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Abstract—Cyber physical systems (CPS) react to changes in the
environment and have become widely adopted in many domains.
One key functionality to achieve this reactivity is the processing
of event streams. To profit from this reactive behavior in service-
oriented architectures (SOA), event stream processing needs to
be encapsulated in a service-like manner. We thus introduce the
concept of event applets, in short Eventlets, to provide developers
and architects alike with a generic and reusable component model
for encapsulating event stream processing logic. Eventlets have a
managed lifecycle and are activated automatically upon arrival
of appropriate events. We introduce our distributed Eventlet
middleware architecture and implementation based on industry-
strength message-oriented middleware. Our evaluation shows
that Eventlets simplify the development of reactive components
and that they can compete with traditional event processing
approaches in terms of performance. Eventlets enable easy
distribution of event stream processing components and are a
suitable foundation for scalable applications that combine SOA
with CPS.

I. INTRODUCTION

In cyber physical systems (CPS) the pervasive use of mobile
devices and sensors provides real-time information of small
granularity in form of events. These events reflect changes in
the real world and foster reactive behavior in software systems.
Patient monitoring, smart home environments as well as traffic
management systems are typical examples [1], [2], [3].

To integrate this reactive behavior in service-oriented archi-
tectures (SOA) appropriate mechanisms for the processing of
events are required. Although there are several approaches to
integrate event processing with SOA, e.g., event-driven SOA,
these are usually restricted to single low-level events for inter-
component communication [4]. In CPS, however, events are
pushed into software components in form of event streams [5].
This push-based approach differs from the invocation-based
(pull) approach SOAs were originally designed for. Thus,
the abstraction paradigm of services in SOA still lacks an
equivalent for the processing of event streams. In this paper we
present a component model to encapsulate this processing of
event streams in an intuitive, scalable, and distributed way.
We refer to these new components as Eventlets. They are
containers for generic reactive application logic referred to
as tasks. Figure 1(a) shows that a generic task is defined
by actions that are applied to different real-world entities
and that are triggered by events. For each individual entity,
a task instance has to be maintained; actions are generic
and automatically applied per instance. Eventlets are designed

to exploit the push-based nature of event streams. They are
invoked implicitly and distributed automatically upon arrival
of appropriate events and follow a lifecycle. Eventlets are
managed by a middleware infrastructure that provides these
automatisms for registration, instantiation, distribution, and
lifecycle management. Like services, Eventlets encapsulate
application logic and run inside a SOA-like infrastructure.
This allows a similar development process for Eventlets and
services; application logic is broken down in components that
can be integrated and interact with each other.

As contributions of this paper, we

• introduce Eventlets as application logic containers for
tasks on event streams;

• present a distributed architecture and implementation of
an Eventlet middleware; and

• evaluate our implementation and show scalability and
software engineering advantages with respect to tradi-
tional event stream processing approaches. We use the
Esper complex event processing engine to show the ad-
vantages of Eventlets in terms of scalability, distribution,
and efficient development.

The remainder of this paper is structured as follows: we
present a motivating scenario that illustrates the application of
Eventlets in Section II and discuss related work in Section
III. In Section IV we introduce Eventlets from a software
developer’s perspective and present the distributed Eventlet
middleware architecture. Our implementation is described in
Section V and evaluated in Section VI. In Sections VII and
VIII we summarize our contributions and present future work.

Task Instance Task Instance Task Instance 

Events 

Entities 

Generic Task 

(a) Abstract View 

Events 

Entities 

Task Instance 

Actions 

(b) Example 

Task Instance Task Instance Task Instance 

Position 

Car 

Traffic Control 

Pos.: 4°2’N 

Car: 42 

Traffic ControlCar42 

Car left City: Create Invoice 

Instantiation Instantiation 

Fig. 1: Generic Task Model: Abstract view (a) and traffic
control example (b). In (b), an instance exists per car.
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II. MOTIVATING SCENARIO: TRAFFIC MANAGEMENT

Managing the increasing volume of traffic in large cities is a
challenging task. To avoid gridlock and to share infrastructure-
costs for highways or tunnels, cities rely on toll systems to
charge vehicles entering certain areas. Vehicles are registered
when they enter or exit certain zones and cities often have
different rates for different areas, times or, kinds of traffic.
An IT system for traffic management has to keep track of
each car, its status, and location. Norway’s AutoPASS system,
for example, handles more than 2.1 million entities across
Norway1.

The process of toll collection consists of a dynamic sensing
part and a standardized processing part: Cars have to be de-
tected and tracked (sensing), toll rates and billing information
have to be correlated with the detected movements (process-
ing). These toll systems are often realized as cyber physical
systems for the sensing and a SOA for the processing part.
Vehicles are continuously detected at checkpoints throughout
the city. The detections are represented by event streams,
which are then used for toll processing.

While traditional event stream processing techniques can
handle high volumes of events, they lack an intuitive abstrac-
tion mechanism designed for scalability on the architectural
level that enables easy integration with SOAs. With Eventlets
however, this integration is intuitive and the resulting appli-
cation inherently scalable. The application logic is the same
for each vehicle: detection events have to be recorded and toll
has to be calculated. This generic task can be modeled with an
Eventlet as shown in Figure 1(b). For each vehicle crossing
the city limits an Eventlet instance is created automatically.
During the instantiation further information, such as the toll
category for the corresponding license plate, is retrieved by
a SOA service invocation. Each Eventlet instance receives
all detection events for its corresponding vehicle only. When
a vehicle leaves the city the associated Eventlet instance
performs the billing by invoking the invoice service and shuts
itself down.

III. RELATED WORK

We introduce Eventlets as containers for event stream pro-
cessing on the same level of abstraction as services in SOA.
They integrate SOA with event stream processing which is
necessary to build reactive software systems [6]. We compare
Eventlets with other existing concepts and systems related to
event stream processing functionality. Due to limited space,
we only mention related work exemplary for the different
approaches and relevant for this work.

Architectures and models for push-based reactive software
systems have been addressed in previous work; in [7] the
authors present a survey where distributed event-based ar-
chitectures are described from different points of view. In
[8] Blanco et al. introduce a metamodel for distributed EBS
based on a peer-to-peer system. Their system shares the idea
of reactive components with Eventlets. However, they do not

1http://www.q-free.com/solutions/we-did-oslo/

introduce a high level abstraction with a generic view on tasks.
In [9] a taxonomy of distributed event-based systems (EBS) is
given. This paper states that an EBS requires an event model
and an event service. Many event services are distributed
publish/subscribe (pub/sub) systems implementing different
event models and broker network structures. Examples of
content-based distributed pub/sub middleware are Hermes
[10], PADRES [11], Rebecca [12], and JEDI [13]. With our
approach of Eventlets we do not introduce another event
model and event service. We rather build upon a, potentially
distributed, pub/sub system and the respective event model.
Eventlets and Eventlet middleware build a layer on top of the
event service and thus the above-mentioned systems can be
integrated with our idea. However, the underlying event model
is not transparent to the developer since event handling inside
Eventlets needs to comply with the underlying event model.

Another area of related research on push-based approaches
is complex event processing (CEP). The distinction between
distributed pub/sub systems and CEP, however, is ambiguous.
Filter expressions used to subscribe to events require CEP
to some extent, e.g., when evaluating events with respect to
subscription expressions. Examples for CEP engines are Esper
[14], Cayuga [15], and SASE [16]. CEP engines are typically
integrated into an event-based infrastructure as components
that subscribe to events. With respect to Eventlets, CEP occurs
at different points. Eventlets subscribe to events using filter
expressions; the complexity of those filter expressions and
whether they involve CEP, depends on the underlying event
dissemination infrastructure. Further, Eventlets can implement
CEP functions on their own as application logic. But Eventlets
can also integrate existing CEP solutions as we will show
in our evaluation; with Eventlets the distribution of complex
event queries can be realized easily.

Event-condition-action rules (ECA) are another mechanism
to express reactive behavior [17], [18]. With dynamic ECA
rule replication and generic rules it is possible to generalize the
action part of ECA rules. However, this requires management
components for rule replication and interpretation of generic
expressions. In addition to pure reactive behavior expressed
with ECA rules, Eventlets provide mechanisms for lifecycle
management. Upon instantiation and removal of Eventlet
instances application logic is executed. Further, the validity
of Eventlet instances is checked during runtime.

Eventlets complement SOA services as building blocks for
push-based architectures. SOA services encapsulate generic
actions with respect to entities and allow for dynamic integra-
tion of system components. However, the approach in SOA is
pull-based; an application requiring functionality invokes the
respective service and waits for the data. Although in next-
generation SOA the idea of events is integrated to realize
reactive services (event-driven SOA) [19], [4], it still builds
upon services originally designed with a different mind-set
than event-based components. Thus we believe that encapsu-
lating application logic with respect to entities’ event streams
is the more natural approach.

Eventlets are also related to mobile software agents [20].



In agent-based systems software components (agents) fulfill
tasks autonomously. For example, Bromuri et al. present an
approach with distributed agents reacting on events [21]. In
their system agents are autonomous proactive components
using events to coordinate the overall workflow across all
agents. When comparing agent-based systems with Eventlets,
a single software agent instance is similar to an Eventlet
instance. The Eventlet concept, however, is different from
agent-based systems; Eventlet instantiation is event-driven
and dynamic depending on the actual events. Eventlets are
not designed as autonomous units. They rely on Eventlet
middleware components for creation and management.

Eventlets are language-agnostic. Language-specific ap-
proaches integrate event processing capabilities into program-
ming languages. In EventJava [22], distributed event correla-
tion is seamlessly integrated with methods. In EScala [23],
events can be used in an aspect-oriented way in the source
code. These extensions make events first class citizens in
programming languages and provide event-based functionality
without integrating, e.g., CEP engines. Further, dedicated
programming languages are available to describe behavior of
software components in a generic way, e.g., the Act3 actor
language [24]. Compared to Eventlets however, the conceptual
goal differs. Eventlets, as a generic paradigm, are designed
to be independent from a certain programming language
and help to express event-based reactive functionality in an
abstract way. Desired Eventlet behavior can be expressed using
standard programming languages without modifications.

In terms of general software engineering research, Eventlets
are software components. Comparing Eventlets with software
component models presented in [25] shows that Eventlets
share technical properties with Enterprise Java Beans (EJB),
especially Message-Driven Beans (MDB). However, EJB are
not the best fit for scalable event stream processing in terms of
performance and ease of development as we will show in our
evaluation. In EJB, messages were introduced as asynchronous
inter-component communication mechanism and MDB stati-
cally define their subscriptions at compile time. Eventlets in
contrast issue subscriptions dynamically at runtime depending
on the event stream.

IV. EVENTLET STRUCTURE

In the following we define the structure of Eventlets. We
distinguish between the developers’ view in Section IV-A and
the architectural view in Sections IV-B. The developers’ view
describes the structure of Eventlets relevant to developers. The
architectural view presents the Eventlet middleware necessary
to execute, distribute, and manage Eventlets. The mechanisms
inside the Eventlet middleware are transparent to developers.

For event dissemination we rely on a messaging middleware
following the pub/sub paradigm [26]. Event consumers issue
subscriptions and define filters to receive events of interest.
We refer to this event delivery infrastructure as event bus.
We assume that developers have knowledge about potentially
available events, e.g., by means of an event type registry or
advertisements published by event producers.

A. Eventlet Prototypes
Developers write Eventlet prototypes that contain the appli-

cation logic for event stream processing. Eventlet prototypes
contain meta data that determine when to create Eventlet
instances at runtime. Eventlet prototypes follow a certain struc-
ture as shown in Figure 2; we distinguish between Eventlet
metadata and Eventlet runtime code. Eventlet prototypes are
identified by a unique name. Further, to identify Eventlet
instances at runtime, an ID per instance is assigned by the
middleware.

<EventletName> 

ValidityExpression:  <Validity period of eventlet> 
StaticExpression:  <Precondition for event handling> 
InstantiationExpression:  <Distinction criteria for eventlet instances> 
 

Eventlet Metadata 

onInstantiation(InstantiationValue iv) { ... } 
 // Code executed on creation of eventlet instance 

 

onRemove() { ... } 
 // Code executed on remove of eventlet instance 

 

onExpiration() { ... } 
 // Code executed on end of validity period 

 

onEvent(Event e) { ... } 
 // Code executed on event arrival 
 

Eventlet Runtime Code <InstanceID> 

Fig. 2: Structure of an Eventlet Prototype

1) Eventlet Metadata: Eventlet metadata is required by the
middleware to instantiate and manage Eventlets appropriately.
The metadata is shared amongst all instances of an Eventlet
prototype.

a) Validity Expression: Eventlet instances can neither
rely on a constant stream of events nor that event producers
leaving the system inform subscribers. This requires to specify
a validity condition to avoid that Eventlet instances remain
active indefinitely. Examples for validity are a timeout, an
insufficient event rate, or an expiration time/date.

b) Static Expression: An Eventlet might be interested
only in certain types of events. The static expression is a
precondition to identify the event stream relevant for an
Eventlet prototype and all its instances. The static expression
can be seen as a filter applied at subscription level; if an event
does not match, no further processing is required. We chose
the term static to indicate that the resulting filter is equal for all
Eventlet instances of the same Eventlet prototype. An example
for a static expression in the style of XPath is: /event/type
== PositionEvent.

c) Instantiation Expression: The instantiation expression
is the distinction criterion between Eventlet instances. It par-
titions the event stream associated with an Eventlet prototype
into sub-streams. Each sub-stream contains events with respect
to a certain grouping attribute value, e.g., a room number.
At runtime, Eventlet instances exist for all grouping attribute
values present in the Eventlet prototype event stream. An
example for an instantiation expression in the style of XPath
is: /event/carID; Eventlet instances are then created au-
tomatically for specific cars. The specific instantiation value,
e.g., car number 42, is passed to the Eventlet instance.



2) Eventlet Runtime Code: Eventlets follow a lifecycle.
Eventlet prototypes are registered with the middleware and
Eventlet instances are created dynamically when required. The
instances can expire, can be stopped, or removed. An Eventlet
prototype has to implement four methods that contain the
application logic for the Eventlet lifecycle management and
for the handling of incoming events.

The onInstantiation method contains the code, which
is executed when an Eventlet instantiation is triggered by the
Eventlet middleware. Instantiation code is optional, depending
on the use case. An example for instantiation code is opening
a database connection to retrieve additional data or issuing a
service call. The Eventlet middleware can trigger the removal
of an Eventlet for various reasons, e.g., upon user request. The
onRemove method is then responsible for a clean shutdown
with respect to the Eventlet application logic. An example is
persisting data for later reuse. If an Eventlet instance expires
according to the validity expression, the onExpiration

method is executed. The method can be used by developers to
react appropriately on expirations. The core functionality of an
Eventlet is the application logic executed upon event arrival.
The corresponding code is located in the onEvent method.

B. Eventlet Middleware

The Eventlet middleware provides an interface to the de-
veloper for the registration of Eventlet prototypes. It pro-
vides automatisms to perform the instantiation, distribution,
and management of Eventlet instances. The basic Eventlet
middleware architecture along with relations amongst their
components is depicted in Figure 3.
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Fig. 3: Eventlet Middleware Components

Eventlet manager and repository are the core components
of an Eventlet middleware and account for the control layer.
Eventlet monitors and prototypes constitute the instantiation
layer. Eventlet instances, created by Eventlet monitors, reside
in the runtime layer. During runtime, Eventlet middleware
components are connected to the event bus. The components
are described in the following sections.

1) Event Bus: The event bus is the core mechanism to trans-
port events from producers to consumers. Typically, the event
bus follows a pub/sub paradigm to decouple event producers
and consumers [27], [26]. The static and instantiation expres-
sions of Eventlet prototypes are defined on event content.
Thus, the pub/sub mechanism used by the Eventlet middleware
components must be sensitive to the event content. This can
be achieved with dedicated attributes in the event header or

with a full content-based subscription model. The Eventlet
middleware can be adapted to support both mechanisms.

2) Eventlet Manager: The Eventlet manager is the main
component of an Eventlet middleware. It provides an interface
to the developer for the registration and management of
Eventlet prototypes. Upon registration of Eventlet prototypes
the Eventlet Manager creates the Eventlet monitor.

3) Eventlet Monitor: Eventlet monitors are responsible for
monitoring events and instantiating new Eventlets. Developers
construct Eventlet prototypes corresponding to the structure
shown in Figure 2. One Eventlet monitor is associated with
each Eventlet prototype. Eventlet monitors support different
strategies for the creation of new Eventlet instances: stream-
controlled instantiation and manually-controlled instantiation.
Upon the registration of an Eventlet prototype a stream-
controlled Eventlet monitor is created and subscribes to all
events of potential interest using the static expression of their
associated Eventlet prototypes. A stream-controlled monitor
receives all events for which Eventlet instances have to exist.
At incoming events it evaluates the instantiation expression
of the Eventlet prototype and performs a lookup to check
whether an Eventlet instance for the results of the expression
evaluation is available. If no Eventlet instance is available,
the Eventlet monitor triggers the instantiation and passes
the instantiation value to the instance. A manually-controlled
monitor creates new Eventlet instances upon user requests
only and monitors already running Eventlet instances. Manual
instantiation requires users to know the instantiation values of
Eventlet instances that should be created.

4) Eventlet Repository: The Eventlet repository holds
Eventlet prototypes and their metadata. The repository allows
the Eventlet manager to create Eventlet monitors and Eventlet
instances on different nodes. The repository can be replicated
for scalability.

5) Eventlet Prototypes and Instances: Eventlet monitors
trigger the instantiation of Eventlets. During the instantiation
process the newly created instance issues a subscription using
a filter constructed corresponding to the static expression and
the instantiation value. The onInstantiation method is
invoked; afterwards the Eventlet instance reacts autonomously.
Upon event arrival the onEvent method is called and gives
developers access to the arrived event. Each Eventlet instance
evaluates its validity expression during runtime to decide
whether the validity condition is violated. Depending on the
actual validity expression, the evaluation is triggered by a
timer or by an incoming event. In case of a validity condition
violation the onExpiration method is called to handle the
expiration.

V. IMPLEMENTATION

In this section we present our distributed Eventlet mid-
dleware. We use state of the art software components and
support events represented with attribute/value (att/val) pairs
and XML.



A. Distributed Architecture

Our Eventlet middleware is implemented in Java and uses a
Java Message Service (JMS) broker as event bus [28]. JMS is
the de-facto industry standard for asynchronous messaging;
messages are exchanged via a JMS broker network, e.g.,
IBM WebSphere MQ or Apache ActiveMQ. JMS is also the
technology used in many enterprise service buses (ESB), e.g.,
Apache ServiceMix uses ActiveMQ as ESB. This allows the
Eventlet middleware to leverage already deployed technology.

The pub/sub functionality required for Eventlets is provided
by JMS topics. JMS provides basic content-based subscription
capabilities via message properties. A message property is an
att/val pair in the message header. When issuing a subscription
a consumer can use a SQL-like statement (message selector)
as a filter on message properties. The JMS broker ensures that
only messages with matching properties reach the consumer.
We use message properties and selectors to route events to
Eventlet instances. We trade more elaborated content-based
subscription capabilities of alternative pub/sub systems, e.g.,
filter subsumption, for the use of JMS. JMS has the advantage
of being a standardized industry-strength API that allows the
use of well-tested JMS brokers. We use a single topic as event
bus; all event producers publish events to this topic.

The Eventlet middleware is designed for scalability as
Eventlet monitors and Eventlet instances can run distributed
across multiple machines. The architecture is shown in Fig-
ure 4.
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Fig. 4: Distributed Eventlet Middleware

To achieve distribution, queue- and topic-based inter-
component communication is integrated in the middleware.
Just like the event bus transports events from producers to
consumers, the Eventlet middleware uses a command bus
for asynchronous and decoupled communication between the
components. It is possible to send commands to:

• a specific Eventlet instance;
• all Eventlet instances, monitors, and instance servers;
• all Eventlet monitors;
• all active Eventlet instances, not only to instances of a

certain Eventlet prototype;
• a specific Eventlet monitor; and
• all Eventlet instances of a prototype.
To distribute Eventlet monitors and Eventlet prototype in-

stances, Eventlet monitor servers and Eventlet instance servers
are started on each machine participating in the middleware
system. These servers form the Eventlet manager and connect

to queues on which they listen for commands. In the current
implementation queues deliver commands round-robin to all
connected servers.

Our middleware supports different commands for inter-
component interaction and lifecycle management of Eventlets.
With the registration of an Eventlet prototype an EVENTLET
MONITOR DISPATCH command is sent. Eventlet monitors send
EVENTLET DISPATCH commands to trigger the creation of
Eventlet instances. The middleware also supports Eventlet
lifecycle management commands for Eventlet instances and
Eventlet monitors: STOP, REMOVE, and RESUME. Stop com-
mands pause Eventlet instances; instances remain active and
keep state but do not receive events anymore and the validity
check is disabled. When the stream-controlled instantiation
policy is active, stopped Eventlet instances are not automati-
cally reactivated upon matching events. Stopping an Eventlet
monitor causes all associated Eventlet instances to be stopped.
Resume commands reactivate stopped Eventlet instances and
monitors. Remove commands delete Eventlet instances and
trigger the onRemove method call. Removing an Eventlet
monitor causes all associated Eventlet instances to be removed
as well. Removed Eventlet instances are recreated when the
Eventlet monitor is still active and matching events arrive
again.

B. Event and Expression Representation

Our implementation supports att/val pairs as well as XML
as representation for events [29]. For XML events static and
instantiation expressions of Eventlets are expressed in XPath.
For att/val events, the static expression is a JMS message
selector and the instantiation expression is an attribute name.

In our solution Eventlet prototypes and monitors are repre-
sented by Java classes. An Eventlet prototype inherits func-
tionality from its superclass for dynamic subscriptions and
evaluation of the validity expression. The superclass further
implements the JMS Message Listener interface to react on
incoming messages. All of this is transparent to the Eventlet
developer who only needs to implement the four core methods
and to provide the appropriate static and instantiation expres-
sions as described in detail in Section IV-A.

C. Eventlet Instantiation

Eventlet prototypes, identified by a name, are registered with
the middleware. Upon the registration a command is sent to
the Eventlet monitor dispatch queue. The Eventlet monitor
server receiving this command starts the Eventlet monitor. We
use Java Reflection for this instantiation process to dynam-
ically identify Eventlet prototype classes at runtime. When
an Eventlet monitor detects the need to create an Eventlet
instance, it sends a command to the Eventlet instance dispatch
queue. The Eventlet instance server receiving this command
then retrieves the required classes from the repository and
instantiates the corresponding Eventlet. Currently, Eventlet
instance servers receive dispatch commands round-robin. For
basic load balancing a physical machine can start multiple
Eventlet instance servers. More elaborate Eventlet instance



placement and load balancing strategies are part of our future
work. A newly created Eventlet instance issues a subscription
for relevant events based upon the static expression and the
instantiation value. In addition a task is started to periodically
check the validity expression. Our implementation currently
supports timeouts.

VI. EVALUATION

We evaluated our system and compared it with the Es-
per 4.3.0 complex event processing (CEP) engine. CEP is one
of the most common event stream processing applications.
We show: (1) that the distribution provided by Eventlets is
necessary for scalable event stream processing; (2) that the
overhead introduced by the Eventlet middleware compared
to a traditional CEP solution is small; and (3) that the
programming model of Eventlets simplifies the development
of distributed event stream processing components. We used
Apache ActiveMQ 5.5.1 as JMS broker; the test environment
details are shown in Figure 5.
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Fig. 5: Test Environment

As test case we used a typical CEP setup where event
processing components receive events via a broker. Events of
multiple types and sources are sent to the event bus (JMS
Topic). Depending on the event type and a threshold on an
event attribute, a counter is increased. Events are represented
in XML and event producers generate two different types of
events representing 20 different sources; each event contains
a type identifier, a source identifier, and a random value. The
test case involves counting the number of events per source
where the value is below/above a type-depending threshold.

We implemented the test case application in four ways:
(1) purely with Eventlets, (2) via CEP queries with Esper
(Esper A to E), (3) with Eventlets that use Esper (Eventlet-
Esper), and (4) with Java EE message-driven beans (MDB)
that use Esper (Esper-Beans). The Esper A to E scenarios
follow the common implementation approach for stand-alone
CEP applications. The Esper-Beans implementation is suitable
for integration in enterprise environments where easy com-
ponent deployment and lifecycle management is important.
We combine both approaches with Eventlets and show the
advantages.

The pure Eventlets implementation uses the source identifier
as instantiation expression; each Eventlet instance receives
only events originating from a certain source and counts events
corresponding to given thresholds. In Esper the use case is
realized with two CEP queries (one for each event type)
that count events with respect to the given threshold and
group output by source identifier. To evaluate scalability, we
used Esper configurations with different levels of distribution.
Distribution in our scenario leads to an increased number
of JMS connection primitive objects and Esper instances.

JMS connections are provided by connection factory (CF)
objects. An application that requires a certain amount of JMS
connections can request multiple connections from a single
CF or create multiple CF and request less connections per
CF. The same holds for JMS message listeners. We varied the
number of CF, the number of Esper instances, and the number
of JMS message listeners per CF to cover different ranges of
distribution; the numbers are shown in Table I. In Esper B
to E the increased number of connection primitives and Esper
instances leads to more complex code. In terms of distribution
the Eventlet-Esper and Esper E scenario are equal, however the
Eventlet-Esper implementation benefits from the distribution
and subscription automatisms provided by the Eventlet mid-
dleware. In the Esper-Bean scenario the connection primitives
are managed by the ActiveMQ to GlassFish resource connector
and are not disclosed to developers.

In the distributed Esper scenarios C and E subscription
filters are used to receive only events relevant for particular
query instances, i.e., a query receives only events containing
a certain source identifier. In the hybrid solution (Eventlet-
Esper) we used Eventlets to realize distributed event process-
ing with Esper. With the creation of a new Eventlet instance
an Esper instance is created and the Eventlet instance passes
events on to the Esper instance. In the Esper-Beans scenario
one MDB is created for each event source and deployed to a
GlassFish 3.1.2 application server. Each MDB creates an Esper
instance and forwards received events to it. The demand for
state requires that MDB are configured with a pool size of
one to have each sub stream processed by only a single bean
instance (singleton pattern).

Scenario CF Esper Instances Listeners per CF
Esper A 1 1 1
Esper B 1 1 20
Esper C 20 1 1
Esper D 1 20 20
Esper E 20 20 1
Eventlet 20 - 1

Eventlet-Esper 20 20 1
Esper-Beans AS 20 AS

TABLE I: XML Event Processing: Esper and Eventlet scenar-
ios with different scalability (CF: JMS Connection Factories;
Listener: JMS Message Listener; AS: Determined by Appli-
cation Server)

A. Measurement Results

We use CPU utilization of the Eventlet/Esper host as the
indicator for our comparison. On the one hand CPU utilization
allows to quantify the overhead of Eventlets. On the other
hand scalability across multiple cores is an indicator for
good distribution capabilities. The latency in our scenario
is dominated by the network and message broker; both are
not changed in the different scenarios so that we concentrate
on CPU measurements here. To determine the limits of the
different implementations we increased the event rate up to
the point where ActiveMQ flow control throttled down the



event producers, indicating that the consumers are saturated.
The results of our tests are shown in Figure 6.
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Fig. 6: XML Event Processing Performance Results

The Esper scenarios A,B, and D show that a single CF
is a bottleneck. In these three scenarios the event rate was
throttled by the consumer to 2000 events per second. The
CPU is the limiting factor here: since we have eight CPU
cores, a utilization of around 10 percent indicates that a single
CPU core is saturated, e.g., due to not parallelized methods.
This limits event arrival and triggers throttling mechanisms
in the broker. In scenario Esper C multiple CF are used: a
higher CPU utilization and event rate are reached but throttling
keeps the event rate at about 4000 events per second making
the single CEP instance the bottleneck. In the fully distributed
scenario Esper E, an Esper instance for each event source
identifier is created and registers for the relevant events using
JMS message selectors. This is the implementation nearest to
Eventlets since each Eventlet instance has its own CF and
subscription. Our evaluation shows that only the distributed
setups can process a high volume of events. Even on a
single multi-core machine multiple connection primitives are
required for scalability across CPU cores.

Our test case can be realized without a CEP engine. The
resulting pure Eventlet scenario reaches the highest event rate
in our evaluation. Since no external CEP library is included,
we gain performance due to reduced complexity. However,
often it is not reasonable to abstain from the use of a CEP
engine. From a software engineering perspective it is desirable
to apply a component model in these cases and encapsulate
application logic to foster manageability and scalability. This
led to our Eventlet-Esper and Esper-Beans scenarios.

The evaluation shows that the Esper-Beans scenario does
not perform well compared to the other approaches. It suffers
from the complex interplay between application server and
message-oriented middleware. The CEP use case does not
allow for using large bean pools so that scalability mechanisms
of Java EE cannot be applied.

The Eventlet-Esper results show that this scenario is only
slightly slower than the dedicated distributed implementation
Esper E. This performance loss is introduced by the Eventlet

middleware which adds additional layer of abstraction to pro-
vide the introduced functionality. We think this performance
loss is acceptable given the ease of development and the
integrated mechanisms for distribution with Eventlets; we will
quantify this in Section VI-B.

In addition to the XML implementation we realized the
evaluation use case using att/val representations of events. The
reached event rate for the distributed Esper E scenario and
Eventlets is about 20,000 events per second. At that point the
broker machine was saturated while CPU of the Eventlet host
was 22% for Esper E and 13% for Eventlets.

B. Simplified Software Development with Eventlets

Eventlets reduce the amount of code programmers have
to write to implement distributed event stream processing
applications. We analyzed the code of our fully distributed
Esper E and Esper-Beans scenario. We compared it with the
Eventlet-Esper implementation and counted core application
logic code; this excludes code that is automatically generated
by modern IDEs, i.e., class headers, exception detection,
bean configurations, and constructors, as well as comments,
logging, and debugging output. We do not include the pure
Eventlets scenario since it implements only part of the Esper
functionality. The results are shown in Table II; the Esper E
and Esper-Beans implementations have significantly more
lines of code than the Eventlet-Esper approach. Further, only
two classes are needed for the implementation of Eventlet-
Esper. This reduces the complexity of software maintenance
tasks compared to Esper E and Esper-Beans.

Scenario: EVENTLET-ESPER
Component Lines of Code
EL Prototype App. Logic 20
EL Prototype Meta Data 2
EL Registration 1
CEP Queries, Result Handling 18
Total: 2 Classes 41

Scenario: ESPER E
Component Lines of Code
Main Class App. Logic 39
Event Listener 10
Distributed Instantiation (JMS-based) 61
CEP Queries, Result Handling 18
Total: 3 Classes 128

Scenario: ESPER-BEANS
Component Lines of Code
Bean (generic/specific) 17/5
Bean Config (generic/specific) 2/1
CEP Queries, Result Handling 18
Total: 21 Classes 157 (37+20*6)

TABLE II: Lines of Code Comparison for different Compo-
nents and Scenarios (EL: Eventlet)

In contrast to Eventlet-Esper and Esper-Beans the dis-
tribution across multiple machines has to be implemented
manually in the Esper E. The Esper-Bean scenario uses the
Java EE ecosystem which provides for lifecycle management



and distribution. However, since EJB are not the natural fit
to encapsulate event stream processing logic, code has to be
adapted in each of the 20 MDBs. This code is referred to as
specific while generic code remains unchanged and is reused.
The savings with Esper distributed by means of Eventlets are
mainly due to the automated dynamic subscription handling
and integrated event handling provided by the Eventlet mid-
dleware.

VII. CONCLUSION

We introduced Eventlets as containers for application logic
that processes event streams. The instantiation, execution, and
distribution is handled by the Eventlet middleware. Conceptu-
ally, we see Eventlets as an abstraction layer that encapsulate
event stream processing logic. Eventlets and services are de-
fined on the same layer which allows for seamless integration.
Services can register Eventlet prototypes, Eventlet instances
can call services, or services can emit event streams that are
processed by Eventlet instances.

An Eventlet prototype has a simple structure and does not
introduce a new language. It provides a service-like abstraction
layer on top of pub/sub middleware. The developer only
has to provide three expressions to identify to which events
an Eventlet prototype applies and what the validity is. This
is sufficient for our Eventlet middleware to create Eventlet
instances. Further, developers implement four methods to
achieve reactive functionality and Eventlet lifecycle manage-
ment. This makes Eventlet instances suitable containers for
event stream application logic and provides a clear separation
between subscription logic and applications logic.

The modular design of the Eventlet infrastructure enables
easy distribution across multiple nodes. Our evaluation shows
that this distribution is necessary for scalability. We further
show that the overhead of distributing a traditional CEP appli-
cation by means of Eventlets is low while the development is
significantly simplified. Further, our Eventlet middleware can
be integrated with existing IT infrastructures easily since it is
built on top of a standard message-oriented middleware using
a common programming language. In general, Eventlets allow
developers to concentrate on specifying application logic and
leave administrative tasks to the middleware.

VIII. FUTURE WORK

While developing the Eventlet middleware and applying it
to different application domains we identified opportunities
for future research on the architecture and application level.
Future research on the architecture level addresses Eventlets
as technical software components. Driven by our involvement
in different research projects (see Section IX) one focus lies
in the area of enterprise software systems; we plan to integrate
the event-based functionality of Eventlets with existing enter-
prise software solutions. As described in our introduction, this
integration is the foundation for modern reactive applications
like Emergent Enterprise Software Systems [30].

Eventlet instances are self-contained; they receive events in-
dependently and thus have an intrinsic ability for distribution.

Currently, Eventlet instances are bound to the network node
of their creation. However, Eventlet instances could be moved
from one node to another, e.g., for load balancing. Eventlet
instances could be moved to their corresponding Eventlet
monitor, or to the producer of the events they react to. We are
working on metrics and strategies to make Eventlet instances
mobile during runtime. Finally, a user interface will be part
of our future work to allow an easy management, monitoring,
and deployment of Eventlets.

On the application level, future research is related to the
data Eventlets receive and process. Eventlets can be used to
process sensitive data, e.g., patient data. It is therefore nec-
essary to extend Eventlets with mechanisms to meet privacy
and security requirements. The event bus and the Eventlet
middleware have to ensure that events are not delivered to
unauthorized participants and that malicious event producers
can not publish potentially harmful events. An advantage of the
Eventlet approach is that Eventlet instances are independent.
Thus security mechanisms, e.g., certificates, can be integrated
per instance to ensure isolation between components.

Another direction of research is related to the instantiation
of Eventlets. Derived events or CEP expressions can be used
as static and instantiation expressions and the creation of new
Eventlet instances is triggered based upon the CEP result. We
have not yet specified this instantiation behavior in detail and
will address it in the future.

Event representation semantics is also important in future
work. Currently developers have to know event schemas to
define static and instantiation expression, and to access event
data. We avoid this requirement of global system knowledge
by adding a transformation layer to the middleware [31].
Transformations allow developers to combine different event
representations in a single Eventlet application.
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