Area-Based Gossip Multicast

Bettina Kemme
McGill Univ., Montreal,
Canada

Christian Seeger
Techn. Univ.
Darmstadt, Germany

c.seeger@stud.tu-
darmstadt.de

ABSTRACT

This paper presents areacast, a dynamic, area-based gossip
multicast that enables a node to multicast messages only to
nodes with a shared interest. This multicast can be used
in multiplayer games where players want to send position
updates, that is information that they have moved in the
virtual game world, to players that reside close to them in
the game world. As nodes continuously change their position
the set of nodes in their neighborhood changes, too. area-
cast is able to handle this dynamism in a truly peer-to-peer
fashion as each node keeps track of its current neighbors de-
tecting new neighbors very fast. We evaluate our approach
using game simulations where players either walk randomly
in the game field or flock to a few hotspots. The results
show that areacast is able to disseminate messages very fast
to neighbors while not overloading the network.

1. INTRODUCTION

Gossip-based broadcast, such as Ipbcast [3], uses a peer-
to-peer approach to disseminate messages to a large group
of nodes. Each node is connected to some other nodes in
the system such that the entire system builds a connected
graph. A node sends its messages to a random subset of its
neighbors which in turn forward it to a subset of their neigh-
bors. Thus, the message is slowly disseminated through the
entire system. A continuous exchange of neighbor informa-
tion guarantees that the network remains connected despite
node churn. The reliability of message dissemination is high
and nearly every messages reaches every node.

The question arises whether gossip-based broadcast can be
used in the context of massively multiplayer games (MMGs).
In an MMG, disseminating messages about the current po-
sition of players is one of the most common message types
and doing so without server intervention is very desirable.
However, Ipbcast and other existing protocols are not suit-
able in this context. The reason is that these protocols lead
to a high degree of redundancy as nodes often receive a mes-
sage more than once. As the message throughput in MMGs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.

NetGames’08 Worcester, MA, USA

Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

kemme@cs.mcgill.ca

40

Patric Kabus Alejandro
Techn. Univ. Buchmann
Darmstadt, Germany Techn. Univ.

pkabus@dvs.tu-
darmstadt.de

Darmstadt, Germany
buchmann@dvs.tu-
darmstadt.de

is high (position updates are sent continuously), individual
nodes would not be able to handle the large amount of mes-
sages they would receive. Even if every position update is
only received once, this still overloads an individual node
if there are many players in a game. Current peer-to-peer
games usually support game sizes with tens of players but
not with hundreds or thousands of players.

Standard server-based MMGs handle this scalability prob-
lem by defining a visibility range for each player: a player
can only see other players and activity in its current neigh-
borhood, and thus, the server sends to each player only ac-
tions that occur in this neighborhood. As the server has
global knowledge, its interest management module can eas-
ily detect what are the actions that are of interest for each
player depending on its location in the game. That is, a
position update is not broadcast to all players in the game
but only multicast to a group of players.

The area-based gossip multicast areacast that we pro-
pose does exactly the same but in a truly distributed fash-
ion. Each node, representing one player, keeps dynamically
track of other players in its current neighborhood, detecting
fast when new players approach and discarding information
about players that leave. Then, it multicasts position up-
dates mainly to players in its neighborhood. It might not
reach all neighbors if bandwidth requirements are too strin-
gent. However, if a message does not reach a close-by player,
it is likely that the next message will, still keeping the in-
formation quite accurate. Furthermore, message forwarding
is used to provide further reliability and to detect new ap-
proaching neighbors. However, forwarding is restricted since
old messages are not of big relevance. In summary, areacast
is a completely decentralized area-based gossip protocol en-
abling nodes to have accurate information about other nodes
in their neighborhood even if bandwidth capacity is limited.

2. AREA-BASED GOSSIP MULTICAST

We consider three different areas of interest for a player
(see Figure 1): interaction range (IR), vision range (VR) and
outside the vision range (Inf). The interaction range around
a player defines an area where players could directly interact
or compete with each other. It is very desirable that a player
has up-to-date information about other players in this range
in order to react adequately to their actions. The vision
range defines an area where players can see each other but
not interact. In this range, the need for current information
about another player decreases with the distance to the local
player. The closer the other player is, the more likely it will
come into interaction range soon and the local player needs

ViewlR | ViewVR [ViewInf

%

Figure 1: Views according to distance in the game

to beware of its actions. Outside the vision range, players
cannot see nor interact with each other. Thus, it is not
necessary to exchange position updates.

Having these areas of interest in mind, the design of area-
cast was guided by three desired properties. Firstly, the
position updates of a player should reach the neighbors of
the player in the IR and VR but there is no need that nodes
outside the vision range receive the updates. That is, area-
cast is a multicast to neighbors and not a broadcast. Sec-
ondly, areacast must be dynamic as a player moves continu-
ously and thus, the group of its neighbors changes frequently.
Thirdly, updates should be received fast. If resources are
scare than it is more important to get current position up-
dates fast than to get all position updates but with a long
delay. Also, there is no use to get an old position update if
a more recent one has already been received.

2.1 Overview

In the following, we assume that each player resides on
a different node. We use the terms node and player inter-
changeable although in the strict sense, a player refers to
the gaming application and a node refers to the areacast
communication infrastructure.

The basic idea of areacast is as follows. Each node main-
tains three views: wviewIR, viewVR and viewlInf. Each of
them represents a set of nodes. Nodes belong to the cor-
responding view depending on their position in the virtual
world. The union of all three views is a subset of all nodes in
the system. A node only keeps track of another node if the
latest information it has received from that node is relatively
recent. Each node now periodically sends a gossip message
with it own position update together with position updates
it has received recently from other nodes to a random subset
of nodes from each of its three views. How many nodes of
each view are chosen are parameters of the system denoted
as fanoutlR, fanoutVR and fanoutInf, respectively. As we
see later, it will be mostly nodes in view/R and view VR, but
also some of viewlInf. The total number of nodes to send the
gossip to also depends on the bandwidth capacity. When a
node receives a gossip message it extracts the position up-
dates and delivers those to the game application that are not
outdated. Outdated means a more recent update has been
received and delivered before. Furthermore, the node also
keeps the position updates in a local buffer so that it can
forward them together with its own position update in the
next gossip. Only recent position updates, i.e., updates that
were forwarded at most one or two times, are kept in that

41

buffer. Older messages are no more forwarded. Therefore,
they don’t congest the network. Purging old position up-
dates also guarantees that the message buffer remains small.
Finally, the node also analyzes the position updates in order
to keep its views up-to-date.

The algorithm has several important features. Firstly,
nearby players will typically receive position updates fast,
as a node sends messages mostly to its neighbors in viewlR
and view VR. Secondly, a player will detect other players that
enter its vision range from outside very fast. If a node has
no knowledge about another node that just enters its vision
range, it is very likely that a third node transitively forwards
gossips and thus introduces both to each other. Thirdly, de-
spite having a preference for close nodes, the network does
not partition. Games usually have areas where players tend
to gather (we call them hotspots). If a player only keeps
track of its nearby neighbors, then players at a hotspots
might form a partition which is disconnected from the rest
of the network. In order to avoid this, our solution keeps
also track of some remote players.

2.2 Details

The system starts up with an initial number of nodes.
Each node knows a limited number of other nodes building
an initial connected overlay. Each node sends to its neighbor
nodes its initial position in the game leading to an initial
game configuration. Over time, each node will get to know
more nodes in its neighborhood. New nodes can join the
system by knowing a small number of nodes as starting point
and starting the areacast protocol.

Our algorithm works in rounds whereby each round de-
fines a time-interval. In each time-interval a node can receive
and process several gossip messages and adjust its views.
Once per round it sends one gossip message to other nodes.

At the beginning of a round, each node sends a gossip
message consisting of a set of position updates. The gossip
contains the current position update of the local player plus
a random set of recently received position updates stored in
the local position update buffer. The number of position up-
dates in the gossip message is a parameter of the algorithm.
Every position update consists of a unique player id, a player
specific sequence number which is increased with every up-
date sent, the player position, the age of the update and the
network node id (e.g. IP address). Together, the sequence
number and the player id uniquely identify an update and
are referred to as update id. The update age is initially zero
and increased every time the update is forwarded.

The gossip message is sent to random nodes from the
three local views. The number of nodes chosen from each
view is determined by the corresponding fanouts (fanoutIR,
fanoutVR and fanoutInf).

Whenever a new gossip message is received, each included
update is compared to a list of already received update ids.
For this the node maintains an update id list containing for
each player at most one update id reflecting the update with
the largest sequence number received so far. Only if the
new update is the most up-to-date update received from
this player so far, it will be added to the position update
buffer, the update id list and delivered to the application.
Furthermore, areacast reads out the position information
and inserts the player into the proper view (viewlIR, viewVR
or viewlInf). After processing all updates included in a gossip
message, updates which are older than a certain age are

deleted from the buffer. Also the list of already received
update ids will be trimmed to a maximum size.

At the end of a round, just before sending the next gossip,
the views are updated. Each view checks the position of the
nodes it contains and moves them to one of the other views
if necessary. If the age of the last position update received
from a node exceeds a certain limit, the node is purged.

3. P2PGAME

In this section, we present our test environment P2PGame,
which provides a basis for the evaluation of our areacast net-
work protocol. It is based on the PeerSim' simulator, which
provides a round-based modus where each round a node can
send messages, receive messages and do some local process-
ing. In our simulation, a message is received one round after
it is sent. P2PGame runs on each node two components.
The network layer implements the areacast protocol. The
game layer simulates a multiplayer game and evaluates the
goodness of the network protocol.

3.1 Game Application

The game application consists of a rectangular field on
which players move freely and independent of other play-
ers. There are two different play modes. In random mode,
each player moves with discrete steps into a random direc-
tion, and changes its direction after each round with a cer-
tain probability. In the hotspot mode there are additional
points on the field called hotspots. Each player chooses one
hotspot, moves to it and then performs random moves within
a certain range of the hotspot. After a random exposure
time the player moves to another hotspot. Having most of
the players in a small set of areas resembles the distribution
of players in many game applications.

The application provides the network layer once per round
a position update of the local player. At start of the game,
the local application only knows the position of the local
player. Then, new players are added and their positions ad-
justed whenever the network delivers new position updates.

3.2 Protocol Quality

The basis for our measure of protocol quality is the func-
tion PositionAge(p,q,r) which indicates how old the infor-
mation is player p has about player ¢ when p is in round r.
r can be considered the current age of the game perceived
by p. PositionAge(p, q,) is calculated as r minus the game
age at which p has received the last position update from
q plus the number of hops this message took on the net-
work. If p has not yet received a position update from gq,
PositionAge(p, q,r) is set to the current game age r at p.

The protocol quality is now determined by the position
age and the distance between players. We first define the
protocol quality PQ(p, g, r) perceived by player p in regard
to player g in round r. (a) If a player ¢ is in the interaction
range of p then PQ(p,q,r) = PositionAge(p,q,r), that is,
the more accurate p’s knowledge about ¢ is, the smaller the
PQ value, and the higher the quality. (b) Player p should
still know about a player ¢ in its vision range outside the in-
teraction range, but the importance of accuracy of the infor-
mation decreases with the distance between p and ¢. Thus, if

a player ¢ is in the vision range outside the interaction range
(- dis&(}g,q}l—%l}%)

of p, then PQ(p, q,r) = PositionAge(p, q,r)

"http:/ /peersim.sourceforge.net

42

Paramater Value
Number Players 100 / 1000
Remove from View 3
Standard Game Size 100021000
Vision Radius 200
Interaction Radius 50
Simulation Rounds 500
Overall fanout 5 /10
maxUpdatesPerGossip 60 / 10
maxUpdateAge 3/2

Table 1: Simulation Parameters

(c) Players outside the vision range are not considered in
the calculation of the protocol quality.

The overall protocol quality PQ(p,r) for p in round r is
the average over all PQ(p,q,r), ¢ being in the interaction
or vision range of p during round r. The overall protocol
quality PQ1(r) for a given simulation round r is the average
over all PQ(pi,r), p; being one of the n players in the game.

n

PQI() = =" PQpi,7)

1=1

(1)

To get the protocol quality up to a given simulation round
R, we calculate the average of PQ1 values over all simulation
rounds up to R and call it PQ2:

&

PQ2R) = 73 PQLY) 2

A perfect protocol quality would be one requiring that
all nodes within the vision range get each message within
one hop (with the exception of nodes that are at the exact
vision range distance, which can have a position age of 2). In
a client/server model, where each player p sends its position
updates to a central server who then forwards it to all players
in p’s vision range would have PositionAge to always be 2,
and thus, the protocol quality be around 1.4-1.5 depending
on the ratio of players in the interaction vs. vision range.

4. EXPERIMENTAL RESULTS

We conducted a wide range of experiments. Table 1 sum-
marizes the parameters and their settings. Our simulation
setup consists of 100 nodes in most experiments (two experi-
ments test 1000 players). A player p removes a player ¢ from
its view if its knowledge about ¢ is older than three rounds.
In general, the performance was relatively insensitive to this
parameter. The game size is chosen so that despite the rel-
ative small number of total players each player has a rea-
sonable number of other players in its interaction and vision
range. We run each experiment for 500 rounds. Our experi-
ments are conducted with fanouts of 5 or 10, the max. num-
ber of position updates in a gossip (mazUpdates PerGossip)
is either 60 or 10, and position updates are discarded either
after three or after two hops (maxUpdateAge). Further for-
warding values resulted in worse performance. We used a
wide set of values for fanoutIR, fanoutVR and fanoutInf.

4.1 Fanout 10

We first analyze performance for a total fanout of ten,
i.e., a node sends the gossip message to a total of ten other

17—

g n
g o
< g
2 2 14}
E} [
s !
8 s L13F
8 o
= =]
g 13} . 3 12}
= fanout-2-3-5 =1
12F fanout-5-3-2 ----- 7
11 F fanout-8-1-1 -] 11 F
' fanout-10-0-0 «wweeeeeee
1 T TR TR TN Tt Rt S B 1 L
0 50 100 150 200 250 300 350 400 450 500 0

1
protocol quality [PQ1 Maximum]

fanout-2-3-5 2

fanout-5-3-2 ----- fanout-8-1-1

fanout-8-1-1 ------ fanout-10-0-0 -----
) fanqu!_lq_o_ol 1 T TR TR NN NN N M S|

L 0

cycle

Figure 2: Fanout 10: hotspot.

nodes. This fanout can be split differently among the three
different views. The figures show in the legend the distribu-
tion as “fanout- fanoutl R- fanoutV R-fanoutInf”. In this
experiment, a gossip message contains up to 60 position up-
dates and a position update travels at most 3 hops. Figure 2
reports the PQ2 values in hotspot mode for each simulation
round, denoted as cycle in the figures. All protocols have
very low PQ2 at the start, then the values increase and fi-
nally stabilize. The increase at the beginning is due to the
fact that players that are not yet known have as PositionAge
the game age which increases with every round. Later on, all
players get to know their neighbors and the absolute game
age has no more influence. The worst performance (highest
PQ2 value) is achieved when 5 gossips go to nodes outside
the vision range and only 2 (3) go to the interaction range
(vision range). Sending all messages to players in the in-
teraction range has best performance. The same behavior
can be observed in random mode, as Figure 3 shows, where
focusing completely on the interaction range (cp. fanout-10-
0-0) achieves a protocol quality of 1.49. This behavior con-
firms our presumption that sending messages to a player’s
direct neighborhood provides better results than a totally
randomized approach like Ipbcast. Although players in the
vision range don’t get position updates directly, they are
likely to receive them through forwarding. In summary, we
consider the results as very good as they are very close to
what could be achieved in a client/server system.

The best protocol quality is reached with the whole fanout
at the interaction range. But this configuration could cause
network partitions, as mentioned before. Therefore, we have
to take a look at the PQ1 values. Growing values indi-
cate a network partition. Figure 4 is a comparison between
the fanout configurations fanout-8-1-1 and fanout-10-0-0 in
hotspot mode. In this case, the ordinate represents the max-
imum PQ@1 value any node reached in a given cycle. Network
partitions don’t appear as each node eventually gets to know
each other node in is neighborhood. Peaks are likely to oc-
cur when players leave one hotspot and move to another as
they have to get to know many nodes in their new neigh-
borhood. Having a more distributed fanout of fanout-8-1-1
allows to get to know these neighbors faster, and thus, the
peaks are generally smaller than with fanout-10-0-0.

4.2 Fanout 5

In order to understand the trade-offs and implications of
the choice of fanout value, we also tested areacast with a
fanout of 5, i.e, only half as many gossips are sent than in the
previous experiment, considerably reducing the bandwidth

43

50 100 150 200 250 300 350 400 450 500

Figure 3: Fanout 10: random.

50 100 150 200 250 300 350 400 450 500

cycle
cycle

Figure 4: Fanout 10: Max. PQ1l,
hotspot

requirements. Figures 5 and 6 report the protocol quality
PQ2 for hotspot and random mode. Except of the fanout-5-
0-0 configurations the characteristics are the same as with
a fanout of ten. The more messages are sent within the
interaction range, the better the protocol quality.

However, if all messages go to the interaction range, then
the protocol quality breaks down and becomes erratic. With
a fanout of 5, sending only to nodes in the interaction range
is not enough to propagate the game information fast. The
effect is more severe in the hotspot mode than in the random
mode. Random mode can provide better results because all
players move permanently on the field and so they have con-
sistently new players in their interaction range. Thus, the
players are more easily able to propagate player positions
from their former position to players in their current posi-
tion. In hotspot mode player movements from one hotspot
to another are not so frequent. Players in the interaction
range are mostly the same and so there is less information
exchange between hotspots. Therefore, the protocol qual-
ity is inferior than in random mode. Figure 7 represents a
comparison of maximum PQ1 values between fanout-2-2-1
and fanout-5-0-0 in hotspot mode. The very high peaks of
fanout-5-0-0 underline our assumption of less information
exchange between the hotspots. Such a performance degra-
dation could not be observed for fanout-10-0-0 as ten gossip
messages per round in a network of 100 nodes was enough
to propagate to a sufficiently large number of nodes using
the forwarding mechanism.

4.3 Gossip Configuration

Apart of choosing a smaller fanout, we can reduce band-
width demands by (i) reducing the number of position up-
dates per gossip (maxzUpdatesPerGossip), and (ii) by re-
ducing the number of hops a position update may travel
(maxPositionAge). In this experiment, we run tests with
maxUpdatesPerGossip = 60/10, and maxPositionAge =
3/2. We use random mode and a fanout of 8-1-1 as it showed
stable results in the previous experiment. In Figure 8, each
of the four bars reflects the PQ2 value for one of the config-
urations at round (cycle) 500.

First, we can note that the differences are generally small
and range from 1.51 to 1.525. With a mazPositionAge = 3,
10 updates per gossip (b) provide slightly worse performance
than 60 updates (a), as with 10 updates not all updates in
the buffer can be selected for forwarding.

With 60 updates per gossip (a and c), the performance is
the same whether we have maxPositionAge set to 3 or 2.
Although 3 hops forward a position update more often, it

T T T T T T T T T
5 T T T T T T T T T . %0 | fanout-2-2-1]
------------ £ fanout-5-0-0 ----- i ,
L 4 5
45 2 sl 8 | E 4
T 4 . & g wnf i)
o o = o i
£ a5l _ a 3 60 | i 14
2 2 L 5l ' A (AN -
3 | a 3 15 1 >] Al g i i
] 3 [} 2 I IRk "
E g 14} . s 4 & A IR R A
S a5l i 3 s VA SR A L
i<} i ! S 13} - s 30 i IR iy AT
s Jomzmemszzzommooooooooooooooooooo s g FARN VAT :i"n B
8 2 _z= Ao 212 ——-== - g 220pF [e i ¥ L e
g fanout-2-2-1 5 10} y n 4
15 fanout-3-1-1 e = 11 F N srinbe b “‘: N
fanout-5-0-0 ------ 0 1T — T— 1= L —T
1 T —— e — 1 e — 0 50 100 150 200 250 300 350 400 450 500
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

cycle

Figure 5: Fanout 5: hotspot.

cycle

Figure 6: Fanout 5: random

100

cycle

Figure 7: Fanout 5:
hotspot.

Max. PQ1,

183 7 T T T 35 T T T T T T T T 185 T T
(a) updates=60, age=3 (a) random, 100 player
1.525 (b) updates=10, age= 1.8 I~ (b) random, 1000 player
—_ (c) updates=60, age=2 — —_ (c) hotspot, 100 player
S (d) updates=10, age=2 S S 1.75 |- (d) hotspot, 1000 player
£ 15 & £
2 2 2 17
3 1515 ES £l
= 3 = 165
s 151 s g
<) <) <3 1.6
a a hotspot fanout-2-2-1 =3
1.505 15 hotspot fanout-8-1-1
random fanout-2-2-1 155
random fanout-8-1-1
15 P T T ks S il il 15
(a) (b) (© (d) 0 100 200 300 400 500 600 700 800 900 1000 (a (b) © (d)
cycle 500 cycle cycle 500
Figure 8: Number of updates and hops Figure 9: 1000 Players Figure 10: Scaling the game field.
maxUpdatesPerGossip | Fanout 5 | Fanout 10 Because of the protocol’s probabilistic character an abso-
10 1.58 KByte | 3.17 KByte lute value for incoming traffic cannot be calculated. In our
60 9.52 KByte | 19.04 KByte simulations we never had more than 43 (18) KBytes incom-

Table 2: Outbound traffic

does not lead to performance gains as the update is often
already obsolete when being received.

Finally, when we compare the two configurations with 10
updates per gossip, we observe that forwarding more of-
ten (maxPositionAge = 3) actually results in worse perfor-
mance. When the gossip may only contain 10 updates and
we allow three hops, then old updates compete with new up-
dates as not all updates of the buffer fit into the gossip. In
contrast, when an update is only forwarded once, then the
gossip can be filled with more recent position updates that
have a more positive effect on the PQ2 value. In fact, with
mazPositionAge = 2, the performance with 60 updates per
gossip is the same as with 10 updates per gossip.

In summary, including few updates in a gossip and for-
warding a position update only once can provide good re-
sults with little overhead.

4.4 'Traffic

The size of a gossip is determined by the size and the num-
ber of the contained updates. Each update consists of the
player id (64 bits), sequence number (64 bits), position (64
bits), age (4 bits) and the node id (64 bits). Crucial for the
outgoing traffic are the fanout and the maximum number of
updates per gossip. Table 2 shows the resulting maximum
outbound traffic per node and round. Assuming a very low
outbound capacity of 15 KByte per second, areacast can
handle 4 rounds per second for a fanout of 10 and 10 up-
dates per message. This is a very practicable result.

44

ing traffic for a fanout of 10 (5), and 60 updates.

4.5 Scalability

To test the scalability of areacast, we have performed
two tests. First, we have used the same game world but
used 1000 players over a simulation of 1000 rounds for both
hotspot and random. Figure 9 represents the protocol qual-
ity reached for this scenario with a fanout of 2-2-1 and 8-
1-1. With a fanout of 10, PQ2 degrades about 37 percent
in hotspot and about 26 percent in random mode compared
to 100 nodes. Given that not only the total number of play-
ers but also the number of players in each others vision
range increased 10-fold the results are acceptable. How-
ever, a fanout of 5 does not provide good results. Increasing
maxUpdate Age would not help as messages become too old.
Thus, increasing the fanout is the better solution.

A more realistic test of scalability increases not only the
number of players but also the game world itself. In such
a scenario, while the total number of players increases, the
number of players in the vision range remains the same. This
makes sense: scaling a game allows a player to potentially
meet with many more players, but at any given time, it
will only interact with and see few. Figure 10 shows the
PQ2 value at 500 rounds with a fanout of 8-1-1 for four
different configurations. The first bar shows the random
game mode with 100 players and the standard game size,
the second shows random with 1000 players and a game size
10x the standard game size. The last two bars show the
hotspot mode with 100 players / standard game size, and
1000 players / 10x game size, respectively. A gossip message
can contain up to 60 updates with an age of at most 3 hops.

For random mode, we can see that the performance is
nearly the same independently of the number of players
as both have the same number of players in interaction
and vision range, and all receive position updates very fast.
For hotspot, the 1000 player configuration provides slightly
worse results. The likely reason is that players now need
longer to travel from one hotspot to the other, so it takes
longer to adjust their views and get to know their neighbors.
In summary, we can see that our approach shows excellent
scalability in cases where the number of players within the
interaction and vision range remains the same.

S. RELATED WORK

SimMud [8] distributes the game world in zones and each
server is master of one zone serializing conflicting actions.
Game state is disseminated within a zone using Scribe [1]
resulting in multi-hop latency. In contrast, [5] handles posi-
tion updates via the master node leading to a 2-hop latency.
The vision range is always restricted to the zone the player
resides in. In MOPAR [11], a player’s vision range can span
several zones but moving from zone to zone is expensive.
Our approach has no predefined zones but uses one single
continuous space, handling dynamism with ease.

Most similar to our work are [4, 6, 7]. All three propose
a decentralized approach where players keep track of each
other in their continuously changing neighborhood. How-
ever, connectivity requires the maintenance of complex and
compute intensive structures such as Voronoi diagrams [4]
or convex hulls [7]. In [6, 7] only overlay maintenance is con-
sidered, multicasting position updates is not included. In [6],
the neighborhood always consists of a fixed number of play-
ers while we support arbitrary number of neighbors. None of
the three approaches provides overhead or performance eval-
uations while we provide a full-fledged performance analysis.

Commercial systems rely heavily on the client-server ar-
chitecture. P2P systems are only provided in very small
scale, e.g., Z-Net supports up to 32 players [10]. All players
interact directly with each other. In contrast, as we mainly
interact with players in the vision range, the total number of
players in the system can be much higher. Additionally, we
allow the players in the vision range to continuously change.
Thus, our approach is much more flexible.

We have already discussed that probabilistic multicast
similar to the already presented Ipbcast [3] provide high re-
liability and a large degree of redundancy which is not ex-
actly what is needed in MMG. There also exist tree-based
multicast protocols [1]. However, they assume that group
membership is rather static which is not the case in our
application. Group communication systems (GCS) [2] of-
fer primitives to multicast messages within a group of sites.
However joining or leaving the group are usually expensive
operations. Also, in the context of MMG, one still has to
determine when players have to join which groups.

In the area of wireless ad-hoc networks, the term Geocast
refers to multicasting to all nodes currently residing in a
geographical area. The main challenge in Geocast is to route
the message from an arbitrary sender to some nodes in the
requested area [9]. These nodes can then simply use wireless
broadcast to forward the message to other nodes in the area.
In contrast, our focus is exactly on finding and multicasting
to neighbors in the virtual world (neighbor nodes in the
virtual world are not neighbors in the physical world).

45

6. CONCLUSIONS AND FUTURE WORK

Our area-based gossip protocol provides fast and truly dis-
tributed dissemination to nodes in a continuously changing
neighborhood while keeping the network connected. Mes-
sages are forwarded for reliability and connectivity but for-
warding is limited as it often does not benefit protocol qual-
ity relevant for games. The performance of areacast is very
close to that of a client-server system.

We see this paper as a first step to further explore prob-
abilistic mechanisms for data dissemination in peer-to-peer
based multiplayer games. So far, we are able to scale to
1000 players with very good performance. Can we adapt to
scale even further? Can we further optimize view manage-
ment, fanout decisions, and forwarding strategies? There are
also some fundamental topics that need further considera-
tion. For instance, cheating has not yet been considered. As
redundancy is a natural component of probabilistic mecha-
nisms to achieve reliability, it could be exploited to counter
cheating attacks. Another issue is the treatment of game
events that need conflict resolution, such as picking up ob-
jects or shooting. We could simply use a central server for
them, but more elegant mechanisms might be possible that
fit better into the dynamic peer-to-peer architecture.

7. REFERENCES

[1] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A large-scale and decentralized
application-level multicast infrastructure. IEFEFE
Journal on Selected Areas in Communication (JSAC),
20(8), Oct. 2002.

[2] G. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study.
ACM Comput. Surv., 33(4):427-469, 2001.

[3] P. T. Eugster, R. Guerraoui, S. B. Handurukande,

P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. ACM Trans. Comput. Syst.,
21(4):341-374, 2003.

[4] S.-Y. Hu and G.-M. Liao. Scalable peer-to-peer
networked virtual environment. In NETGAMES, 2004.

[5] T. limura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In
NETGAMES’04.

[6] Y. Kawahara, T. Aoyama, and H. Morikawa. A
peer-to-peer message exchange scheme for large-scale
networked virtual environments. Telecommunication
Systems, 25(3):353-370, 2004.

[7] J. Keller and G. Simon. Solipsis: A massively
multi-participant virtual world. In Int. Conference on
Parallel and Distributed Processing Techniques and
Applications, (PDPTA), pages 262—-268, 2003.

[8] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In INFOCOM, 2004.

[9] C. Maihéfer. A survey of geocast routing protocols.
IEEE Communication Surveys € Tutorials,
6(2):32-42, 2004.

Quazal. www.quazal.com.

A. P. Yuand S. T. Vuong. Mopar: a mobile
peer-to-peer overlay architecture for interest
management of massively multiplayer online games. In
NOSSDAV, pages 99-104. ACM, 2005.

