Filter, passing the Event

as parameter. This method, in turn,

1.1) resolves every reference of the incoming Event received as parameter, and

1.2) evaluates the expression and returns its boolean value

Expression Satisfiability: Before developing the approaches taken to test for filter relationships, we
describe the notion of expression satisfiability. The idea is to write (i.e., convert) the expression in its
Disjunctive Normal Form, i.e., as a series of disjunctive terms concatenated by OR (∨) operators. These
disjunctive terms, in turn, are series of propositional variables concatenated by AND (∧) operators. Expressions
written in the Disjunctive Normal Form are satisfiable iff at least one of those disjunctive terms is satisfiable.
To check for a disjunctive term’s satisfiability, every term’s propositional variable1 must be compared against
every other term’s propositional variable that references the same concept. If there are no contradictions
within the term, then it can be stated that at least a set of values (i.e., a notification) that makes the entire
expression satisfiable exists. With this building block, the next approaches can be easily constructed.

More specifically, the satisfiability of a filter F can be checked following the next steps:

1. Push all negations down in F using Table 1 (which is based on the De Morgan’s and Complement laws),

until they cancel with other negations, or they apply only to propositional variables.

2. Eliminate every occurrence of the ‘NOT’ operator changing the comparison operator, as Table 2 indicates.

These laws allow us to successively apply negation inwards on expressions in parenthesis.
3. Transform the resulting expression F into its Disjunctive Normal Form (DNF), using the distributive

law (AND over OR) to move the ANDs down and the ORs up in the expression tree.

4. Find a disjunctive term ‘T’ in F, such that:

(a) ‘T’ has no pairs (X,Y) of propositional variables that reference the same ValueRef concept, or

that

1 A propositional variable is a BinaryExpression composed of a ValueRef, a ComparisonOperator and a Value, e.g.
InTemperature < 40.
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(b) for every pair (X,Y) of propositional variables in ‘T’ that reference the same ValueRef concept,

X and Y are mutually satisfiable (which is checked using Table32).

To illustrate these steps, we will follow the next example. Lets assume that F is
¬ { [ ( Odometer < 800 ) ∧ ( ¬ PartFailure = “Engine” ) ] ∨
( ¬ Odometer > 2000 ) }

– Step 1: Pushing negations down
[ ( ¬ Odometer > 800 ) ∨ ( PartFailure = “Engine” ) ] ∧ ( Odometer > 2000 )

– Step 2: Elimination of NOT operators
[ ( Odometer ≤ 800 ) ∨ ( PartFailure = “Engine” ) ] ∧ ( Odometer > 2000 )

– Step 3: Conversion into the Disjunctive Normal Form
[ ( Odometer ≤ 800 ) ∧ ( Odometer > 2000 ) ] ∨ [ ( PartFailure = “Engine” ) ∧ ( Odometer > 2000 ) ]

– Step 4: Disjunctive term analysis
• The first disjunctive term has a pair of propositional variables that reference the same concept:

(Odometer ≤ 800) and (Odometer > 2000). Nevertheless, these terms are not mutually satisfiable,
so this first term is not satisfiable.

• The second disjunctive term doesn’t have pairs of propositional variables that reference the same
ValueRef concept. Hence this term is satisfiable, which in turn means that the entire expression is
satisfiable.

Operation Changes to

NOT (X AND Y ) (NOT X) OR (NOT Y )
NOT (X OR Y ) (NOT X) AND (NOT Y )
NOT (NOT X) X

Table 1. De Morgan’s and Complement laws table

Operation Changes to

¬ ( Op1 < Op2 ) Op1 ≥ Op2

¬ ( Op1 ≤ Op2 ) Op1 > Op2

¬ ( Op1 > Op2 ) Op1 ≤ Op2

¬ ( Op1 ≥ Op2 ) Op1 < Op2

¬ ( Op1 = Op2 ) Op1 6= Op2

¬ ( Op1 6= Op2 ) Op1 = Op2

Table 2. Elimination of the NOT operator

Y

\ v < c2 v ≤ c2 v = c2 v > c2 v ≥ c2 v 6= c2

v < c1 T T c2 < c1 c1 > c2 c1 > c2 T
v ≤ c1 T T c2 ≤ c1 c2 < c1 c2 ≤ c1 T

X v = c1 c2 > c1 c2 ≥ c1 c1 = c2 c2 < c1 c2 ≤ c1 c1 6= c2

v > c1 c2 > c1 c2 > c1 c2 > c1 T T T
v ≥ c1 c2 > c1 c2 ≥ c1 c2 ≥ c1 T T T
v 6= c1 T T c1 6= c2 T T T

Table 3. Propositional variables satisfiability test

2 In this table, T means always satisfiable (Tautology), v is the referenced concept, and ci is a valued constant
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Filter Identity: As we stated previously, two filters F1 and F2 are identical (denoted F1 ≡ F2) iff they
match the same set of notifications. Alternatively, we can define filter identity with the function N(F ),
defined as the set of all the notifications that match the filter F . With this definition in mind, two filters F1

and F2 are identical iff N(F1) = N(F2). Intuitively, one could think of generating these sets of notifications
and making a set equality test. Nevertheless this approach is computationally not feasible.

To determine the filter identity, three approaches can be adopted. The first of them is to check for
structural identity. With this approach, two filters are identical iff they have the same object representation.
For this purpose, a new traverser3 subclass called IdentityTraverser having an identical(F1,F2) method
was created. It takes two expressions as arguments and determines if they have the same structure.

However, two filters may have totally different structures and still be equivalent, having two structurally
different filters, although they match exactly the same set of notifications.

This fact led us to the second approach. To generalize the identity comparison, we elaborated the following
strategy:

F1 ≡ F2 ⇐⇒ N(F1) = N(F2)

from the point of view of a notification n, it must happen that

∀n/(n ∈ N(F1) ⇐⇒ n ∈ N(F2))

This expression can be converted to

∀n/(n ∈ N(F1) ⇒ n ∈ N(F2)) ∧ (n ∈ N(F2) ⇒ n ∈ N(F1))

equivalently
∀n/(n 6∈ N(F1) ∨ n ∈ N(F2)) ∧ (n 6∈ N(F2) ∨ n ∈ N(F1))

then, applying distributive law,

∀n/(n ∈ N(F1) ∧ n ∈ N(F2)) ∨ (n 6∈ N(F1) ∧ n 6∈ N(F2))

this is equivalent to state that

∀n/(n ∈ N(F1) ∧ n ∈ N(F2)) ∨ (n ∈ N(¬F1) ∧ n ∈ N(¬F2))

alternatively,
∀n/(n ∈ N(F1 ∧ F2)) ∨ (n ∈ N(¬F1 ∧ ¬F2))

or, what is the same,
∀n/(n ∈ N((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))

if we change the quantifiers,
¬∃n/(n 6∈ N((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))

or that
¬∃n/(n ∈ N(¬[(F1 ∧ F2) ∨ (¬F1 ∧ ¬F2)])

with the De Morgan’s laws, we can convert this into

¬∃n/(n ∈ N((¬F1 ∨ ¬F2) ∧ (F1 ∨ F2))

transforming it to its DNF, we get

¬∃n/(n ∈ N([(¬F1 ∨ ¬F2) ∧ F1] ∨ [(¬F1 ∨ ¬F2) ∧ F2])

and (finally) cancelling complementary terms

¬∃n/(n ∈ N((¬F2 ∧ F1) ∨ (¬F1 ∧ F2)).

With this in mind, the problem can be reduced to the satisfiability check of the expression

(¬F2 ∧ F1) ∨ (¬F1 ∧ F2)

If it is not satisfiable, then F1 ≡ F2; otherwise, F1 6≡ F2. The steps would be:

1) Create a new filter F as:

3 An ExpressionTraverser is a mechanism defined in the Mix.utils package to traverse a tree-form expression.
Subclasses of it can be implemented to perform new functions while the expression is being traversed
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( ¬ F2 ∧ F1 ) ∨ ( ¬ F1 ∧ F2 )

2) Check if F is satisfiable: if it is not, then F1 and F2 are

identical; otherwise, they are not.

A third approach is to view the problem in terms of filter covering (described in 4.2): F1 ≡ F2 iff F1 ⊇
F2 ∧ F2 ⊇ F1, as we will see next.

Performing these steps is computationally expensive and they will be executed with every issued sub-
scription. In an open environment, where there many kinds of subscriptions and events are common, it seems
to be the case that many of these expression identity comparisons will fail. Given that making out if two
expressions are not identical is much less expensive than verifying if they are identical, heuristics could be
used. In order to reduce this effort, the approach used to analyze both expressions is to look for a referenced
concept (i.e., a ValueRef) in one expression missing in the other one. If this is the case, then, we can state
that both expressions are not identical. In this environment, performing this pre-analysis will considerably
reduce the time required to compare two different expressions.

Filter Overlapping: Formally, a filter F1 overlaps another filter F2 (denoted F1 u F2) iff N(F1) ∩ N(F2)
6= ∅. Thus, we could say that F1 overlaps F2 if

∃n/n ∈ N(F1) ∧ n ∈ N(F2)

or equivalently,
∃n/n ∈ N(F1 ∧ F2).

With this in mind, the following approach arises:

1) Create a new filter F as:

F1 ∧ F2

2) Check if F is satisfiable: if it is not, then F1 and F2

overlap; otherwise, they do not.

We illustrate these steps with the following two examples.

Example 1: (F1 and F2 overlap)

F1 = (InTemperature < 10) ∧ (OutTemperature = 30)

F2 = (InTemperature > 20) ∨ (OutTemperature = 30)

– Step 1: Intersecting both filters, F becomes

F = [(InTemperature < 10) ∧ (OutTemperature = 30)]

∧[(InTemperature > 20) ∨ (OutTemperature = 30)]

– Step 2: The disjunctive form of F is:

F = {[(InTemperature < 10) ∧ (OutTemperature = 30)] ∧ (InTemperature > 20)}

∨{[(InTemperature < 10) ∧ (OutTemperature = 30)] ∧ (OutTemperature = 30)}

– Step 3: Disjunctive term analysis
• The first disjunctive term has a pair (X,Y) of propositional variables that reference the same concept

(InTemperature). By checking Table 3, we conclude that this pair is not satisfiable (intuitively
InTemperature can not be less than 10 and greater than 20 at the same time), hence this term is
not satisfiable (i.e., it’s a contradiction).

10



• The second disjunctive term has a pair (W,Z) of propositional variables that reference the same
concept (OutTemperature). By checking Table 3 we realize that this pair is satisfiable. Since there
are no more pairs, this term is satisfiable, hence the entire expression is satisfiable (recall that it is
in its Disjunctive Normal Form). Thus we conclude that F1 and F2 overlap.

Example 2: (F3 and F4 don’t overlap)

F3 = [(InTemperature < 10) ∧ (OutTemperature = 30)] ∨ (Speedometer 6= 20)

F4 = (Speedometer = 20) ∧ (InTemperature > 20)

– Step 1: Intersecting both filters, F becomes

F = {[(InTemperature < 10) ∧ (OutTemperature = 30)]∨

(Speedometer 6= 20)} ∧ [(Speedometer = 20) ∧ (InTemperature > 20)]

– Step 2: The disjunctive form of F is:

F = {[(InTemperature < 10) ∧ (OutTemperature = 30)] ∧ [(Speedometer = 20)∧

(InTemperature > 20)]} ∨ {(Speedometer 6= 20) ∧ [(Speedometer = 20) ∧ (InTemperature > 20)]}

– Step 3: Disjunctive term analysis
• The first disjunctive term has a pair (X,Y) of propositional variables that reference the same concept

(InTemperature). By checking Table 3, we conclude that this pair is not satisfiable, hence the term
is not satisfiable.

• In the second disjunctive term there is a pair (W,Z) of propositional variables that reference the same
concept (Speedometer). By checking Table 3, we conclude that this pair is not satisfiable (intuitively
Speedometer can not be equal to 20 and distinct from 20 at the same time). Hence, the entire
expression is not satisfiable. Thus we conclude that F3 and F4 do not overlap.

Filter Covering: As we stated previously, a filter F1 covers another filter F2 (denoted F1 w F2) iff N(F1)
⊇ N(F2). From the point of view of a notification n, it must happen that

∀n/n ∈ N(F2) ⇒ n ∈ N(F1)

this is equivalent to state that
¬∃n/n ∈ N(F2) ∧ n 6∈ N(F1)

or, what is the same,
¬∃n/n ∈ N(F2) ∧ n ∈ N(¬F1)

finally,
¬∃n/n ∈ N(F2 ∧ ¬F1).

This means that if a notification n can be found such that n ∈ N(F2 ∧ ¬F1), then F1 does not cover F2.
With this in mind, the needed steps to test for filter covering could be the following:

1) Create a new filter F as:

F2 ∧ ¬ F1

2) Check if F is satisfiable: if it is not, then F1 covers F2;

otherwise, it does not.

Filter Merging: Formally, a filter F is a merger of (or covers) a set of filters {F1, ..., Fn}, denoted F w
{F1, ..., Fn}, iff N(F ) ⊇ {⋃i N(Fi)}. F is said to be a perfect merger if the equality holds, and an imperfect
merger otherwise. In practice, the implemented method returns a new filter F which is the disjunction (or
union) of two filters F1 and F2. This new filter is a perfect merger of F1 and F2.
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5 Conclusions and Future Work

The expressiveness of the notification selection mechanism used by the consumers to describe their interests
is crucial for the flexibility of a notification service. Moreover, the concept-based addressing model enlarges
the scope of a notification service by enabling it to pass through institutional, cultural and linguistical
boundaries.

The event-driven paradigm is gaining momentum and is being used in distributed loosely-coupled sys-
tems. The concept-based approach enhances the scope of use of event notification services by enabling it
to cross component, institutional or cultural boundaries. It supports a meaningful exchange of data within
a publish/subscribe interaction. The open source notification service Rebeca was extended to support the
concept-based approach. Details about these extensions were described in this paper.

The object representation used for the described concept-based data model is more complex than the
previously used (name-value pairs) data model. Also, the operations needed in order to find a relationship
between filters (identity, overlapping, etc.) are computationally more expensive than before. Here we have a
clear trade-off between the broker’s processing effort and the network traffic. Therefore, this can be seen as
a starting point for a detailed analysis of the performance of each routing strategy and its applicability to
different environments.

As it was mentioned in this paper notification services concentrate on finding matching notifications
according to consumers’ interests (or subscriptions). These subscriptions are limited to predicates on noti-
fication content but no correlation among notifications can be expressed. This topic is part of our ongoing
research.
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1. C. Bornhövd, M. Cilia, C. Liebig, and A. Buchmann. An infrastructure for meta-auctions. In Second International
Workshop on Advance Issues of E-Commerce and Web-based Information Systems (WECWIS’00), San José,
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