
DREAM: Distributed Reliable
Event-based Application Management
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buchmann@informatik.tu-darmstadt.de

Databases and Distributed Systems Group
Department of Computer Science
Darmstadt University of Technology, Germany

Summary. New applications and the convergence of technologies, ranging from
sensor networks to ubiquitous computing and from autonomic systems to event-
driven supply chain management, require new middleware platforms that support
proactive event notification. We present a system overview and discuss the principles
of Dream, a reactive middleware platform that integrates event detection and com-
position mechanisms in a highly distributed environment; fault-tolerant and scalable
event notification that exploits a variety of filter placement strategies; content-based
notification to formulate powerful filters and concept-based notification to extend
content-based filtering to heterogeneous environments; middleware-mediated trans-
actions that integrate notifications and transactions; and scopes, which are admin-
istration primitives for both deployment- and runtime configurability, as well as for
the management of policies. We discuss four prototypes that were implemented as
proof of concept systems and present lessons learned from them.

1 Introduction

We are experiencing a convergence of technologies that results in an explosion
of information and requires new paradigms for data and information manage-
ment and processing.

• The World Wide Web is a huge source of information that was conceived
for interactive search by humans. To exploit the Web in a mode other than
human browsing confronts us with the need for filtering and interpreting
a large amount of heterogeneous and often short-lived data.
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• The deployment of smart devices requires the continuous monitoring of
events as well as the appropriate context information to interpret them
properly.

• The miniaturization of sensors and their ubiquitous deployment will result
in massive amounts of sensor signals that must be processed, often in real
time.

• Huge distributed systems must be capable of detecting and correcting
failures and return autonomously to stable operation.

• New business strategies, such as event-driven supply chain management
and zero-latency enterprise, depend on the timely dissemination of infor-
mation and business events.

Common to the above is that signals and data, which we abstract into
the notion of events and event notifications, will flow to us. When dealing
with streams of events our traditional, pull-based access mechanisms to stag-
nant data do no longer work. Compare traditional pull-based data processing,
where queries are issued against a database, with drinking water with a straw
from a glass. The same straw (and the pull mechanism) is useless when trying
to drink from the garden hose.

To understand the fundamental difference between traditional applications
and the scenarios described above we will analyze the information space and
its interactions. There are two major dimensions that characterize an inter-
action pattern (see Table 1): who initiates an interaction and the knowledge
that exists about the counterpart. Along the first dimension we distinguish the
requestor of a service or consumer of a unit of information from the provider
of a service or information. Along the second dimension we distinguish be-
tween having knowledge of the identity of one’s counterpart and having no
knowledge.

In the well-known request-reply interaction pattern, the interaction is ini-
tiated by the client or consumer of information and the request is directed at
a specific server or information provider. If the identity of the service provider
is unknown we have a case of anonymous request-reply. On the other hand, if
the interaction is initiated by the producer of information, we have the cases
depicted in the right column of the table. If the producer knows the identity of

Initiator of Interaction

Consumer Producer

Knowledge of Yes Request/Reply Messaging

Counterpart No Anonymous Request/Reply Event-based

Table 1. Taxonomy of information processing space
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its counterpart, we have a classical messaging interaction. However, if the pro-
ducer does not know the consumer a priori, we have the typical event-based
interaction that depends on a mediator or broker to connect the interested
parties.

While traditional applications in which the user is in control or where the
responsiveness of the system is not critical are well served by user initiated
request-reply interactions, automated processes in distributed environments
must react to (possibly large quantities of) events and cannot rely on consumer
initiated processing. In event-based systems the producers of the events can
be unaware of the consumers, thereby allowing a loose coupling between pro-
ducers and consumers. This facilitates the evolution of the system, since new
applications that react to events can be added without affecting the deployed
infrastructure. The inherent reconfigurability of event-based systems directly
addresses volatile environments, which require agile applications and infras-
tructures, as was noted, for example, for enterprises that want to expedite
their crucial business processes [1].

The fundamental difference in the interaction pattern found in emerging
applications suggests, that slowing down the flow of events to use traditional
tools, e.g. through the use of caches or databases, is only a patchwork solution.
It is our contention that a reliable infrastructure for management of stream-
ing information is needed and that the importance of this infrastructure will
increase as we move to a world populated by huge amounts of interconnected
devices, services, and applications with different capabilities that will react
and automate processes on our behalf. Streaming events must be detected,
interpreted, aggregated, filtered, analyzed, reacted to and eventually disposed
of.

In this chapter we present the architecture and an overview of the com-
ponents of Dream, a distributed reactive middleware layer that consists of
a publish/subscribe event notification service and the reactive capabilities to
consume and react to events in heterogeneous environments. Specific research
results and the details of the individual components of Dream have been
published elsewhere and the reader is referred to these publications through-
out the text. Here we will concentrate on the motivation, the principles, the
design decisions and their consequences, and we will illustrate the feasibility
of our approach with four implemented prototypes.

We want to emphasize that different applications may have different no-
tions of events and will stress different portions of the middleware. Therefore,
we do not propose a one size fits all platform. However, the interaction prin-
ciples we discuss here are common to many application domains. We present
here the issues and one possible incarnation of a publish/subscribe reactive
middleware.
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2 Related Work

A reactive middleware platform draws on many existing technologies. Ac-
cordingly, related work is vast, and therefore is organized according to the
technologies involved. We discuss in Section 2.1 data and event dissemina-
tion; Sections 2.2 and 2.3 deal with event and data aggregation and integra-
tion; Section 2.4 is devoted to the reactive functionality needed to respond to
events; Section 2.5 discusses work related to fault tolerance and the integra-
tion of notifications and transactions; finally, Section 2.6 addresses software
engineering and management issues.

2.1 Event/Data Dissemination

Early work on broadcast disks addressed the issues of push-based information
dissemination in asymmetric communication environments [2]. Under this ap-
proach data is simply broadcast (pushed) to all consumers. Notification ser-
vices (also called event notification services) are in charge of propagating
data/events to interested consumers. For instance, in CORBA an event ser-
vice [3] was introduced to provide a mechanism for asynchronous interaction
between CORBA objects. Here, an event channel acts as a mediator between
suppliers and consumers of events. To overcome deficiencies of this service
specification, the notification service [4] was proposed as a major extension
with support for quality of service specifications and basic event filtering.

The Java Message Service (JMS) [5] provides the Java technology plat-
form with the ability to process asynchronous messages. JMS was originally
developed to provide a common Java interface (API) to legacy Message Ori-
ented Middleware (MOM) products like IBM Websphere MQ (formerly known
as IBM MQ-Series) or TIB/Rendezvous. In this way, the JMS API provides
portability of Java code allowing the underlying messaging service to be re-
placed without affecting existing code. JMS provides two models for messag-
ing among clients: point-to-point (using a queue) and publish/subscribe (by
means of topics). JMS has been part of Java Enterprise Edition (J2EE) since
its origin but it was incorporated as an integral part of the Enterprise Java
Beans (EJB) component model in the EJB 2.0 specification. It includes a new
bean type, known as message-driven bean (MDB), which acts as a message
consumer providing asynchrony to EJB-based applications.

In recent years, academia and industry have concentrated on publish/
subscribe mechanisms because they offer loosely coupled exchange of asyn-
chronous notifications, facilitating extensibility and flexibility. The channel
model has evolved to a more flexible subscription mechanism, known as
subject-based, where a subject is attached to each notification [6]. Subject-
based addressing features a set of rules that define a uniform name space for
messages and their destinations. This approach is inflexible if changes to the
subject organization are required, implying fixes in all participating applica-
tions.
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To improve expressiveness of the subscription model the content-based
approach was proposed where predicates on the content of a notification can
be used for subscriptions. This approach is more flexible but requires a more
complex infrastructure [7]. Many projects in this category concentrate on scal-
ability issues in wide-area networks and on efficient algorithms and techniques
for matching and routing notifications to reduce network traffic [8–10]. Most
of these approaches use simple Boolean expressions as subscription patterns
and assume homogeneous name spaces.

More recently a new generation of publish/subscribe systems that are built
on top of an overlay network has emerged. This is the case of Scribe [11] which
is restricted to topic-based addressing and is implemented on top of Pastry.
The mapping of topics onto multicast groups is done by simply hashing the
topic name. Hermes [12] uses a similar approach, also based on Pastry. Ad-
ditionally, the system tries to get around the limitations of topic based pub-
lish/subscribe by implementing a so-called “type and attribute based” pub-
lish/subscribe model. It extends the expressiveness of subscriptions and aims
to allow multiple inheritance in event types. A content-based addressing on
top of a dynamic peer-to-peer network was proposed in [13] where the efficient
routing of notifications takes advantage of the topology graph underneath.
This work combines the high expressiveness of content-based subscriptions
and the scalability and fault tolerance of a peer-to-peer system.

2.2 Event Aggregation

Events and associated data can be aggregated according to aggregation opera-
tions. In the context of active databases (aDBMSs) event aggregation involves
the occurrence of two or more events. Complex situations can be specified in
order to aggregate information from “low-level” events into more complex
ones. These are known as composite events and are usually expressed using
an event algebra, such as those defined in HiPAC [14], Ode [15], SAMOS [16],
or Snoop [17]. Such algebras require an order function between events to ap-
ply event operators (e.g. sequence), or to consume events. To determine which
of these events should be consumed or selected, different consumption modes
were defined [18]. Usually, events are point based and timestamped to provide
a time-based order with the purpose of facilitating event selection. However,
in open distributed environments global time is not applicable.

In [19], Lamport presented the happened before relation, which defines a
partial ordering of events based on the causality principle. An event a hap-
pened before an event b (depicted a → b) if a could have influenced b; a and b
are said to be causally dependent. If neither a → b nor b → a, the events are
said to be concurrent and causally independent. A system of logical clocks is
introduced which assigns a natural number to each event (logical timestamp).
Logical clocks are consistent with causality [20]: if a → b, then a’s timestamp
is smaller than b’s timestamp - the contrary is not true. In [20] the concept of
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vector time is presented and it is shown that vector time characterizes causal-
ity: two events are ordered by vector time iff they are causally dependent.
However, neither logical clocks nor vector clocks can deal with causal rela-
tions that are established through hidden channels and also can not represent
timed real world events. Thus they are not appropriate for open systems.

An approximation for modeling the clock imprecision in distributed sys-
tems has been proposed. Assuming a sparse time base (where the points at
which events can be generated are discretized and predetermined), Kopetz [21]
proposed the 2g-precedence model. This model establishes that if events are
at least two time granules apart, the sequence of these events can be deter-
mined unequivocally. Here an upper bound to the precision is assumed and
a virtual clock granularity g is defined. Since the granularity depends on the
assumed precision, it is not a feasible approach for wide area networks and
open distributed systems.

Schwiderski [22] adopted the 2g-precedence model to deal with distributed
event ordering and composite event detection. She proposed a distributed
event detector based on a global event tree and introduced 2g-precedence-
based sequence and concurrency operators. However, event consumption is
non-deterministic in the case of concurrent or unrelated events. Additionally,
the violation of the granularity condition (2g) may lead to the detection of
spurious events.

Dyreson [23] proposed the notion of valid time indeterminacy for temporal
databases, to model the fact that it is not known exactly when an event
occurred. An interval timestamp together with a probability distribution is
suggested, to represent the time span during which the event is supposed to
have occurred. As a consequence, querying the temporal database eventually
results in multi-sets that represent alternative answers to the query.

In [24] an approach for timestamping events in large-scale, loosely coupled
distributed systems is proposed. This uses accuracy intervals with reliable
error bounds for timestamping events that reflect the inherent inaccuracy in
time measurements.

Many projects on event composition in distributed environments such
as [25–27] either do not consider the possibility of partial event ordering or
are based on the 2g-precedence model. Therefore, they suffer from one or
more of the following drawbacks [24]: they do not scale to open systems, they
provide the possibility of spurious events, or they present ambiguous event
consumption.

Systems that support composite events must also address the semantic
issues associated with processing composite events. For example, how times-
tamps are generated and the way in which events are selected and consumed.

Several recent projects are dealing with queries on streaming data [28–31].
They are basically data flow systems where tuples flow through an acyclic
directed graph of processing nodes that apply stream operators. These systems
are mostly centralized and they monitor and aggregate data. The aggregated
data serves as the triggering event.
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2.3 Event Integration

As it has been clearly identified, additional semantic metadata for the ex-
change of data or messages among independent applications or services is
needed, not only in the context of B2B frameworks like ebXML [32], BizTalk
[33], or RosettaNet [34] but also by the W3C in efforts like Semantic Web [35],
DAML+OIL [36], or OWL [37].

In the first case, XML [38] and XML Schema [39] are used to define com-
mon vocabularies to describe data and business processes. Other data models
similar to XML include OEM [40] and the models described in [41,42].

In the context of W3C’s Semantic Web initiative RDF [43] and RDF
Schema [44] are used to provide additional semantic metadata to better enable
computer and users to exchange and integrate data. RDF provides an infras-
tructure that supports the representation and exchange of structured meta-
data to describe Web resources, like (parts of) Web pages, or other RDF meta-
data. RDF allows the description of properties of and interrelationships among
those resources in terms of 〈resource, attribute, value〉 triples. The attributes
used can be declared in RDF Schemas which, similar to XML Schemas, give
information about their intended meaning, and specify restrictions on their
values. RDF Schemas and XML Schemas can play a role similar to ontologies
as a common semantic basis for data and metadata representation.

In our framework we use the MIX model [45, 46] for the representation
of data (i.e., event content). Like XML/XML Schema or RDF/RDF Schema
MIX provides a flexible representation model for data plus additional meta-
data based on a common domain-specific vocabulary. However, in addition
to the functionality provided by the data models discussed above, MIX di-
rectly supports data integration by making the concept of semantic context
(i.e., the explicit description of implicit assumptions about the meaning of
the data) and conversion functions (which allow the automatic conversion of
data/events from different sources to a common context) first class citizens of
the model itself. MIX should not be seen as an alternative to the models being
developed in the context of the W3C but as a complementing approach that
provides features that hopefully will find their way into the other XML-based
models and standards.

2.4 Reactive Functionality

Reactive mechanisms were introduced in the late ’80s in the form of Event-
Condition-Action rules (ECA-rules) in active databases [47]. The goal of active
databases was to avoid unnecessary and resource intensive polling in monitor-
ing applications where events are detected as changes to a database and the
application reacts to the occurrence of these events.

Reactive functionality is used to support a wide spectrum of applications
ranging from workflow management [26, 48], personalization [49, 50], alerters
[51], business rule enforcement [52,53] up to the internal support for relational
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and object-oriented databases [54] particularly with the purpose of supporting
integrity of constraints, view maintenance, access control, etc. Most recently
active functionality is been used in the context of XML repositories [55,56].

Active database functionality developed for a particular DBMS became
part of a large monolithic piece of software (the DBMS). Monolithic software
is difficult to extend and adapt. Moreover, active functionality tightly coupled
to a concrete database system hinders its adaptation to today’s Internet ap-
plications, such as e-commerce, where heterogeneity and distribution play a
significant role but are not directly supported by traditional (active) database
systems [57].

Another weakness of tightly coupled aDBMSs is that active functionality
cannot be used on its own without the full data management functionality.
However, active functionality is also needed in applications that require no
database functionality at all, or that require only simple persistence support.
As a consequence, active functionality should be offered not only as part of
the DBMS, but also as a separate service that can be combined with other
services to support, among others, Internet-scale applications.

Unbundling active databases consists of separating the active part from ac-
tive DBMSs and breaking it up into components providing services like event
detection, rule definition, rule management, and execution of ECA rules on
the one hand, and persistence, transaction management and query processing
services on the other [57]. Afterwards, only necessary components can be re-
bundled in order to provide the required functionality. A separation of active
and conventional database functionality would allow the use of active capabili-
ties depending on given application needs without the overhead of components
that are not needed. Various projects like C2offein [58], FRAMBOISE [59],
and NODS [60] have followed this approach.

From our point of view, unbundling active functionality from a concrete
system and then rebundling the corresponding components in an open dis-
tributed environment is questionable. Unbundling in this context means to
give up the “closed world” assumption that traditionally underlies a DBMS.
Inherent characteristics of open distributed environments impose new require-
ments that were not considered in centralized environments, such as the lack
of global time, independent failures of nodes or communication channels, mes-
sage delays, etc. The consideration of these characteristics has an enormous
impact on the event detector [24], which is the essential component of an
aDBMS [61].

In [62] crosseffects and potential incompatibilities arising from the combi-
nation of selective features of active, real-time and distributed object systems
are discussed.

2.5 Notifications and Transactions

Transactions are a well known concept to provide reliability of execution and
have been well studied in research [63–65]. In database systems, data access
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operations are grouped into logical units of work and executed under transac-
tion control. Database transactions guarantee atomicity, consistency, isolation
and durability (ACID) for the execution of operations in a unit of work, de-
spite concurrency and despite the presence of application errors and system
failures. Thereby, the programmer is shielded from a variety of complex sit-
uations that otherwise arise in the presence of concurrency and the possible
multitude of failure modes. Finally, this clear separation of responsibilities into
application-specific logic and generic middleware services renders the concept
of transaction so powerful [65].

In aDBMS, the concept of coupling modes has been introduced [14,66] to
determine the transaction context for the triggered action with respect to the
triggering user-submitted transaction. Basically, the triggered action could be
executed immediately on behalf of the triggering transaction, deferred as a
pre-prepare phase of the commit processing, or detached in a new and sepa-
rate transaction. In addition, more advanced couplings are suggested which
encompass a dependency between the triggering transaction and a separately
spawned transaction for the rule. In particular, the execution of the triggered
action may causally depend on the commit or failure of the triggering transac-
tion. As described above, the aDBMSs have been designed on top of a central
and monolithic database server. In particular, the event triggering and rule
dispatching is integral part of the aDBMS and not separated into a generic
middleware layer.

In distributed settings, the application process typically spans multiple
transactional information systems. Grouping the information access into a
single distributed transaction requires resources to be locked for the duration
of the transaction and termination must be coordinated by a 2-phase-commit
protocol. While this approach is realized in standardized and commonly ap-
plied middleware services [67, 68], the applicability thereof is restricted to
tightly coupled systems and thus is not suitable for the integration of au-
tonomous components.

Various extensions to the traditional transaction models have been pro-
posed [69] which relax atomicity and/or isolation, in favor of increased con-
currency, and in order to preserve the transaction and execution autonomy of
involved components. In order to do so, application semantics must be taken
into account. A clear separation of concerns between application logic and
generic extended transaction services remains an open issue.

Queued transactions [70] support reliable, asynchronous messaging based
interactions. Queued transactions are based on the concept of message recov-
ery [65,71] and provide for the exactly once execution of a request issued from a
client application to a transactional information server. Enqueuing/dequeuing
of persistent messages is enclosed in a unit of work and dependent on the over-
all transaction outcome. Only if the unit of work is committed, the messages
will be sent out and consumed. Manipulation of client application state is ex-
ecuted in the same transaction as enqueuing the request and later dequeuing
the corresponding reply. The receiver application groups dequeuing of request
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message, service execution and enqueuing of reply into a single unit of work.
Both, client and server are loosely coupled in terms of time-dependency and
transaction autonomy, as they do not share a synchronous communication
state nor a single transaction context.

In transactional publish/subscribe [72] push-style event notifications and
database transactions are integrated, separating this active functionality in
a middleware layer. In [73] the authors identify the restrictions of queued
transactions in common message oriented middleware and suggest message
delivery and message processing transactions. Middleware mediated transac-
tions [74] (MMT) suggest a synthesis of queued transactions, transactional
publish/subscribe and distributed object transactions, including database
transactions. MMT are the basis for integrating notifications and transac-
tions, as we will discuss in Section 3.5.

2.6 Software Engineering/Management

In publish/subscribe systems the control flow is not explicitly coded. This re-
sults in the desirable loose coupling and scalability but makes system manage-
ment more difficult. Adding or deleting producers of notifications, for example,
will affect the system’s overall functionality. Therefore, notification services
can be differentiated by their ability to structure sets of producers and con-
sumers. Operational controls and management tasks can then be bound to
these structures.

The channels of the Corba notification service [4] can be interconnected
and managed in event management domains [75]. The domains provide a
uniform management interface, but do not offer any filtering of notifications
between coupled channels. However, producers must still explicitly publish
into a specific channel, moving information about application structure into
the components and limiting system evolution; a problem which is only re-
cently addressed by reflective middleware [76].

As it was described in Section 2.1, subject-based addressing schemes use
a predefined tree of subjects to classify, partition and select notifications [6].
The subject tree can only be defined according to a specific viewpoint, be it
notification content, network or application layout, thereby making the in-
tegration of systems difficult [77]. Many commercial systems exist (e.g. from
TIBCO, IBM, etc.) that extend the basic features with bridges connecting
multiple busses, transactional processing, and security. However, the manage-
ment of notification services is separated from the application functionality,
which is affected only implicitly, obscuring the interdependencies and compli-
cating management of the overall system.

The Java Message Service [5] does not offer a management interface beyond
selecting the persistence and time-to-live of notifications.

The Siena event notification service is a popular example of a distributed
service utilizing content-based filtering [78]. As for all other content-based
filtering approaches, the filters may be used to realize visibility constraints,
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but these issues are not explicitly addressed. The idea of defining event zones
is present in several prototypes [79,80] to limit the distribution of notifications.
None of the approaches focus on visibility control as the central mechanism to
coordinate applications and to localize management tasks which is a known
concept in other areas and employed in Dream [81].

Peer-to-peer systems have developed interesting strategies in environments
without central control. These strategies allow them to be self-organized,
maintain a well-defined network topology despite of frequent node failures,
offer bounded delivery depth and load sharing. As it was mentioned before,
several recent efforts [13,82,83] try to combine publish/subscribe and peer-to-
peer to complement the communication efficiency of the first with the man-
ageability of the latter.

In classical software engineering, event-based interaction is also known.
The observer pattern [84] directly follows this approach, and events are used
in graphical user interfaces and in software integration and composition. Sul-
livan and Notkin introduce mediators [85] as a design approach to explicitly
instantiate and express integration relationships. An implicit invocation ab-
straction is used to bundle components and mediators, and, with their own
interfaces, to compose new components. The Field environment [86] is an
early work on tool integration that relies on a centralized server to distribute
events. The original approach realizes content-based filtering in a flat space
of notifications, which was later extended with the Field Policy Tool by intro-
ducing a (manual) mapping of any sent message to a set of message-receiver
pairs.

3 Architecture

The Dream middleware platform consists of two main portions: the event
notification subsystem and the reactive functionality service. These two sub-
systems are complemented by the mechanisms for transaction support and
scopes, an orthogonal management support. Figure 1 describes schematically
the architecture.

Events are produced by sensors or applications. Event producers may be
either actively pushing events or be wrapped by event detectors which pull
sensor data or query the application for relevant state changes. Events can be
consumed either by a reactive application, i.e. an application that integrates
the reactive functionality, or by the reactive functionality service that han-
dles events on behalf of passive applications and invokes them as needed. In
addition, the reactive functionality service can invoke, via plug-ins, external
systems or services. Details are given in Section 3.4.

Event producers publish event notifications. An event is the observation
of a happening of interest. A notification is the reification of an event and
includes the event’s identity, a timestamp, and time-to-live for an event. An
event notification also includes the parameters of the event, i.e. data, and in
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Fig. 1. Dream Architecture

the case of heterogeneous environments, the event’s interpretation context.
Additionally, events carry a transaction context, if the notification service is
enhanced by transaction support. Details of the event representation are given
in Section 3.2.

The notification service is the delivery mechanism responsible for matching
published event notifications with subscriptions. It routes events from their
sources to their destinations. The routing mechanism may be realized at the
physical level (IP addresses), at the level of subject hierarchies, on the basis
of message content if all parties belong to one homogeneous context, or on the
basis of concepts, i.e. the terms of an ontology, if publishers and subscribers
belong to heterogeneous contexts. The Dream architecture allows you to
bypass a layer if it is not needed.

Publish/subscribe systems work on the basis of filters. Filters reduce the
number of notifications by forwarding only those for which subscriptions ex-
ist. As such, filters typically do not combine events. In many applications,
however, added value can be derived from aggregating events and reacting
to a combination of primitive events. The aggregated event should then be
forwarded to the subscriber. Event aggregation is discussed in Section 3.3.
Although aggregation could be viewed as being part of the notification mech-
anism, in Dream we have realized event aggregation outside the notification
mechanism. Event aggregators are treated like any other event consuming ap-
plication that can subscribe to events, aggregate them and publish a new,
aggregated event. In this way we can accommodate different kinds of event
aggregation, e.g. based on event graphs or on streaming queries. Details of
the notification service, as well as the optimizations for filter placement and
how to achieve fault-tolerance via self-stabilization are given in Section 3.1.

In publish/subscribe systems the quality of service of the delivery mecha-
nism is not compatible with traditional notions of transactions. Transactional
behavior is usually limited to guaranteed delivery of the notification from the
publisher to the broker but does not include the delivery to the subscriber. In



DREAM: Distributed Reliable Event-based Application Management 13

Dream we developed a transaction mechanism, that allows the client, i.e. the
subscriber, to determine the transactional quality of an interaction. Details of
how notifications and transactions interact are given in Section 3.5.

Finally, the Dream architecture includes a component that supports mod-
eling and management of event-based systems. The notion of scopes is used
to structure the applications and to manage policies bound to this structure.
Policies may determine the range of visibility or relevance of events, adapt
the notification service functionality, and may be used for the enforcement of
security policies. Scopes are described in Section 3.6.

3.1 Notification Service

The foundation of the Dream architecture is a delivery mechanism that spans
the underlying distributed system. It consists of a distributed event notifica-
tion service to which applications and other system services are connected
as clients. These clients act as producers and consumers of notifications. The
notification service itself is an overlay network in the underlying system, con-
sisting of a subset of nodes connected in a network of event brokers. The
brokers receive notifications, filter and forward them in order to deliver pub-
lished notifications to all attached consumers having a matching subscription.
This well-known architecture is used in a number of existing systems. However,
we studied the influence of the routing strategy on the scalability and perfor-
mance of the notification mechanism, specified its characteristics formally to
analyze the routing and extended its dependability with self-stabilization.

Routing

We assume content-based routing to develop the routing strategies. Flooding
is the simplest approach to implement routing: brokers simply forward noti-
fications to all neighboring brokers and only those brokers to which clients
are connected test on matching subscriptions. Flooding guarantees that no-
tifications will reach their destination, but many unnecessary messages (i.e.
notifications that do not have consumers) are exchanged among brokers. The
main advantage of flooding is its simplicity and that subscriptions become ef-
fective instantly since every notification is processed by every broker anyway.

An alternative to flooding is filter-based routing. It depends on routing
tables that are maintained in the brokers and contain link-subscription pairs
specifying in which direction matching subscriptions have to be forwarded.
The table entries are updated by sending new and cancelled subscriptions
through the broker network. Different flavors of filter-based routing exist.
Simple routing assumes that each broker has global knowledge about all ac-
tive subscriptions. It minimizes the amount of notification traffic, but the
routing tables may grow excessively. Moreover, every (un)subscription has to
be processed by every broker resulting in a high filter forwarding overhead if
subscriptions change frequently.
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Our experiences have shown that in large-scale systems, more advanced
content-based routing algorithms must be applied [87]. Those algorithms ex-
ploit commonalities among subscriptions in order to reduce routing table sizes
message overhead. We have investigated three of them, identity-based rout-
ing, covering-based routing [78], and merging-based routing [9]. Identity-based
routing avoids forwarding of subscriptions that match identical sets of notifi-
cations. Covering-based routing avoids forwarding of those subscriptions that
only accept a subset of notifications matched by a formerly forwarded sub-
scription. Note that this implies that it might be necessary to forward some
of the covered subscriptions along with the unsubscription if a subscription is
cancelled. Merging-based routing goes even further. In this case, each broker
can merge existing routing entries to a broader subscription, i.e., the bro-
ker creates new covers. We have implemented a merging-based algorithm on
top of covering-based routing [88]. In this algorithm, each broker can replace
routing entries that refer to the same destination by a single one whose filter
covers all filters of the merged routing entries. The merged entries are then
removed from the routing table and the generated merger is added instead
and forwarded like a normal subscription. Similar, the merger is removed if
there is an unsubscription for a constituting part of the merged filter or if a
subscription arrives that covers a part or the whole merger.

Advertisements can be used as an additional mechanism to further opti-
mize content-based routing. They are filters that are issued (and cancelled)
by producers to indicate (and revoke) their intention to publish certain kinds
of notifications. If advertisements are used, it is sufficient to forward subscrip-
tions only into those subnets of the broker network in which a producer has
issued an overlapping advertisement, i.e., where matching notifications can
be produced. If a new advertisement is issued, overlapping subscriptions are
forwarded appropriately. Similarly, if an advertisement is revoked, it is for-
warded and remote subscriptions that can no longer be serviced are dropped.
Advertisements can be combined with all routing algorithms discussed above.

Self-Stabilization of Broker Networks

Being able to formally reason about the correctness of a system is an often
neglected prerequisite for avoiding bugs and misconceptions. For Dream a
formalization of the desired system semantics is used to evaluate the routing
strategies and their implementation [88,89]. Based on these formal semantics
it was also easier to incorporate and validate a very strong fault-tolerance
property into the notification service: self-stabilization.

Self-stabilization, as introduced by Dijkstra [90], states that a system being
in an arbitrary state is guaranteed to eventually arrive at a legitimate state,
i.e., a state starting from which it offers its service correctly. The arbitrary
initial state models the effect of an arbitrary transient fault. Therefore, self-
stabilization is generally regarded as a very strong fault-tolerance property. A
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self-stabilizing publish/subscribe system is guaranteed to re-satisfy its speci-
fication in a bounded number of steps as long as the broker topology remains
connected and the programs of the surviving brokers are not corrupted.

Self-stabilization in the broker network is realized by discarding broken
and outdated information about neighbors. This is accomplished by the use
of leases. A node must renew its subscription to maintain it in the network.
Since the process of lease renewal is idempotent, multiple renewals don’t af-
fect the functioning of the system and it is enough to renew the lease any
time before it expires. A lease renewal just updates the timestamp for the
lease expiration time that is stored by the brokers with each entry. If filter
merging is performed, the resulting routing entries must be renewed, too. To
clean up the effects of internal transient faults, brokers validate their routing
tables periodically to remove entries with expired leases. Transient failures of
network links are not masked by this approach and lost notifications are not
automatically retransmitted. However, the approach using leases guarantees
that transient faults do not upset system operation longer than necessary. In
this sense, the system infrastructure can be regarded as self-healing.

The timing conditions for lease renewal depend on the link delay and the
network diameter, i.e., the time needed to process and forward a subscrip-
tion message and the number of links that must be traversed, respectively.
The leasing period is the time for which a lease is granted and determines
the stabilization time needed to recover from an error. There is an obvious
tradeoff between these values in that more accurate behavior demands more
control messages and increases the overhead. The system has been designed
to adapt leasing periods to changing network characteristics. For this, the
self-stabilization methodology can be applied again.

3.2 Concept-based Layer

To express subscriptions, consumers need to know about the content of the
events/messages that are being exchanged. That means, that consumers must
know details about the representation and assumed semantics of message con-
tent. Notification services at best specify message content by means of Inter-
face Definition Language (IDLs) or no explicit specification is made at all.
Thus, in the best case, only the data structure of the notification content is
specified while leaving required information about data semantics implicit.
This reflects a low level of support for event consumers that based on this
scarce information must express their interest (subscriptions) without having
a concrete definition of the meaning of messages assumed by their producers.
Without this kind of information event producers and consumers are expected
to fully comply with implicit assumptions made by participants.

The approach taken here tries to solve this problem by providing a concept-
based layer on top of the delivery mechanism. This layer provides a higher
level of abstraction in order to express subscription patterns and to publish
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events with the necessary information to support their correct interpretation
outside the producers’ boundaries.

Representing Events

Events are represented using the MIX model (Metadata based Integration
model for data X-change) [45, 46]. MIX is a self-describing data model since
information about the structure and semantics of the data is given as part
of the data itself. It refers to concepts from a domain-specific ontology to
enable the semantically correct interpretation of event content, and supports
an explicit description of the underlying interpretation context in the form
of additional metadata. In other words, the underlying ontology defines the
set of concepts that are available to describe data and metadata from a given
domain.

In our infrastructure ontologies are organized in three categories [91]:

• The Basic Representation Ontology contains the basic numeric and char-
acter data types, URL, currency, date, time and physical dimensions. The
representation ontology contains the necessary definitions for (un)mar-
shalling.

• The Infrastructure-specific Ontology contains events (primitive, temporal,
composite, etc.), notifications, and policies, such as consumption modes
or lifetimes of events and notifications. These are the basic concepts of an
event-based distributed infrastructure.

• The Domain-specific Ontologies contain the concepts for the various ap-
plication domains, for example, auctions, car-specific services, or air traffic
control. Some detail on these application domains is given in Section 4.

Events from heterogeneous sources can be integrated by converting them
to the target context required by the respective consumer. This can be done
by applying conversion functions that may include the calculation of a simple
arithmetic function, a database access, or the invocation of an external service.
Conversion functions can be specified in the underlying ontology if they are
domain-specific and application-independent. Application-specific or service-
specific conversion functions may be defined and stored in an application-
specific conversion library and will overwrite those given in the ontology.

Concept-based Addressing

Since events are represented with concepts of the ontology, we can provide a
high-level subscription specification. Consumers define their subscription pat-
terns by also referring to the underlying ontology (what we call concept-based
addressing). Subscriptions include the possibility of expressing consumers’ in-
terests using local conventions for currency, date time format, system of units,
etc. In this way, consumers do not need to take care of proprietary represen-
tations and all participants use a common set of concepts to express their
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interests. Moreover, event consumers are allowed to express their interests
without previously knowing the assumptions made by event producers. This
means that one producer can send events that contain prices expressed in
USD while other producers can express prices in EUR. Consumers of these
events simply need to specify at subscription time the context (in this case
the currency) in which they want to get the content of events. This is done
by automatically applying the respective conversion functions to events be-
fore they are passed to consumers. Additionally, event consumers can benefit
from the ontology and their relationships, e.g. generalization/specialization.
They can use abstract concepts for specifying their subscriptions and receive
instances of specializations of the abstract concept.

3.3 Event Aggregation

Events can be either primitive or composite. In most practical situations prim-
itive events, e.g. events detected by basic sensors or produced by applications,
must be combined. Usually, this composition or aggregation relies on an event
algebra that may include operators for sequence, disjunction, conjunction, etc.
Existing event algebras were developed for centralized systems and depend on
the ability to determine the order of occurrence of events [92].

However, these event algebras and consumption policies depend on a total
order of events and are based on point-based timestamps of a single central
clock. These assumptions are invalidated by the inherent characteristics of
distributed and heterogeneous environments. Exact knowledge of event oc-
currence as a point on the timeline ignores the effects of granularity and inde-
terminacy of time instants. As a matter of fact, granularity and indeterminacy
of event occurrence time are two sides of the same coin. The timestamp gran-
ularity might reflect the inaccuracy of clocks and time measurements [93], as
well as the inaccuracy of event observation - think of a polling event detec-
tor running once an hour. A coarse granular event occurrence time might be
chosen on purpose, because in the universe of discourse a finer granularity is
not appropriate. For example, the event could be associated with an activity
that itself has a duration but this duration is not of interest. In that case,
the atomicity of an event is the result of an abstraction. As another example,
consider planning and scheduling of activities, which is best modelled at an
appropriate time granularity related to the heartbeat of the process. In typical
Supply Chain Management (SCM) scenarios for example, events are recorded
at the granularity of calendar day, and only in some cases down to hours and
minutes.

In all cases, the event occurrence time must be considered to be indetermi-
nate to some extent. As a consequence, time indeterminacy must be reflected
in the time model and explicitly recognized and reported when composing
events in distributed and heterogenous systems.

Three factors are crucial in a generic event composition service: i) the
proper interpretation of time, ii) the adoption of partial order of events, and
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iii) the consideration of transmission delays between producers and consumers
of events.

The first point is basically related to timestamping events. Here, times-
tamps are represented with accuracy intervals with reliable error bounds that
reflect the indeterminacy of occurrence time, imposed by timestamp gran-
ularity and inaccuracy of time measurements [24]. In our infrastructure an
abstract timestamp concept is defined and particular timestamp representa-
tions can be specialized for different scenarios and environments according to
the adopted time model.

In regard to the second point, we adopted a partial order of events. Conse-
quently, correlation methods include the possibility of throwing an exception
(e.g. CannotDecide) in order to announce such an uncertainty when com-
paring events. In this way, the underlying infrastructure is responsible for
announcing an ambiguous situation to a higher level of decision allowing the
use of application semantics for the resolution [91]. In this approach, user- or
pre-defined policies can be configured in order to handle these situations.

Third and final, we handle transmission delays and network failures by
using a combination of a window scheme with a heartbeat protocol. The win-
dow mechanism is used to separate the history of events into stable past and
the unstable past and present that are still subject to change. For composition
purposes only events in the stable past are considered. With all this, it can be
guaranteed in all cases that: a) situations of uncertain timestamp order are
detected and the action taken is exposed and well defined, and b) events are
not erroneously ordered.

The infrastructure of the event aggregation service is based on the princi-
ples of components and containers. Containers control the event aggregation
process while components define the event operators logic. As mentioned be-
fore, the aggregation service is treated like any other event consumer that can
subscribe to events, it aggregates them and finally publishes the aggregated
event. The handling of time indeterminacy and network delays are encapsu-
lated in such a container.

3.4 Reactive Functionality

An event-based system depends on the appropriate reaction to events. Be-
cause we are targeting open environments the reactive components must be
able to interpret events originating from heterogeneous sources. Therefore,
the context information presented in Section 3.2 is not only needed for event
composition and notification, but also for interpretation of events and their
parameters by the components reacting to them.

In Dream the traditional processing of Event-Condition-Action rules
(ECA-rules) is decomposed into its elementary and autonomous parts [94].
These parts are responsible for event aggregation, condition evaluation and
action execution. The processing of rules is then realized as a composition
of these elementary services on a per rule basis. This composition forms a
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chain of services that are in charge of processing the rule in question. These
elementary services interact among them based on the notification service. As
mentioned before, the reactive service is treated like any other event consumer
that can subscribe to events. When events of interest (i.e. those that trigger
rules) are notified, the corresponding rule processing chain is automatically
activated. Elementary services (i.e. action execution) that interact with ex-
ternal systems or services use plug-ins for this purpose. Besides that, plug-ins
are responsible for maintaining the semantic target context of the system they
interact with making possible the meaningful exchange of data.

On the foundations of an ontology-based infrastructure, a reactive func-
tionality service was developed providing the following benefits: services inter-
act using an appropriate vocabulary at a semantic level, events from different
sources are signaled using common terms and additional contextual informa-
tion, and rule definition languages can be tailored for different domains using
a conceptual representation, providing end-users the most appropriate way
to define rules. This conceptual representation enables the use of a “generic”
reactive functionality service for different domains, making the underlying ser-
vice independent from the rule specification. For instance, this service is used
in the context of online meta-auctions as well as the Internet-enabled car as
described in Section 4. Details related to the reactive functionality service can
be found in [91].

3.5 Notifications and Transactions

In the event-based architectural style the event producer is decoupled from
the event consumer through the mediator. Therefore, any transaction con-
cept in an event-based system must include the mediator. On the other hand,
applications will be implemented in some (object-oriented) programming lan-
guage. Object transactions, as provided for example by Corba in the OTS,
are based on a synchronous, 1 : 1 request/reply interaction model that in-
troduces a tight coupling among components. The challenge is therefore, to
combine notifications with conventional transactional object requests [95] into
middleware mediated transactions (MMT) [74]. MMTs extend the atomicity
sphere of transactional object requests to include mediators and/or final re-
cipients of notifications.

To properly understand MMTs and their benefits, we briefly describe be-
low the basic issues of component connection, interaction, and reliability.

The topology of interacting components may be fixed or variable and
could be 1 : 1, 1 : n, or n : m. Dependent on the knowledge of the counterpart,
the binding of producer to consumer may be reference-based (at least one
party has an exact reference to the other) or mediator-based (parties have
no direct reference to each other but interact through the mediator based on
subjects, topics, content or concepts).

We may consider the life-cycle dependencies between interacting com-
ponents. The interaction model may not require the components to be avail-
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able at the same time. This means, that components can execute as time-
independent. If components must be available at the same time in order to
interact, then they are time-dependent. Time-independence is a major aspect
of loose-coupling in addition to mediator-based interactions.

The synchronicity of interactions describes the synchronization between
components and whether they block while waiting for completion of the in-
teraction. We distinguish synchronous, asynchronous, or deferred synchronous
behavior.

The delivery guarantees for notifications may be best-effort, at-most-once,
at-least-once or exactly-once. The first two are unreliable while the last two are
reliable. In addition to delivery we must consider the coupling to the execution
of reactions. The processing of the subscriber may be coupled best effort or
atomic transactionally coupled. In case there is a coupling between execution
of producer, subscriber and mediator, the recovery from situations of failures
could be forward (outgoing) or backward (incoming) from the point of view
of the publishing transaction.

To illustrate the differences among well known mechanisms we con-
sider object-oriented communication and transactions and traditional pub-
lish/subscribe. For common remote method invocation styles, such as in
CORBA and J2EE, the topology is fixed to 1:1 connections and bindings
are reference-based. Also, components are time-dependent on each other and
invocations are typically synchronous. As there is no mediator, transactions
either group the initiator (client) and the responder (server) of interactions
into a single atomicity sphere, or the execution of initiator and responder
is carried out in independent transaction contexts. There is no middleware
support for message based recovery at the client. As a consequence, forward
recovery after client failure must be dealt with at the application level and
guaranteeing exactly-once execution - from the client’s point of view - is a
tedious task.

Traditional publish/subscribe systems provide a more flexible and loose
coupling, as they support variable n:m topologies with time-independent in-
teractions via a mediator. However, transactional delivery is restricted to the
mediator and subscribers are restricted to transactional consumption of the
notifications. There is no means for transactionally coupling with respect to
the contexts of publisher and subscriber.

In order to integrate producers, mediators and subscribers, a more flexible
transactional framework is needed. This framework must provide the means
to couple the visibility of event notifications to the boundaries of transac-
tion spheres and the success or failure of (parts of) a transaction. It must
also describe the transactional context in which the consumer should execute
its actions. It must specify the dependencies between the triggering and the
triggered transactions, dynamically spanning a tree of interdependent trans-
actional activities.

Table 2 illustrates the possible options for coupling event producers, me-
diators and recipients of notifications. With immediate visibility, events are
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visible to consumers as soon as they arrive at the consumer’s site and inde-
pendent of the outcome of the triggering transaction. On commit (on abort)
visibility specifies that a consumer may only be notified of the event if the
transaction has committed (aborted). Deferred visibility requires that the con-
sumer be notified as soon as the producer starts commit processing.

modes

Visibility immediate, on commit, on abort, deferred

Transaction Context none, shared, separate

Forward Dependency none, commit, abort

Backward Dependency none, vital, mark-rollback

Production transactional, independent

Consumption on delivery, on return, atomic, explicit

Table 2. Transaction framework provided couplings

A commit (abort) forward dependency specifies that the triggered reaction
only commits if the triggering transaction commits (aborts). Abort forward
dependencies are a powerful concept to realize compensations and to enable
recovery of long running processes.

A backward dependency constrains the commit of the triggering transac-
tion. If the reaction is vitally coupled, the triggering transaction may only
commit if the triggered transaction has been executed successfully. If the con-
sumer is coupled in mark-rollback mode, the triggering transaction is inde-
pendent of the triggered transaction’s commit/abort but the consumer may
explicitly mark the producer’s transaction as rollback-only. Both backward
dependencies imply that a failure to deliver the event will cause the triggering
transaction to abort.

If the reaction is coupled in shared mode, it will execute on behalf of
the triggering transaction. Of course this implies a forward and a backward
dependency, which is just the semantics of spheres of atomicity. Otherwise,
the reaction is executed in its own atomicity sphere, i.e. separate top and the
commit/abort dependencies to the triggering transaction can be established
as described above.

Once an event has been consumed, the notification is considered as deliv-
ered and will not be replayed in case the consumer crashes and subsequently
restarts. The consumption modes allow a loose or tight coupling of event con-
sumption to the consumer’s execution context and its transaction boundary.

We have implemented the above framework in the X2TS prototype [95].
It is discussed in Section 4 with the other prototypes.
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3.6 Scopes

Despite the numerous advantages offered by the loose coupling of event-based
interaction, a number of drawbacks arise from the new degrees of freedom.
Event systems are characterized by a flat design space in which subscriptions
are matched against all published notifications without discriminating pro-
ducers. This makes event systems difficult to manage. A generic mechanism
is needed to control the visibility of events, e.g. for security reasons, and for
structuring system components, extending visibility beyond the transactional
aspects presented in Section 3.5.

Scopes [96] allow system engineers to exert explicit control on the event-
based interaction; it is a functionality orthogonal to the transaction mech-
anism that stretches across the different layers of the Dream architecture
(see Figure 1). The following examples illustrate the kinds of explicit control
offered. In order to overcome the flat design space of event systems, scopes
offer interfaces that limit the distribution of published notifications. A scope
bundles several producers and consumers, it limits the visibility of events in
the sense that notifications are delivered to consumers within the same scope
but are a priori invisible elsewhere. According to an assigned interface a scope
may forward internal notifications to the outside, and vice versa. It encapsu-
lates the composed producers and consumers and may itself be a member of
other scopes, thus creating new clients of the notification service as long as
the resulting graph is acyclic [89]. The achieved information hiding may be
used to abstract from details of application structure.

Ontologies are used to map notifications between producers and consumers
of different application contexts. However, context is typically not identified
with arbitrary single producers or consumers, but instead characterizes differ-
ent (parts of) applications that are to interact at runtime. Context descrip-
tions can be bound to scopes, which bundle coherent groups of cooperating
clients and share a common application context. For example, a scope could
restrict visibility to trade-event notifications originating from NASDAQ. The
scope could have an associated context ”US-exchange” that defines the cur-
rency, the valid fractions in a quote, the date and time formats, etc.

Scopes are also used to exert a finer control of who is going to receive
a given notification. A typical example for such a delivery policy is a 1-of-n
delivery to only one out of a set of possible consumers. Note that, from the pro-
ducer’s and consumer’s point of view, event-based semantics are maintained,
only the interaction within a specific scope is to be refined. Delivery policies
bound to a scope specify the refined semantics of delivery in this scope.

Different aspects of controlling visibility of events are addressed in a num-
ber of existing products and research contributions, ranging from adminis-
trative domains [97] to full database access control [98]. However, prior to
proposing scopes we were missing an approach that is orthogonal to the other
aspects of Dream. We see scopes as the means by which system administra-
tors and application developers can configure an event-based system. Scopes
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offer an abstraction to identify structure and to bind organization and control
of routing algorithms, heterogeneity support, and transactional behavior to
the application structure. They delimit application functionality and contexts,
controlling side effects and associating ontologies at well-defined points in the
system. This is of particular importance as platforms of the future must be
configurable not only at deployment time but also once an application is in
operation.

4 Proof of Concept Systems

In this Section we present prototypical implementations that illustrate the
concepts discussed above.

4.1 Rebeca

Rebeca (Rebeca Event-Based Electronic Commerce Architecture) [89,99] is a
content-based notification service that implements the event notification and
routing described above and does not rely on only a single routing algorithm,
but implements all the algorithms presented in Section 3.1.

Scopes are implemented on top of Rebeca. Several options exist which
differ in the degree of distribution, flexibility to evolve, and the necessary
management overhead. A completely distributed solution divides the existing
routing tables into scope-specific tables and uses the plain routing mecha-
nisms for intra scope delivery. Cross scope forwarding and the application
of interfaces and context mappings are handled when notifications are trans-
fered between routing tables. A number of alternatives are available here:
scope crossing may be centralized to enforce some security policy, to audit
traffic, or to bridge specialized implementations of notification delivery. On
the other hand, single scopes may be realized by a centralized notification
broker, offering a finer control of notification forwarding and delivery policies.

Measurements of the characteristics of the routing algorithms were con-
ducted with the help of a stock trading application that processed real data
feeds taken from the Frankfurt stock exchange [87]. The results clearly show
the beneficial effects of using advanced routing algorithms in the Rebeca
notification service.

4.2 X2TS

X2TS integrates distributed object transactions with publish/subscribe sys-
tems [95] and is a prototype for the MMT concept in Dream. X2TS supports
the full range of object transaction features, such as indirect context man-
agement, implicit context propagation, interposition for and integration with
X/Open XA resources such as RDBMS and MOM resource managers. The
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prototype supports a push-based interface with one-at-a-time notifications. It
assumes that events are instances of types and that subscriptions may refer
to specific types and to patterns of events. Subscription to patterns of events
and coupling modes are imposed by the consumer by configuring the service
proxy.

The X2TS prototype implementation currently supports the following mid-
dleware mediated transaction (MMT) features:

• Deferred, on abort and on commit visibility.
• Checked transactions to support forward couplings and vital backward

dependencies.
• Backward processing dependencies with the possibility to define groups of

subscribers to be vital.
• Production policy is non-transactional but can be explicitly programmed

as transactional.
• Consumption policies are atomic, on delivery, on return, explicit.
• X2TS managed transactions at the consumer side. The consumer may

provide its own transaction context, select a shared context or let X2TS
create a new transaction for each notification. Grouping of notifications in
one transaction is possible through the definition of a composite event.

Reliable, exatly-once delivery and recoverable processing of events is real-
ized in a straight forward combination of producer at-least-once and consumer-
at-most-once strategy. The basic idea is as follows. The consumer site uses a
persistent and transactional log, which keeps track of the identifiers of pro-
cessed notifications. Arriving notifications are only delivered, if the identifier
is not found in the log. Logging the identifier is atomically executed as part
of the consumer’s unit of work, and on successful completion thereof an ac-
knowledgment is returned to the publisher. The publisher keeps on resending
notifications until the transmission is acknowledged by each subscriber. X2TS
allows subscribers to the same event to specify different couplings. While one
subscriber may react on commit of the triggering transaction, the other may
need to react as soon as possible.

The realization of visibilities and dependencies is basically achieved by
sending events about transaction status changes, and the propagation of
the publisher’s transaction context within the notification message. Thereby,
events need only to be published once. At the consumer site, a built-in event
composition enforces the visibilities and dependencies. Detection of event pat-
terns is realized through pluggable event compositors. The application of these
concepts to multi-level transaction services, which encompass activities at the
process level, is considered to be straight forward.

4.3 Meta-Auctions

Auctions are a popular trading mechanism. The advent of auction sites on the
Internet, such as eBay or Yahoo has popularized the auction paradigm and
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has made it accessible to a broad public that can trade practically anything in
a consumer to consumer interaction. However, the proliferation of sites makes
life more difficult for the buyer. Consider the case of a collector. With the
current auction sites, she has to manually search for the item of interest, pos-
sibly visiting more than one auction site. If successful, she might end up being
engaged in different auctions at multiple auction sites. There are two obvious
shortcomings to this approach: first, the user must poll for new information
and might miss the window of opportunity, and second, the user must handle
different auction sites with different category setups and different handlings.
This motivates the need for the meta-auction broker [100], which provides a
unified view of different auction sites and services for category browsing, item
search, auction participation and tracking (see Figure 2).

Notifications about events, such as the placement of a highest bid, and their
timely delivery represent valuable information. Propagation of events leads to
a useful and efficient non-polling realization of an auction tracking service.
Therefore, publish/subscribe as an additional interaction paradigm is needed
for disseminating process-related information efficiently. Events related to the
auction process are disseminated using the concept-based notification service
presented in this paper. This way, publishers and subscribers use a common
semantic level of subscription.
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Fig. 2. Meta-Auction Architecture

Each site participating in the meta-auction system provides information
about items and the auction process but does not share a global data schema
nor may we assume a global schema for notifications. Today, the exact mean-
ing of terms, entities and notifications used by different auction sites is still
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left implicit. To enable the brokering between different participating auction
sites, the precise understanding of the terms used by each site is needed and
should be made explicit through a domain-specific ontology. We introduced
an ontology-based infrastructure for explicit metadata-management on top
of which the meta-auction service can be realized and the mappings through
which the domain-specific ontlogies can be combined.

The auction process itself can be defined using state charts. Since they are
event-driven, they can be easily implemented with ECA-rules. Different sets
of rules can describe different types of auction processes (ascending, reverse,
dutch, etc.) [101].

To track an item of interest during an auction process, e.g. to detect that
another bidder has reached a highest bid, or that the deadline of an auction
is approaching, an agent can be used. Bidders can benefit from the reactive
service to program their own agents. In contrast to current agent bidders that
are owned, controlled and implemented by the auction house, these agents can
react to happenings of the auction process according to the bidders’ strategy.

4.4 Internet-enabled Car

Similar to other pervasive computing environments, cars will see a conver-
gence of Internet, multimedia, wireless connectivity, consumer devices, and
automotive electronics. Wireless links to the outside world open up a wide
range of telematics applications. Automotive systems are no longer limited
to information located on-board, but can benefit from a remote network and
service infrastructure.

Consider the scenario, where vehicles, persons and devices have a web
presence (or portal). Within this scenario new possibilities emerge, e.g. the
adjustment of instruments according to personal preferences, favorite news
channels, sports, music or access to one’s e-mail and calendar through the
portals. Through the portals this can be made independent of a particular
car and could be applied to any rental car. But not only instruments can be
adjusted, services can be personalized too. Services such as, “find and set the
route to the next gas station”, or “book an appointment to change oil” can
take into account company’s, and/or driver’s preferences.

The portals are enhanced with the reactive functionality service in order
to react to events of interest according to user preferences. Preferences are
stored and managed by the portal manager.

Vehicles are equipped with a GPS receiver and a box. This box plays the
role of a mediator between the vehicle itself and the external world. It can
access a vehicle’s electronic and diagnostic interfaces (like interfaces J1850,
ODB-II) and it is responsible for announcing status changes to its portal.
The portal manager can react to them by using the reactive functionality
service (see Figure 3).
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Fig. 3. An Internet-enable Car

A prototype [50] was developed in conjunction with industry to show the
reaction of a personalized car to different situations based on a set of user-
defined rules. Implemented services include:

Adjustment of instruments: When the driver gets into the car all her pref-
erences (preferred language, units used for temperature, distance and velocity,
format of date/time, radio stations, music preferences, etc.) are automatically
loaded. The driver’s identity is detected (e.g. smartkey) when getting into the
car and the car’s box communicates this event to its portal. As a reaction,
a rule is fired which reads the driver’s preferences and contacts the box to
set/load them into the car’s instruments.

Low fuel: A sensor signals this event and a location service is invoked to
find the next gas station considering current geographical position, destination
and the preferred vendor.

Driving to work: A commuter gets into the car on a workday and the
current time is between 8:00am–9:00am. As a reaction the best route to work
avoiding traffic jams is offered and passed to the navigation service; today’s
scheduled meetings are reviewed; company news and other personalized news
are obtained; and e-mails can be read. Because drivers should concentrate on
driving, all this information is read out by using a text-to-speech service.

5 Conclusions and Future Work

We have shown the main properties that we expect a reactive event-based
middleware platform to exhibit:

• event detection and composition/aggregation mechanisms in a highly dis-
tributed environment;

• robust and scalable event notification that exploits a variety of filter place-
ment and self-stabilization strategies;

• content-based notification to formulate powerful filters;



28 A. Buchmann et al.

• concept-based notification to extend content-based filtering to heteroge-
neous environments;

• middleware-mediated transactions that integrate notifications and trans-
actions with well-defined semantics for visibility, life-cycle dependencies,
synchronicity, delivery and recovery dependencies;

• configuration and administration primitives, such as scopes, for both
deployment- and runtime configurability, as well as attachment and ad-
ministration of policies.

The complete set of requirements for the wide spectrum of potential appli-
cations cannot be anticipated. In addition, experience has shown that generic
platforms can only cover a certain percentage of the business semantics. There-
fore, we believe that two conditions must be clearly fulfilled by the Dream
platform: 1) no false claims should be made, i.e. if the semantics cannot be
clearly defined, the middleware should not give a false sense of security to
the user and rather let the application developer compensate based on ap-
plication semantics, and 2) configurability of event-based platforms must be
guaranteed.

We have developed both the necessary concepts and prototype solutions
for individual parts of such a system. The results have been published indi-
vidually. In this paper we presented a system overview that describes how the
parts interact. We are in the process of reengineering the platform to eliminate
the gaps and inconsistencies that are typical when integrating several theses.
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88. Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, 2002.
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