
Generation of Synthetic Workloads
for Multiplayer Online Gaming Benchmarks

Tonio Triebel∗, Max Lehn†, Robert Rehner†, Benjamin Guthier∗, Stephan Kopf∗ and Wolfgang Effelsberg∗
∗Department of Computer Science IV

Universität Mannheim, Mannheim, Germany
Email: {triebel, guthier, kopf, effelsberg}@informatik.uni-mannheim.de

†Databases and Distributed Systems
Technische Universität Darmstadt, Darmstadt, Germany

Email: {mlehn, rehner}@dvs.tu-darmstadt.de

Abstract—We present an approach to the generation of realistic
synthetic workloads for use in benchmarking of (massively)
multiplayer online gaming infrastructures. Existing techniques
are either too simple to be realistic or are too specific to a
particular network structure to be used for comparing different
networks with each other. Desirable properties of a workload are
reproducibility, realism and scalability to any number of players.
We achieve this by simulating a gaming session with AI players
that are based on behavior trees. The requirements for the AI as
well as its parameters are derived from a real gaming session with
16 players. We implemented the evaluation platform including
the prototype game Planet PI4. A novel metric is used to measure
the similarity between real and synthetic traces with respect to
neighborhood characteristics. In our experiments, we compare
real trace files, workload generated by two mobility models and
two versions of our AI player. We found that our AI players
recreate the real workload characteristics more accurately than
the mobility models.

I. INTRODUCTION

In the past decade, a number of researchers focused their
work on using peer-to-peer (P2P) technologies for networked
multi-player games [1], [2], [3], [4], [5]. When taking a
closer look at them, it becomes apparent that each research
group employs an individual evaluation technique. Specific
test setups are used, different workloads are generated and
numerous metrics are defined in order to evaluate the quality of
the proposed overlays. This variety impedes a comparative per-
formance study of the different architectures. The experimental
results provided in the existing works cannot be mapped onto
each other for comparison. To perform an objective evaluation
that spans a multitude of gaming infrastructures, it is necessary
to implement a single common benchmark for these systems.

In this paper, we propose a method for generating synthetic
workload to be used in benchmarks for online gaming in-
frastructures. Although originally developed for P2P gaming
benchmarks, the workload generation as such is network-
agnostic and can thus be used independently from the par-
ticular network infrastructure. It fulfills the requirements of

This work was partially funded by the DFG research group FOR 733 and
the DFG research training group GRK 1343.

being reproducible, scalable and realistic. We achieve this by
first analyzing which aspects of the workload have significant
effects on network communication. Second, we gather traces
of a real gaming session in a shooter game prototype. Third,
the knowledge obtained from the real gaming session forms
the basis for determining the parameters of a goal-oriented ar-
tificial intelligence (AI) player we have implemented. Finally,
we define a similarity metric to compare traces. We show that
the AI player behaves similar to the humans according to the
metric.

Any number of AI players can then be used to generate
reproducible and scalable workload. In order to evaluate the
degree of realism of our workload, we define a metric that
expresses the similarity between real and synthetic traces. It
is based on the characteristics of the number of neighbors a
participant has in the game world at any point in time.

The rest of the paper is structured as follows. In the next
section, we make considerations for implementing the network
engine of a P2P game. Section III describes the properties of
a good benchmarking workload and discusses approaches to
creating it. Our evaluation framework and the AI player we
implemented are outlined in Section IV. Experimental results
are provided in Section V. Section VI concludes the paper.

II. P2P GAMES

Besides graphics, sound, and game mechanics, the imple-
mentation of the network infrastructure of a multiplayer game
also plays a major role in its perceived quality of experience.
The network is responsible for communicating interactions
with the game world to the other players. Imperfections in
the communication process can lead to noticeable delays, loss
of events, or general inconsistency in the game state among the
peers. Claypool and Claypool show that required capabilities
of the network strongly vary with the type of game under
consideration and the tasks within the game world. [6] It can
be generally observed that shooter games require a high game
state accuracy and low latency whereas strategy games are
more tolerant in this regard.

The game we consider in our work is the 3D shooter game
Planet PI4 (Fig. 1). For the most part, these requirements

rehner
Typewritten Text
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

rehner
Typewritten Text

Fig. 1. Screenshot of the game Planet PI4

apply to traditional client/server games as well as to P2P
games. On the networking level, there are tasks a network
must perform that are specific to P2P games. Of the P2P
issues described by Fan et al. [7], interest management and
game event dissemination are the two most relevant in this
context. Generally, however, these aspects are not P2P-specific
and need to be solved in client/server-based approaches as
well.

In an MMOG, every player has their own personal view of
the game world, depending on their current state. This view
determines which parts of the world the player can see and
which events can be perceived. Interest management is the
process of distinguishing between information that is essential
for a player to build the personal view of the world and
information that is not. The area of interest (AOI), typically
centered at the player’s position and bounded by the vision
range, defines the region within which the player needs to
receive game event information. All other players that are
inside the AOI are considered to be the neighbors. In a P2P
gaming overlay, they are the peers one communicates with
directly. Maintaining an accurate and up-to-date neighbor list
is the main objective of interest management.

The game event dissemination system ensures that each
player receives all relevant game events within their AOI. Real-
time games require low latencies for event dissemination to
keep the players’ views up-to-date as much as possible. Since
the AOI is bound to game world positions, the dissemination
systems are typically based on game world proximity. The
task can thus also be formulated as a spatial publish/subscribe
model. The way data is disseminated in a client/server game
differs from the way it is done in a P2P game. Data aggregation
and filtering can be done centrally in client/server systems,
whereas in P2P systems it must be done at the peers.

Quality of experience of a multiplayer online game is a
highly subjective concept and cannot be measured directly.
However, it strongly depends on the correctness of the neigh-
bor lists and the responsiveness of the game events, which

in turn depend on the capabilities of the chosen overlay.
Benchmarks for gaming infrastructures thus estimate quality
of experience by objectively measuring neighbor list accuracy
and responsiveness. The former can be evaluated by calculat-
ing precision and recall of the neighbor list management. The
latter is measured as latency and game state update frequency.

III. GAMING WORKLOAD

Following our benchmarking methodology [8], four main
components are required for benchmarking P2P gaming over-
lays. The first is the definition of the common functionality
each candidate system must provide. Next, it is necessary
to identify quality metrics to be measured for each overlay.
Typical examples are the precision and recall of the list of
neighbors in the game world or the accuracy of the game state
each peer maintains. In order to actually perform a benchmark,
a test environment must be implemented. In our work, the
test environment is the P2P game Planet PI4 running in a
simulator mode with computer-controlled players. Both the
environment and the metrics have already been published in
previous work. [9], [10]

The fourth component of a benchmark is a realistic work-
load for the gaming overlays to be evaluated. Workload
generation is the focus of this paper. The goal is to generate
synthetic workloads, that is, to simulate the behavior of players
playing the game. Such a workload needs to fulfill three
fundamental requirements to be usable for benchmarking. The
workload must be reproducible so that the test scenario is
exactly the same for each evaluated overlay and the test can
be repeated any number of times. It must be scalable, so that it
allows to provide an arbitrary number of players. And lastly,
the workload used for benchmarking should be as realistic
as possible in order to allow to make meaningful statements
about the quality of an overlay.

There have been several studies on traffic patterns and
models for client/server-based (massively) multiplayer online
gaming. [11], [12] The typical approach to doing this is to
collect data from real gaming sessions and to fit a traffic model
to them to simulate simple characteristics like data rate distri-
butions over time. Those approaches, however, are determined
to a specific network structure, typically client/server. Such
a coarse simulation is not sufficient for benchmarking P2P
gaming overlays. In order to maintain the players’ AOI and to
decide which peers to connect to, more high level knowledge
like player positions is required. A synthetic workload for
benchmarking a gaming overlay thus needs to include player
positions and interactions, and the players’ behavior must be
simulated.

The behavior of a player is composed of two basic aspects:
The first aspect are the static constraints dictated by the
game itself. For example, they limit how fast players can
move, where they can go and how they can interact. These
constraints are mostly invariant. The second aspect are the
natural attributes of the players. Some players may be playing
more aggressively or defensively, or they can be highly skilled
or play the game for the first time. It is obvious that the former

aspect is much easier to reproduce, but both aspects need to
be simulated to create a truly realistic workload.

A. Workload Generation Models

Three approaches to the creation of workload are: static
traces, context-insensitive mobility models and context-sen-
sitive AI players. By “traces”, we mean complete records of
all actions, e.g., movement or interaction, performed by all
players in a real gaming session. Such traces are clearly not
scalable to any number of players other than the actual number
of participants when they were created. On the positive side,
they provide a reproducible workload which is realistic per se.

Mobility models on the other hand coarsely approximate
player behavior. Beside their use for testing of extreme cases
(e.g., massive crashes, extreme high player density), their
biggest advantages are their simplicity and scalability. A ran-
dom walk model only requires a few lines of code and already
allows to model a large portion of the static constraints of the
game and can be applied to an arbitrary number of players.
Such a model can be gradually extended to include interactions
like random shooting or random dying and respawning at a
different location. Mobility models are deterministic and thus
reproducible, and it is easy to simulate even large numbers of
players. However, their degree of realism is questionable and
difficult to substantiate. This is due to their insensitivity to the
gaming context, i.e., they enable players to act, but not to react
and interact. They may be capable of modeling characteristics
of moving, shooting and dying/respawning individually, but
fail to emulate the interrelation between them. Consider the
following: A player may be more likely to shoot, the more
hostile players are within the AOI. The more a player shoots,
the more likely it may be for other players to die and respawn
somewhere else. This relationship may often lead to situations
where many messages (one for each shot) need to be sent to
a large number of participants (crowded AOI) while neighbor
lists constantly change (dying and respawning in a different
location). This is an example for a complex interrelationship
which is relevant to benchmarking, but cannot be modeled
without understanding the game context.

AI players are a more context-aware way to generate
workload. They are sensitive to the situations as they occur
in the game and are able to react to them. The player
behavior is recreated much more realistically than in the case
of mobility models. In particular, they also allow modeling the
natural attributes of the players. If implemented well, adjusting
the parameters of the AI allows imitating even higher level
patterns like aggressiveness or skill level. The ultimate goal
for an AI player is to behave in a way that initiates the
transmission of network messages in the same way a real
player would. Looking at multiplayer games like Planet PI4,
we find that the following messages are being sent. Updates
of the player’s position are sent periodically to the in-world
neighbors. The frequency of these messages is assumed to
be constant. Game events like shooting, hitting somebody or
capturing a base all trigger messages as well. Their rate can be
indirectly steered by adjusting the AI parameters. All situations

TABLE I
PREVIOUS P2P GAMING WORKLOADS

Mobility Models

R
an

do
m

W
al

k

R
an

do
m

W
ay

po
in

t

H
ot

Sp
ot

A
I

Pl
ay

er
s

H
um

an
Pl

ay
er

s

MOPAR [1] ×
Colyseus [2] ×
VON [3] × ×
Donnybrook [4] × ×
pSense [5] × ×
Gross et al. [9] × ×

where messages are disseminated have in common that the set
of receivers strongly depends on the neighbors in the current
AOI of the player. We thus need to implement the AI in a way
so that the characteristics of the AI player’s neighbors over
time approximates the real situation as closely as possible.
Our neighborhood metric defined in Section V allows us
to measure the similarity of the neighbor list characteristics
between the AI and the real player. We use this metric
to fine tune the parameters of our AI implementation and
also to evaluate the quality of different workload generation
techniques.

B. Previous P2P Gaming Workloads

This section provides a brief overview of the workload
generation methods used in selected publications on P2P
gaming overlays (see Table I). The authors of VON [3] use a
simulation of discrete time steps and two mobility models.
The first is a random walk where each node moves in a
certain direction which changes with a certain probability.
The second is a hotspot mode: Each node performs a random
walk in the region of one of several hotspots and switches
to another hotspot after a random interval. Similarly, the
pSense [5] evaluation employs a (not further specified) random
movement mode as well as a hotspot mode. MOPAR [1] is
also evaluated in a simple simulator using a random mobility
model which is not further specified. For the evaluation of
Colyseus [2], its authors use an Emulab testbed with up to 50
hosts running modified Quake III instances. The game is then
played by Quake III bots that are using an obstacle-sensitive
mobility model based on Voronoi diagrams. The authors of
Donnybrook [4] apply a larger-scale simulation using a be-
havior generator based on the same Quake III bots that where
already used for Colyseus. In addition, they use a 32-player
game played by humans for validation. An earlier approach to
benchmarking of P2P overlays for interest management and
spatial event dissemination has been proposed by Gross et
al. [9] In their work, the authors focus on evaluation metrics
and user churn modeling, but only use a simple mobility
model (random waypoint and single hotspot) to generate the
workload.

IV. IMPLEMENTATION

We implemented a comprehensive evaluation framework
to be able to perform a complete benchmark for different
network infrastructures. [10] Our framework allows to conduct
real multi-player gaming sessions with humans and to create
detailed trace files. In simulator mode, synthetically created
sessions can be carried out in a controlled environment.
Special care was taken to ensure that all processes in the
simulation are reproducible. This was mainly achieved by
explicitly setting the seed values wherever random numbers
are generated.

A. Evaluation Framework

The evaluation framework is composed of three major
components: the game Planet PI4, an integrated simulation
environment, and an implementation of a monitoring server.

Planet PI4: Planet PI4 is fully implemented third-person
3D space shooter game for multiple players connected by
an exchangeable P2P overlay network. The players can fly
through a virtual asteroid field with space ships and shoot
at each other. The game world contains several points of
interest like bases or repair points as incentives for players
to gather at certain locations. Players can either compete in a
free-for-all fashion or as opposing teams. The game software
has a modular architecture so that the implementation of the
gaming overlay can be exchanged as needed with little effort. It
currently runs with one of two implemented overlay networks:
pSense [5], BubbleStorm [13], and a simple client/server
implementation.

Discrete Event Game Simulator: This mode provides a
reproducible environment that is able to simulate peers playing
the game as well as the underlay network. Real-time game
events are mapped to a discrete-event queue and the rendering
of the virtual world can be disabled. In addition, the simulation
environment maintains a global view of all peers. [10]

Monitoring Server: This server is used to monitor and
trace all the game data from the human players as the
game progresses. The server’s clock is used as a global time
reference in the created traces.

B. AI Player

The main goal of implementing a game AI is to enable
a purposeful behavior of the computer-controlled players.
There exist many different actions in a game that trigger
network messages. The progression of these actions reflects the
characteristic of the player’s gaming behavior. This includes
simple reactions to game events as well as behaviors with
a more high-level motivation like strategies and team play.
This is best modeled by a goal-oriented AI. We implemented
a Behavior Tree AI for workload generation and adjusted
the parameters of the goals in order to achieve a maximum
amount of realism. The goals can be simple or complex.
Complex goals are composed of a sequence of simple sub-
goals where each sub-goal is mandatory for the success
of the goal. The leaf goals of the tree form the interface
to the game world. They can gather information about the

current game state and interact with the world using concrete
actions. Combining goals in such a way allows for an intuitive
modeling of simple and complex behaviors. The desirability
of each goal is periodically evaluated based on the current
game state. The goal with the highest desirability score gets
executed. The desirability functions are shown in Table II.
In our implementation we created 4 complex goals that are
based on 6 sub-goals. During the execution of every goal, we
permanently run obstacle avoidance to prevent collisions with
other players or objects. The goals are as follows.

Go To Position (sub-goal): This goal sets the current speed
of the ship to the maximum and steers towards the destination.

Find Highest Threat (sub-goal): This goal analyzes the
enemies that are inside the area of interest. It determines the
opponent that poses the highest threat based on distance, angle
and shooting frequency.

Attack Opponent (sub-goal): Follows the enemy target to
take it down. Since an appropriate strategy depends on the
distance to the target, we implemented the following different
strategies: If the target is out of firing range, approach the
target at full speed. If the target is in range, decrease speed,
keep following the target and start shooting. If the target is too
close, try to flank it by applying lateral thrust to fly around
the enemy ship and keep shooting.

Combat(complex): This goal is a sequence of the goals
“Find Highest Threat” and “Attack Opponent”.

Find Repair Point (sub-goal): Selects the closest repair
point among all repair points inside the AOI.

Repair Ship (complex): This goal is a sequence of the
goals “Find Repair Point” and “Go To Position”.

Find Base (sub-goal): The goal checks all bases in the
AOI and determines the one that is most desirable to capture.
The decision depends on the distance to the base and its
current state. Bases that are controlled by the enemy are more
preferable than neutral ones.

Capture Base (complex): This goal is a sequence of the
goals “Find Base” and “Go To Position”.

Find Waypoint (sub-goal): Determines an interesting area
for exploration. This is done either by selecting a uniformly
distributed random waypoint or by selecting a random point
of interest (e.g., bases and repair points). Both versions are
implemented and evaluated in Section V.

Exploration (complex): This goal acts as the default behav-
ior. It explores the map until a goal with a higher desirability
arises. It is a sequence of the goals “Find Waypoint” and “Go
To Position”.

V. EVALUATION

This section evaluates the synthetic workload created by our
AI players. The results are based on a real gaming session
of the game Planet PI4. 16 players ranging from novices
to experienced shooter game players were divided into two
teams and played the game for 20 minutes. All peers sent
their application data to a central monitoring server where a
trace file was created. The trace file contains a time-stamp, a
unique player ID, the number of neighbors each player has,

TABLE II
DESIRABILITY FUNCTIONS FOR THE COMPLEX GOALS. THE T ARE

ADJUSTABLE PARAMETERS TO TWEAK THE AI.

Goal Desirability Function

Combat (CSV
MSV

) ∗ (V R
DTE

) ∗ TCombat

Repair Ship (MSV −CSV
MSV

) ∗ (V R
DTR

) ∗ TRepair

Capture Base (BV R
CB

) ∗ (V R
DTB

) ∗ TCapture

Exploration TExplore

CSV : Current Shield Value
MSV : Maximum Shield Value
DTE : Distance to next Enemy
DTB : Distance to next Base
DTR : Distance to next Repair Point
V R : Vision Range
CB : Captured Bases

BV R : Bases in Vision Range

the number of shots fired, number of hits and the number
of deaths. Each value is accumulated over one second and
written to the trace file as one entry per second per player. The
same experimental setup was then repeated for four artificial
gaming sessions by using the following workload generation
techniques:

Random Waypoint (RWP): Mobility model that makes
the artificial players move to completely randomly selected
positions on the map.

Random Point of Interest (RPOI): Mobility model that
moves to randomly selected points of interest (bases, repair
points).

AI Player with RWP Exploration (AI-RWP): AI player
with a random waypoint exploration mode.

AI Player with RPOI Exploration (AI-RPOI): AI player
with increased interest in exploring bases and repair points.

We denote the session of real players by REAL.
We argue that closely approximating the real characteristic

of the number of neighbors in a player’s AOI is the most
important feature for synthetically generated workloads. Add-
ing neighbors or removing them from the neighbor list is the
main task of an overlay’s interest management. AOI neighbors
also represent the receivers of most of the sent messages and
thus strongly influence how many messages are communicated
over the network.

In order to express the characteristics of a player’s neighbors
over time, we use a simple Markov chain. We assume that the
number of neighbors at one point in time only depends on
the number of neighbors in the previous time step. Higher
order dependencies are ignored. We thus count how often
the number of neighbors changed from i to j over the entire
duration of the gaming session. This results in a neighborhood
transition matrix A = (ai,j), i = 0, . . . , n, j = 0, . . . , n
where each coefficient ai,j counts the number of transitions
from i neighbors to j neighbors from one time step to the

0
1
2
3
4
5
6
7
8
9

Matrix Row

0 1 2 3 4 5 6 7 8 9

Matrix Column

0
0.2
0.4
0.6
0.8

Fig. 2. Visualization of the transition matrix between the number of neighbors
in two subsequent time steps. The matrix is diagonally dominant.

next (1 second). The matrix is then normalized such that∑n
j=0 ai,j = 1 for all i, that is, all rows sum up to 1. Each

row i then represents a probability distribution for the number
of neighbors j in the next time step. Like this, a matrix As,p

is created for each of the 5 sessions s and each of the n = 16
players p. Additionally, a matrix Ãs is created for each session
by averaging the neighborhood transition matrices over all
players in the session. Fig. 2 shows a plot of the average
matrix ÃREAL of the real gaming session.

We can now measure the difference d1(Ã, B̃) between
the neighborhood characteristics of two sessions by simply
computing the L1 norm between the respective averaged
neighborhood transition matrices Ã and B̃:

d1(Ã, B̃) =

n∑
i=0

n∑
j=0

|ãi,j − b̃i,j |. (1)

We evaluate d1 in two different ways. First, we compare the
averaged transition matrix ÃREAL to the transition matrices
Ãs of the four synthetic sessions. We do this by calculating
d1(ÃREAL, Ãs) for s ∈ {REAL, RWP, RPOI, AI-C, AI-S}.
This is shown in the second column of Table III. Second,
we compare the matrices As,p, p = 1, . . . , n of all players of
a particular session s with the average Ãs of the respective
session and average over all players:

dvar(s) =
1

n

n∑
p=1

d1(Ãs, As,p) (2)

for each session s. This gives an indication of how much the
metric d1 varies among the players of a session. This is shown
in the third column of Table III. It can be seen from the table
that the neighborhood characteristic is better modeled by the
AI players than the two mobility models. Also, the AI player
that prefers to explore points of interest when there is no other
goal to follow, achieves a higher similarity than the random
explorer AI. This is due to the fact that human players also
tend to gather at interesting points of the world. The small
variation of the players around their average matrix indicates
that the metric we defined is reliable property.

The second goal of creating realistic gaming workload is
to accurately mimic the interactions of the real players. The

TABLE III
DIFFERENCE BETWEEN THE NEIGHBORHOOD TRANSITION MATRICES OF

THE FOUR WORKLOAD GENERATION TECHNIQUES AND THE REAL
SESSION.

Session s d1(ÃREAL, Ãs) dvar(s)

REAL 0 0.65

RWP 7.49 2.97

RPOI 2.74 0.59

AI-RWP 2.26 0.75

AI-RPOI 0.81 0.40

interactions shooting, hitting, and dying all produce messages
that are sent over the network. We counted the number of
shots fired, the number of hits and the number of kills for
the real session and the two AI players and compare them to
each other in Table IV. All values are given per minute and
per player. Note that the mobility models are omitted from
the table, because they are insensitive to the game context
and thus unable to shoot other players. The table reveals that
our AI players are more aggressive than real players and
shoot more frequently. Together with their increased accuracy,
they yield a higher kill rate per minute. Unfortunately, it is
not possible to adjust shooting rate and accuracy directly.
They are implicit effects of adjusting the desirability of the
Combat goal, because an AI player always shoots when it
is in Combat mode and the opponent is in range. However,
adjusting the desirability of Combat also negatively affects
the neighborhood characteristic, which is our main focus.
Making the bots less aggressive while maintaining a good
neighborhood characteristic is left for future work.

VI. CONCLUSIONS AND FUTURE WORK

We presented an approach to generating realistic workload
for the use in the benchmarking of multiplayer online gaming
infrastructures. It is based on goal-oriented AI players playing
the 3D shooter game Planet PI4. Unlike mobility models, AI
players take the context of a game into account. By examining
the types of messages used in such a game, it became apparent
that the number of AOI neighbors play an important role in the
generation of network messages. We thus defined a metric that
allows to compare neighborhood characteristics of different
workloads. This metric was applied in an experiment with
real workload, two mobility models and two versions of our
AI player. The experiment showed that the metric is a reliable
property and that the AI players modeled real player behavior
more accurately with respect to the number of neighbors. We
also found that the current AI implementation models the
number of shots, hits and deaths inexactly. These values can
only be adjusted indirectly, which leads to a change in the
neighborhood characteristic at the same time.

In future work, we would like to investigate the parameters
of our AI more thoroughly to find a setting that meets both
requirements simultaneously. The impact of a further increased
AI complexity to the generated workload also needs to be
investigated. Furthermore, we want to compare the results

TABLE IV
COMPARISON OF THE SHOTS/HITS/KILLS PER MINUTE AND PER PLAYER
AND THE ACCURACY FOR THE REAL GAMING SESSION AND THE TWO AI

PLAYER WORKLOADS.

Session Shots Hits Kills Accuracy

REAL 148.09 41.76 0.41 28.2%

AI-RWP 161.19 71.49 0.74 44.3%

AI-RPOI 199.48 70.86 0.74 35.5%

with other real gaming session with more participants. For
this purpose, it is desirable to extend the metric d1 so that
the neighborhood characteristics of two sessions with differing
numbers of players can be compared.

REFERENCES

[1] A. P. Yu and S. T. Vuong, “Mopar: a mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in Proceedings of the international workshop on Network and
operating systems support for digital audio and video (NOSSDAV’05).
New York, NY, USA: ACM, 2005, pp. 99–104.

[2] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: a distributed architec-
ture for online multiplayer games,” in Proceedings of the 3rd conference
on Networked Systems Design & Implementation (NSDI’06). Berkeley,
CA, USA: USENIX Association, 2006, pp. 12–12.

[3] S.-Y. Hu and G.-M. Liao, “VON: A Scalable Peer-to-Peer Network for
Virtual Environments,” in IEEE Network, vol. 20, no. 4, Jul./Aug. 2006,
2006, pp. 22–31.

[4] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: enabling large-scale, high-
speed, peer-to-peer games,” in Proceedings of the ACM SIGCOMM
conference on Data communication (SIGCOMM’08). New York, NY,
USA: ACM, 2008, pp. 389–400.

[5] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. Buch-
mann, “pSense - Maintaining a Dynamic Localized Peer-to-Peer Struc-
ture for Position Based Multicast in Games,” in IEEE International
Conference on Peer-to-Peer Computing (P2P’08), 2008.

[6] M. Claypool and K. Claypool, “Latency can kill: precision and deadline
in online games,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems (MMSys’10). New York, NY, USA:
ACM, 2010, pp. 215–222.

[7] L. Fan, P. Trinder, and H. Taylor, “Design issues for peer-to-peer
massively multiplayer online games,” International Journal of Advanced
Media and Communication, vol. 4, no. 2, pp. 108–125, Mar. 2010.

[8] M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller, W. Effelsberg,
A. Kovacevic, and R. Steinmetz, From Active Data Management to
Event-Based Systems and More, ser. Lecture Notes in Computer Science.
Springer, nov 2010, vol. 6462, ch. Designing Benchmarks for P2P
Systems, pp. 209–229.

[9] C. Gross, M. Lehn, C. Muenker, A. Buchmann, and R. Steinmetz,
“Towards a comparative performance evaluation of overlays for net-
worked virtual environments,” in Proceedings of the IEEE International
Conference on Peer-to-Peer Computing (P2P’11). IEEE, Sep 2011, pp.
34–43.

[10] M. Lehn, C. Leng, R. Rehner, T. Triebel, and A. Buchmann, “An online
gaming testbed for peer-to-peer architectures,” in Proceedings of the
ACM SIGCOMM 2011 conference (SIGCOMM’11). ACM, August
2011, demo.

[11] T. Lang, P. Branch, and G. Armitage, “A synthetic traffic model
for Quake3,” in Proceedings of the 2004 ACM SIGCHI International
Conference on Advances in computer entertainment technology, no.
cycle 1. ACM, 2004, p. 238.

[12] P. Svoboda, W. Karner, and M. Rupp, “Traffic Analysis and Modeling for
World of Warcraft,” IEEE International Conference on Communications
(ICC’07), pp. 1612–1617, Jun. 2007.

[13] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann, “Bub-
blestorm: resilient, probabilistic, and exhaustive peer-to-peer search,”
in Proceedings of the conference on Applications, technologies, archi-
tectures, and protocols for computer communications (SIGCOMM’07).
New York, NY, USA: ACM, 2007, pp. 49–60.

