
An Active Functionality Service for E-Business Applications

M. Cilia and A. P. Buchmann
Databases and Distributed Systems Group, Department of Computer Science

Darmstadt University of Technology - Darmstadt, Germany
<lastname>@informatik.tu-darmstadt.de

Abstract
Service based architectures are a powerful approach to

meet the fast evolution of business rules and the corre-
sponding software. An active functionality service that
detects events and involves the appropriate business rules
is a critical component of such a service-based middle-
ware architecture. In this paper we present an active func-
tionality service that is capable of detecting events in het-
erogeneous environments, it uses an integral ontology-
based approach for the semantic interpretation of het-
erogeneous events and data, and provides notifications
through a publish/subscribe notification mechanism. The
power of this approach is illustrated with the help of an
auction application and through the personalization of car
and driver portals in Internet-enabled vehicles.

1 Introduction
Two trends have become evident with the rise of e-
commerce, a rapidly changing business environment and
a tendency to satisfy these new requirements through
a service-based architecture. Companies simply cannot
avoid/ignore the fundamental problem that business re-
quirements are changing faster than applications can be
created and/or modified. Most of these requirements
are related to business rules. Business rules are precise
statements that describe, constrain and control the struc-
ture, operations and strategy of a business. They may be
thought of as small pieces of knowledge about a business
domain. They offer a way of encapsulating business se-
mantics and promoting them to the surface in the same
way that databases enable the separation of data from ap-
plications.

Traditionally, business rules have been scattered, hard-
coded and replicated by different applications. Isolating
the business rules from the application code enables de-
velopers to easily find and modify the pertinent rule(s)
when a policy change is required. This provides the abil-
ity to quickly change rules without modifying the rest of
the application code, thereby enhancing maintenance.

In recent years, one of the trends in database technol-
ogy has focused on extending conventional database sys-
tems (DBMS) to enhance their functionality and to ac-
commodate more advanced applications. One of these en-
hancements was extending database systems with power-
ful rule processing capabilities [10]. In their most general
form, active database rules (also known as ECA-rules)
consist of three parts: anEventcauses the rule to be fired;
a Condition is checked when the rule is fired; and an
Action is executed when the rule is fired and its condi-
tion evaluates true. As it has been demonstrated, active
databases are appropriate for business rule enforcement.

However, traditional active mechanisms have been de-
signed for centralized systems and are monolithic, thus
making it difficult to extend or adapt them to a new gen-
eration of distributed applications. New large-scale ap-
plications, such as EAI, e-commerce or Intranet applica-
tions impose new requirements. In this context, differ-
ent organizations provide services, events and data are
coming from diverse sources, and the execution of ac-
tions and evaluation of conditions may be performed on
different (sub-)systems. Furthermore, events, conditions
and actions may not be necessarily directly related to
database operations. This leads to the question of why
a full-fledged database system is required when only ac-
tive functionality and some parts/services of a DBMS are
used to coordinate the services.

Nowadays, the trend in the application space is mov-
ing away from tightly coupled systems and towards sys-
tems of loosely coupled, dynamically bound components.
In such a context, it seems reasonable to move required
active functionality outside of the active database system
by offering a flexible service that runs decoupled from
the database, and that can be combined in many differ-
ent ways and used in a variety of environments. What
seems to be appropriate for this is a service-based archi-
tecture in which an active functionality (ECA rule) ser-
vice can be seen as a composition of other services, like
complex event detection, condition evaluation, and action



execution. A similar approach, known as unbundling [7],
places emphasis on unbundling active functionality into
reusable components to later rebundle them according to
the scenario in question. For distributed environments, the
unbundling approach is inappropriate mainly because ac-
tive databases were not conceived to take into account the
inherent characteristics of distributed environments like,
independent failures, message delays, the lack of a global
time, and simultaneity of happenings/events. This has an
impact not only on the complex event detector but also on
the semantics of event operators [8].

Besides distribution, another important aspect to con-
sider is the integration of events and data coming from
heterogeneous sources. Combining data from different
sources leads inevitably to problems if the meaning of the
terms is not shared.

Ontologies play a fundamental role in this work. On
the foundations of an ontology-based infrastructure, an
active functionality service has been developed providing
the following benefits:
• events from different sources are represented using

common terms and additional contextual informa-
tion,

• events are disseminated by means of a pub-
lish/subscribe mechanism which is adequate for dis-
tributed environments,

• services interact using an appropriate vocabulary at
a semantic level,

• rule definition languages can be tailored for different
domains using a conceptual representation, and

• the conceptual rule representation enables the use of
a common active mechanism.

For the new generation of applications it is necessary to
provide an active functionality service as an integral part
of the middleware. This will help to develop applications
that can be easily adapted to new business requirements.
The approach is illustrated with examples based on online
auctions and personalized car and driver portals.

The rest of this paper is organized as follows. In Sec-
tion 2 the conceptual foundation of our flexible and ex-
tensible active functionality service is presented. Sec-
tion 3 describes how business rules are defined. Section
4 presents scenarios where rules are used in an online
auction environment and for personalized driver and car
portals. Section 5 touches on the requirements of service
based middleware platforms. Finally we present conclu-
sions, address open issues and discuss future work.

2 Foundations
Three main pillars are the foundation of this work: an
ontology-based infrastructure, event notifications, and a

service-based architecture, which are presented in the fol-
lowing subsections. More details about this approach can
be found in [5].

2.1 Ontology-based Infrastructure
Active functionality mechanisms in our context are fed
with events coming from heterogeneous sources. These
events encapsulate data that can only be properly inter-
preted when sufficient context information about its in-
tended meaning is known.

This work is based on the use of shared concepts (on-
tologies) expressed through common vocabularies as a
basis for interpretation of data and metadata. We repre-
sent events, or event content to be precise, using a self-
describing data model, called MIX [3]. In the rest of the
article we refer to events represented based on MIX, i.e.
based on concepts from the common ontology, asseman-
tic events. MIX refers to concepts from a domain-specific
ontology to enable a semantically correct interpretation of
events, and supports an explicit description of the underly-
ing interpretation context. Semantic events from different
sources can be integrated by converting them to a com-
mon semantic context using conversion functions defined
in the ontology.

Ontologies in the scope of this work are extensible and
they are organized at three different levels: a) the ba-
sic level, where elementary ontology functionality and
physical representation is defined; b) the infrastructure
level, where concepts of the active functionality domain
and other aspects related to the infrastructure (i.e. noti-
fications) are specified; and c) the domain-specific level,
where concepts of the subject domain (e.g. online auc-
tions) are defined [5].

2.2 Events and Notifications
An eventis understood here as a happening of interest.
Events coming from different applications are integrated
by eventadapters. They convert source-specific events
into semantic events (represented by ontology-based con-
cepts enriched with semantic contexts). Anotification is
a message reporting an event to interested consumers. A
notification carries not only an event instance but also im-
portant operational data, such as reception time, detection
time, event source, time to live, priority, etc.

A notification servicebased on a publish/subscribe
paradigm is responsible for delivering events to interested
consumers. Here a notification flows from an event pro-
ducer to possibly a set of consumers. Subscribers (con-
sumers) place a standing request for events by subscrib-
ing. On the other hand, a publisher makes information
available for its subscribers. A publish/subscribe mech-
anism provides asynchronous communications, it natu-



rally decouples producers and consumers, it makes them
anonymous to each other, it allows a dynamic number of
publishers and subscribers, and provides location trans-
parency without requiring a name service. By means of
this notification service, subscriptions are made based on
the concepts of the underlying ontology (concept-based
addressing) and can include contextual information of an
event of interest. The notification service is used to imple-
ment the communication among services that are involved
in the ECA-rule processing.

2.3 Service-based ECA-rule Processing
In this work, traditional ECA processing is decomposed
into its elementary and autonomous parts. These are re-
sponsible for complex event detection, condition evalua-
tion, and action execution. Elementary services expose
two kinds of generic and very simple interfaces: a) aser-
vice interfacewith a single method that receives an event
notification as a parameter; b) aconfiguration interface
is used for administration purposes, such as register, ac-
tivate, deactivate, delete, etc. This simple service inter-
face provides flexibility, allowing to configure the flow
of service execution easily. ECA-rule processing is then
realized as a combination/composition of these elemen-
tary services according to the rule definition. Interactions
among services involved in the processing of a rule are
based on the notification service.

But before processing rules, services must be config-
ured for this purpose. The active functionality service of-
fers the operations needed to define, remove, activate/de-
activate, and search/browse ECA-rules. An ECA-rule
Manager plays the role of a representative of the active
functionality service. This means that activities related to
registration, activation, deactivation, and deletion of rules
are executed through this representative. The most com-
plex process is the registration of a rule, which involves
the composition of elementary services that participate in
its processing. This composition consists of finding, con-
tacting, and configuring them.

Once services are configured, the run-time phase fol-
lows, where rules are processed. When a triggering event
is detected, the complex event detector publishes this hap-
pening. This means that all rules that were defined using
this triggering event are automatically “fired” by means of
a notification arrival. In this situation, no conflict resolu-
tion policy is needed because all rules are executed con-
currently (other execution models are possible). When
condition services that were configured are notified, they
evaluate their predicate and if true, automatically notify
the corresponding action services using the same notifica-
tion service.

Figure 1 (middle and bottom) depicts the ECA-rule
Manager when configuring services that were composed
according to a rule specification.

notifiy notifiy

complex event
detection
service

condition
evaluation

service

action
execution

service

Domain-specific
rule specification

Ontology-based rule
representation

Cancel

name

condition

event

action

Submit

Rule Definition

Cancel

name

condition

event

action

Submit

Rule Definition

D
ef

in
iti

on


C
om

po
si

tio
n

E
xe

cu
tio

n

ECA-Rule Manager

register

transform

register

adapteradapteradapter

Figure 1: Putting it all together

3 Defining Rules
Rules must be clearly distinguished from two perspec-
tives: how business rules are expressed by the users and
how they are represented inside the system. Taking this
into account, in this work the rule representation is orga-
nized in three layers. Theexternallayer allows the pos-
sibility to tailor a rule definition language for each spe-
cific domain (or group of end-users) making convenient
the specification of rules without the complications or lev-
els of detail imposed by a generic rule definition language.
Theconceptuallayer provides independence between the
implementation of the underlying active mechanism and
an end-user’s rule definition. This layer uses an ontology-
based representation of rules. Finally theinternal layer
enables the use of a “generic” active functionality service
where components or services that are involved can be
implemented using different optimization criteria or dif-
ferent programming languages, but they all “understand”
the conceptual layer and they use an internal representa-
tion to process rules.

The conceptual representation enables the use of a
“generic” active functionality service for different do-
mains, making the underlying service independent from
the rule specification.



Figure 1 illustrates the organization of rule representa-
tions presenting a web form for specifying a rule (exter-
nal) and how they are transformed into a conceptual rep-
resentation. This intermediary representation is then used
for registration with the ECA Manager, which in turn de-
composes it and registers its parts with the corresponding
services. These take the high-level representation, con-
figure themselves, and represent it using an internal data
structure.

By means of an integral use of ontologies as part of the
infrastructure, the definition of rules can benefit from the
use of a context. Contexts can be associated to conditions
and actions in order to evaluate them under the defined
contextual information. For instance, a condition predi-
cate that verifies distances can define ”metric system” as
context. This way, incoming events from heterogeneous
sources are first converted to the metric system (if neces-
sary) before they are used for evaluation. Consequently,
conditions and actions are always specified at a domain-
specific level, and are independent from source-specific
representations. This provides a very useful and power-
ful mechanism for combining events from heterogeneous
sources.

4 Scenarios
4.1 Auctions
Auctions are a popular trading mechanism when multi-
ple buyers compete for scarce resources. The advent of
auction sites on the Internet, such as eBay or Yahoo has
popularized the auction paradigm and has made it acces-
sible to a broad public that can trade practically anything
in a consumer to consumer interaction. The mechanism
has become so popular that many e-businesses are using
auction mechanisms to handle prices.

Tracking the objects that are auctioned is time consum-
ing. Therefore, some form of notification mechanism is
needed to alert a potential buyer when an item of inter-
est comes on the market. Serious art collectors have used
similar services for centuries. Agents or gallery owners
notify a potential buyer whenever an article that might in-
terest a customer becomes available. In the more mun-
dane world of Internet-auctions collectors would like to
enjoy a similar service. In addition, a collector might pre-
fer to deal with one common auction portal instead of reg-
istering her interests with multiple auction sites. There-
fore, we introduced the notion of a meta-auction [4]. A
meta-auction allows a potential buyer to roam automati-
cally and seamlessly across auction sites for auctions and
items of interest.

To realize the meta-auction, several problems must be
solved. We argue that today’s systems that are based pri-

marily on user-initiated communication are not adequate
and will not scale properly. The large number of intercon-
nected users and systems, as well as their wide-area dis-
tribution imposes particular restrictions with respect to re-
sponse time and network bandwidth. Internet-scale infor-
mation systems therefore must leverage proactive infor-
mation dissemination and caching techniques. However,
typical client/server and n-tier system architectures are
merely based on a request/response interaction and do not
take into account the asymmetric nature of such systems
[1], where the significant data flow is from a backend-tier
to the application-tier which then provides access for end-
users through a Web gateway.

Furthermore, the query metaphor from the database do-
main is currently the primary means for information ac-
quisition, which results in the user polling for changes and
happenings of interest. We argue that notifications about
events, such as the placement of a highest bid, and their
timely delivery to the user represent valuable information.
Therefore, publish-subscribe as an additional interaction
paradigm is needed to make the efficient dissemination of
process-related information possible.

Each site participating in the meta-auction system pro-
vides information about items and the auction process
but does not share a global data schema nor may we as-
sume a global schema for notifications. Still, all partic-
ipants come from the same application domain and at
least conceptually, share a common vocabulary. While
in most of today’s systems the vocabulary is left implicit,
we propose an ontology-based infrastructure for explicit
metadata-management on top of which the meta-auction
service can be realized. The suggested ontology-based
infrastructure provides common vocabularies for seman-
tically meaningful exchange of data and notifications, and
supports incremental integration of participating informa-
tion systems as needed.

Consider the case of a collector. With the current auc-
tion sites, she has to manually search for the item of in-
terest, possibly visiting more than one auction site. If
successful, she might end up being engaged in different
auctions at multiple auction sites. There are two obvi-
ous shortcomings to this approach: first, the user must
poll for new information and might miss the window of
opportunity, and second, the user must handle different
auction sites with different category setups and different
handlings. This motivates the need for the meta-auction
broker, which.provides a unified view of different auction
sites and services for category browsing, item search, auc-
tion participation and auction tracking.

Events that arise in the context of an auction process
should be treated as first-class information and propagated



as notifications to the users who subscribed to the event.
Propagation of events leads to a useful and efficient non-
polling realization of an auction tracking service.

In this context, it is mandatory to cope with heterogene-
ity. Today, the exact meaning of terms, entities and notifi-
cations used by different auction sites is still left implicit.
To enable the brokering between different participating
auction sites, the precise understanding of the terms used
by each site is needed and should be made explicit through
a domain-specific common vocabulary. This is a prereq-
uisite for semantically meaningful information exchange
between a frequently changing set of independent partici-
pants in a large-scale business scenario.

As mentioned before, adapters resolve heterogeneities
with regard to organization and structure of the data, and
the use of different terms referring to the same real-world
aspects. In addition, metadata is added to the available
data to make implicit modeling assumptions concerning
organization and meaning explicit. Based on this repre-
sentation, heterogeneities in the semantics of the data, e.g.
use of different units of measure, scale factors, derivation
formulas, coding, or naming schema, can be resolved by
the adapters at “integration” time.

Events related to the auction process are disseminated
using the notification service described in Section 2.2.
This way, publishers and subscribers use a semantic level
of subscription which is common to all of them.

Ready

NoBids

startOfAuction

placeBid

placeBid

endOfAction endOfAction

underMin
(endOfAuction.Item)

SoldNoWinner

endOfAction

Inactive

not underMin
(endOfAuction.Item)

Ready.highestBidAmount <
placeBid.bidAmount

Figure 2: Statechart of a simple ascending auction process

The auction process itself can be defined using stat-

echarts [2] and because they are event-driven, they can
be easily implemented with ECA-rules. In this way, dif-
ferent sets of rules can describe different types of auc-
tion processes (ascending, reverse, dutch, etc.). Figure 2
shows a graphical representation of a simple ascending
auction process. From this graphical definition ontology-
based ECA-rules are generated (like the one depicted in
Figure 3). The ECA-Rule Manager receives this rule def-
inition and brakes it down into elementary elements (e.g.
event, condition, action), searches for the corresponding
services passing to them these elements for configuration.
In particular, the rule shown in Figure 3 corresponds to
the transition that reacts to the placement of a bid of a
participant (placeBid) moving from the Ready state and
back to the same state. Under these circumstances, and
as a collateral effect, transitions from one state to another
produce notifications, making the auction process avail-
able (for example, new highest bid, end of auction, etc.)
to interested participants. As shown in figure 3, a context
is associated to this rule, to which data are converted (if
necessary) before any evaluation/comparison.

Ready_Ready
context: {<Currency, “USD”>,..}

placeBid

auctionProcess.
isNewHighest(placeBid)

auctionProcess.isCurrState
(placeBid.Item, ‘Ready’)

AND auctionProcess.changeStateTo
(placeBid.Item, ‘Ready’)

event actioncondition

rule

Figure 3: Graphical representation of an ontology-based
rule

To track an item of interest during an auction process,
for example to ascertain that another bidder has reached a
highest bid, or that the deadline of an auction is approach-
ing, an agent can be used. Here bidders can benefit from
a rule service to program their own agents. In contrast to
current agent bidders, where they are owned, controlled
and implemented by the auction house, these agents can
react to happenings of the auction process according to
the bidders’ strategy.

4.2 Personalized Car and Driver Portal
A service-based architecture is ideally suited for provid-
ing configurable applications. Personalized portals are
a kind of application in which services can be added or
deleted. In the case of vehicles and drivers, it is possible
to provide location-based recommendations for repairs or
fuel, personalized car settings, entertainment, navigation
aids and scheduling information to name just a few. The
recommendations can take into account the driver’s pref-



erences and other requirements, such as company poli-
cies. We are experimenting with scenarios in which vehi-
cles are equipped with Internet-access and connections for
handheld devices, i.e. cell phones and PDA’s. Such a sce-
nario would be particularly attractive for “road warriors”
who rent every day a car in a different city and want to
emigrate their familiar environment but also used to carry
part of it to a customer’s location or interact with their
home base.

5 Service-based Middleware and Pi-
lot Implementation

Service based architectures combine a light-weight, en-
capsulated application code. To make service based archi-
tectures work, a middleware layer is needed so that it co-
ordinates the invocation of services and reflects the busi-
ness rules and policies [9]. Such a middleware layer must
include monitoring and notification mechanisms. The ac-
tive functionality service presented here is based on the
foundation of a (loosely-coupled) service-oriented archi-
tecture, ontology-based infrastructure and the use of noti-
fications to disseminate events.

Ontologies are used in this work as a common interpre-
tation basis to enable semantically correct interpretation
of events and notifications in open heterogeneous envi-
ronments. Our ontology-based infrastructure applies ho-
mogeneously the ontology approach not only to integrate
events from different sources but also to support the in-
teraction among elementary services. Moreover, a con-
ceptual representation of rules makes a high-level and
domain-specific rule definition language possible provid-
ing independence between specification of rules and the
active functionality mechanism. ECA-rule processing in
our architecture is decomposed into elementary services.
These services provide a very simple and generic inter-
face, where parameters of methods are represented us-
ing the common ontology. Therefore, the flow of work
through services can be easily configured – omission or
inclusion of services like condition evaluation, event fil-
tering or complex event detection is made easy. Notifi-
cations are used to carry events from their source to in-
terested consumers (services), i.e. notifications are the
means for services to interact. For this purpose, a no-
tification service, based on a publish/subscribe mecha-
nism using concept-based addressing, is employed. The
use of this kind of mechanism is appropriate for loosely-
coupled distributed systems. Because of this conceptual
foundation, our architecture promotes flexibility, extensi-
bility and integration for large-scale Internet-based appli-
cations.

A prototype of the active functionality service and its
elementary services were developed using Java and they
run on top of HP’s Core Service Framework (CSF). Java
was selected mainly because of code portability reasons
since services may be necessary to run at different tiers
and at different run-time configurations. Java is also used
to specify ontology concepts and their relationships. On-
tology support is completely implemented and the neces-
sary ontology concepts of the infrastructure and the vehi-
cle scenario are already defined. Our implementation also
includes a running notification service that supports trans-
actions and coupling modes, and an XML event adapter
and an alarm service.

6 Conclusions and Future Work
The scenarios we have worked with have clearly shown
the power of a service-oriented architecture. Among the
critical mechanisms for a working service-oriented mid-
dleware platform, we identified the active functionality
service, a publish/subscribe notification mechanism and
the infrastructure for semantic interoperability.

In this article, a meta-auction scenario was discussed
and it was shown how it benefits from using the active
functionality service, in particular, the integration of data
and events from heterogeneous sources by means of on-
tologies and the use of metadata. It must be noticed that
in this scenario, notifications about the state of the auc-
tion process are considered first-class information, and
its efficient delivery is considered required. Here, the
auction process itself is described using ECA-rules and
process-related happenings are automatically notified. In
this context, information is disseminated by means of a
publish/subscribe mechanism based on a vocabulary com-
mon to all participants. Additionally, bidders benefit from
the use of such a service capturing their strategy using
(ECA-)rules.

The same active functionality service was used in a dif-
ferent context and with the purpose of personalizing the
user’s experience in a vehicle scenario [6].

Current research involves profile organization and man-
agement and their relation with privacy issues. Addition-
ally, we are investigating in more detail the complex event
detection in open distributed environments. In particu-
lar certain issues are being investigated. First, consump-
tion modes which should take into account partial order
of events and how to cope with uncertainty of event order.
Second, we are looking for a minimalistic set of (low-
level) event operators, that let us define domain-specific
powerful (high-level) event operators. Third, the exten-
sion of the timestamp ontology is required in order to cor-
rectly interpret and compare timestamps coming from dis-



tributed sources. Therefore, different time synchroniza-
tion dimensions and event observation mechanisms must
be studied and properly organized and represented. Last
but not least, we are working together with other mem-
bers of the department on scalability aspects of large-scale
event dissemination and also on performance and capacity
planning issues.

Acknowledgements

The authors would like to thank Christof Bornhövd,
Fabio Casati, Umesh Dayal, Li-Jie Jin, Christoph Liebig,
Memhet Sayal, and Ming-Chien Shan for their collab-
oration with this project. This work has been partially
supported by Hewlett-Packard Laboratories and Hewlett-
Packard German Innovation Center.

References
[1] S. Acharya, R. Alonso, M. Franklin, S. Zdonik.

Broadcast Disks: Data Management for Asymet-
ric Communications Environments. Proc. of SIG-
MOD, 1995.

[2] M. Benyoucef, R. Keller. An Evaluation of For-
malisims for Negotiations in E-Commerce. Proc.
Workshop on Distributed Communications on the
Web, LNCS 1830, 2000.

[3] C. Bornḧovd, A. Buchmann. A Prototype for
Metadata-Based Integration of Internet Sources.
Proc. CAiSE, LNCS 1626, 1999.

[4] C. Bornḧovd, M. Cilia, C. Liebig, A. Buch-
mann. An Infrastructure for Meta-Auctions. Proc.
WECWIS, 2000.

[5] M. Cilia, C. Bornḧovd, A. Buchmann. Moving
Active functionality from Centralized to Open
Distributed Heterogeneous Environments. Proc.
CoopIS, 2001.

[6] M. Cilia, A. Buchmann. Profiling and Internet
Connectivity in Automotive Environments. Sub-
mitted for evaluation, SIGMOD’02 Conference.

[7] S. Gatziu, A. Koschel, G. von B̈ultzingsloewen,
H. Fritschi. Unbundling active functionality. SIG-
MOD Record, 27(1):35-40, 1998.

[8] C. Liebig, M. Cilia, A. Buchmann. Event Com-
position in Time-dependent Distributed Systems.
Proc. CoopIS, 1999.

[9] C. Liebig, M. Malva, A. Buchman. Integrating
Notifications and Transactions: Concepts and
X2TS Prototype. Proc. Engineering Distributed
Objects, 2000.

[10] N. Paton (editor). Active Rules in Database Sys-
tems. Springer, 1999.


