
Resilience Benchmarking

Marco Vieira1, Henrique Madeira1, Kai Sachs2, and Samuel Kounev3

1 DEI/CISUC, University of Coimbra, 3030-290 Coimbra, Portugal
mvieira@dei.uc.pt, mvieira@dei.uc.pt

2 SAP AG, 69190 Walldorf, Germany
kai.sachs@sap.com

3 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
kounev@kit.edu

Abstract Computer benchmarks are standard tools that allow evaluat-
ing and comparing different systems or components according to specific
characteristics (performance, dependability, security, etc). Resilience en-
compasses all attributes of the quality of ‘working well in a changing
world that includes faults, failures, errors and attacks’. This way, re-
silience benchmarking merges concepts from performance, dependability,
and security. This chapter presents an overview on the state-of-the-art
on benchmarking performance, dependability and security. The goal is
to identify the existing approaches, techniques and problems relevant to
the resilience-benchmarking problem.

1 Introduction

Benchmarks are standard tools that allow evaluating and comparing different
systems or components according to specific characteristics such as performance,
dependability, and security. While historical benchmarks were only a few hun-
dreds lines long, modern benchmarks are composed of hundreds of thousands
or millions of lines of code. Compared to traditional software, the benchmark
development process has different goals and challenges. Unfortunately, even if
an enormous number of benchmarks exist, only a few contributions focusing on
the benchmark concepts and development process were published.

The best-known publication on benchmarking is Gray’s The Benchmark
Handbook [26]. Besides a detailed description of several benchmarks, the author
discusses the need for domain specific benchmarks and defines four important
criteria, which a domain-specific benchmark has to fulfill:

– Relevance: the benchmark result has to measure the performance of the
typical operation within the problem domain.

– Portability: it should be easy to implement on many different systems and
architectures.

– Scalability: it should be scalable to cover small and large systems.
– Simplicity: the benchmark should be understandable to avoid lack of credi-

bility.



Another work dealing with the criteria that a benchmark should fulfill is [27].
The questions, what a ’good’ benchmark should look like and which aspects
should be kept in mind from the beginning of the development process, are
discussed in detail and five key criteria are presented:

– Relevance: the benchmark has to reflect something important.
– Repeatable: the benchmark result can be reproduced by rerunning the bench-

mark under similar conditions with the same result.
– Fair & Portable: All systems compared can participate equally (e.g., porta-

bility, ’fair’ design).
– Verifiable: There has to be confidence that documented results are real. This

can, e.g., be assured by reviewing results by external auditors.
– Economical: The cost of running the benchmark should be affordable.

The work on performance benchmarking has started long ago. Ranging from
simple benchmarks that target a very specific hardware system or component to
very complex benchmarks focusing on complex systems (e.g., database manage-
ment systems, operating systems), performance benchmarks have contributed
to improve successive generations of systems. Research on dependability bench-
marking has been boosted in the beginning of the millennium, having already led
to the proposal of several dependability benchmarks. Several works have been
carried out by different groups and following different approaches (e.g., exper-
imental, modeling, fault injection). Due to the increasing relevance of security
aspects, security benchmarking is becoming an important research field.

Resilience encompasses all attributes of the quality of ‘working well in a
changing world that includes faults, failures, errors and attacks’ [1]. This way,
resilience benchmarking merges concepts from performance, dependability, and
security benchmarking. In practice, resilience benchmarking faces challenges re-
lated to the integration of these three concepts and to the adaptive characteristics
of the systems under benchmarking. This chapter overviews the state-of-the-art
on benchmarking performance, dependability and security, identifying the cur-
rent approaches, techniques and problems relevant to the resilience benchmark-
ing problem.

The outline of this chapter is as follows. The next section introduces the con-
cept of performance benchmarking. Section 3 focuses on dependability bench-
marking and presents existing research work. Section 4 introduces the security
benchmarking problem. Section 5 discusses the current needs and challenges on
resilience benchmarking. An overview of further research trends is provided in
Section 6. Finally, Section 7 concludes the chapter and puts forward a potential
research path to accomplish existing resilience benchmarking challenges.

2 Performance Benchmarking

Performance benchmarks are standard procedures and tools aiming at evaluat-
ing and comparing different systems or components in a specific domain (e.g.,
databases, operating systems, hardware, etc.) according to specific performance



measures. Standardization organizations such as the SPEC (Standard Perfor-
mance Evaluation Corporation) and the TPC (Transaction Processing Perfor-
mance Council) use internal guidelines covering the development process of such
benchmarks. A short summary of the keypoints of the SPEC Benchmark De-
velopment Process is provided in [38]. However, these guidelines mostly cover
formal requirements, e.g., design of run rules and result submission guidelines,
not the benchmark development process itself.

In general, a performance benchmark must fulfill the following fundamental
requirements to be useful and reliable [37,46,47]:

– It must be based on a workload representative of real-world applications.
– It must exercise all critical services provided by platforms.
– It must not be tuned/optimized for a specific product.
– It must generate reproducible results.
– It must not have any inherent scalability limitations

The major goal of a performance benchmark is to provide a standard work-
load and metrics for measuring and evaluating the performance and scalabil-
ity of a certain platform. In addition, the benchmark should provide a flexible
framework for performance analysis. To achieve this goal, the workload must
be designed to meet a number of workload requirements that can be grouped
according to the following five categories [46]:

1. Representativeness
2. Comprehensiveness
3. Focus
4. Configurability
5. Scalability

Representativeness No matter how well a benchmark is designed, it would
be of little value if the workload it is based on does not reflect the way plat-
form services are exercised in real-life systems. Therefore, the most important
requirement for a benchmark is that it is based on a representative workload
scenario including a representative set of interactions. The scenario should rep-
resent a typical transaction mix. The goal is to allow users to relate the observed
behavior to their own applications and environments.

Comprehensiveness Another important requirement is that the workload is
comprehensive in that it exercises all platform features typically used in the ma-
jor classes of applications. The features and services stressed should be weighted
according to their usage in real-life systems. There is no need to cover features
of the platforms that are used very rarely in practice.

Focus The workload should be focused on measuring the performance and
scalability of the platform under test. It should minimize the impact of other
components and services that are typically used in the chosen application sce-
nario.



Configurability In addition to providing standard workloads and metrics, a
benchmark aims to provide a flexible performance analysis framework which
allows users to configure and customize the workload according to their require-
ments. Many users will be interested in using a benchmark to tune and optimize
their platforms or to analyze the performance of certain specific features. Others
could use the benchmark for research purposes in academic environments where,
for example, one might be interested in evaluating the performance and scalabil-
ity of novel methods and techniques for building high-performance servers. All
these usage scenarios require that the benchmark framework allows the user to
precisely configure the workload and transaction mix to be generated. This con-
figurability is a challenge because it requires that interactions are designed and
implemented in such a way that one could run them in different combinations
depending on the desired workload mix. The ability to switch interactions off
implies that interactions should be decoupled from one another. On the other
hand, it should be ensured that the benchmark, when run in its standard mode,
behaves as if the interactions were interrelated according to their dependencies
in the real-life application scenario.

Scalability Scalability should be supported in a manner that preserves the
relation to the real-life business scenario modeled. In addition, the user should
be offered the possibility to scale the workload in an arbitrary manner by defining
an own set of scaling points.

2.1 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) is one of the lead-
ing standardization bodies for benchmarks. While the most known benchmarks
published by SPEC are the SPEC CPU series for the performance evaluation
of CPUs, SPEC published benchmarks in many other areas, such as High Per-
formance Computing, Java or Graphical Applications. Inside the SPEC, four
groups exist [52]:

– Open Systems Group (OSG) focuses on benchmarks for desktop systems,
high-end workstations and servers running open systems environments.
Example benchmarks: SPEC CPU2006 (CPU performance), SPECjms2007
(message-oriented middleware benchmark, SPECpower ssj2008 (power and
performance benchmark), SPECvirt sc2010 (virtualization benchmark) and
SPECjEnterprise2010 (JavaEE benchmark).

– High-Performance Group (HPG) published a suite of benchmarks that repre-
sent high-performance computing applications for standardized, cross-platform
performance evaluation.
Example benchmarks: OMPM2001 / OMPL2001 (benchmarks for OpenMP
applications and shared-memory systems) and MPIM2001 / MPIL2001 (bench-
marks focusing on Message-Passing Interface (MPI) across a wide range of
cluster and SMP hardware)



– Graphics and Workstation Performance Group (GWPG) develops graphics
and workstation performance benchmarks.
Example benchmarks: SPECapc benchmark series (addresses graphics and
workstation performance evaluation based on actual software applications)
and SPECviewperf 11

– Research Group (SPEC RG) promotes research on benchmarking method-
ologies and tools facilitating the development of benchmark suites and per-
formance analysis frameworks for established and newly emerging technology
domains.

2.2 TPC Benchmarks

The benchmarks of the Transaction Processing Performance Council (TPC) be-
came the de-facto standard in the database area [54]. Currently the TPC has
three active benchmarks, two in the area of transaction processing (TPC-E
/ TPC-C) and one for benchmarking decision support. Their currently active
benchmarks are based on a static workload mix. Additionally, TPC published
the TPC-Energy Specification, which contains the rules and methodology for
measuring and reporting an energy metric in TPC Benchmarks. It is impor-
tant to note that, unlike SPEC, TPC does not provide implementations of its
benchmarks. A TPC benchmark is essentially a specification that defines an ap-
plication and a set of requirements on the workload that has to be run. The
user is expected to implement the benchmark application and workload on the
platform to be tested.

Further, TPC has released two benchmarks that can be used for benchmark-
ing enterprise software systems. The first one is the TPC Benchmark W (TPC-
W) [56], which has been available since 2000. The second one is the TPC Bench-
mark App (TPC-App) [55], which was released in December, 2004. However,
both of these benchmarks are obsolete and there is no active benchmark for
enterprise software systems.

2.3 EEMBC Benchmarks

The Embedded Microprocessor Benchmark Consortium (EEMBC) is develop-
ing performance benchmarks for the hardware and software used in embedded
systems [25]. EEMBC microprocessor benchmark suites are targeting telecom-
munications, networking, digital media, Java, automotive/industrial, consumer,
and office equipment products. Further, an additional suite that allows users
to observe the energy consumed by the processor when performing these algo-
rithms and applications exists. EEMBC also has a series of multicore-specific
benchmarks that span multiple application areas.

2.4 Other Performance Benchmarks

Besides industry-standard benchmarks, numerous proprietary performance bench-
marks for all kinds of systems have been developed and used in the industry and



research. Due to the lack of space and the high number (e.g., we are aware
of more than 15 benchmarks and performance tests suits for message-oriented
middleware [46]) we will not discuss them here in detail.

3 Dependability Benchmarking

The notion of dependability and its terminology have been established by the In-
ternational Federation for Information Processing (IFIP) Working Group 10.4.
IFIP WG 10.4 defines dependability as ’the trustworthiness of a computing sys-
tem which allows reliance to be justifiably placed on the service it delivers’. De-
pendability is an integrative concept that includes the following attributes [28]:
availability (readiness for correct service), reliability (continuity of correct ser-
vice), safety (absence of catastrophic consequences on the user(s) and the en-
vironment), confidentiality (absence of unauthorized disclosure of information),
integrity (absence of improper system state alterations), and maintainability
(ability to undergo repairs and modifications).

A dependability benchmark can be defined as a specification of a standard
procedure to assess dependability-related measures of a computer system or
computer component. The main components of a dependability benchmark are:
measures (characterize the performance and dependability of the system), work-
load (work that the system must perform during the benchmark run), faultload
(set of faults that emulate real faults experienced in the field), and benchmark
procedure and rules (description of the procedures and rules that must be fol-
lowed to run the benchmark).

Two classes of measures can be considered when assessing dependability at-
tributes:

– Conditional measures: measures that characterize the system in a relative
fashion (i.e., measures that are directly related to the conditions disclosed in
the benchmark report) and are mainly meant to compare alternative systems
(e.g., response time, throughput, up-time, recovery time).

– Unconditional measures on dependability attributes: measures that charac-
terize the system in a global fashion taking into account the occurrence of
the various events impacting its behavior (i.e., reliability, availability, main-
tainability, safety, etc.) [28].

The conditional measures are directly obtained as results of the benchmark
experiments. The unconditional measures on dependability attributes have to
be calculated using modeling techniques with the help of external data, such as
fault rates, MTBF, etc. This external data could be provided from field data
or based on past experience considering similar systems. However, models of
complex systems may be very difficult to define and the external data difficult
to obtain.

Dependability benchmarks typically focus on direct measures (conditional
measures), following the traditional benchmarking philosophy based on a pure
experimental approach. These measures are related to the conditions disclosed in



the benchmark report and can be used for comparison or for system/component
improvement and tuning. This is similar to what happens with performance
benchmark results, as the performance measures do not represent an absolute
measure of system performance and cannot be used for capacity planning or to
predict the actual performance of the system in field.

The faultload represents a set of faults that emulates real faults experienced
by systems in the field. Among the main components needed to define a bench-
mark, the faultload is clearly the most complex one due to the nature of faults.
A faultload can be based on three major classes of faults:

– Operator faults: operator faults are human mistakes. The great complexity
of administration tasks in some systems and the need of tuning and ad-
ministration in a daily basis, clearly explains why human faults (i.e., wrong
human actions) should be considered in a dependability benchmark.

– Software faults: software faults (i.e., program defects or bugs) are recognized
as an important source of system outages, and given the huge complexity of
today’s software the weight of software faults tends to increase.

– Hardware faults: includes traditional hardware faults, such as bit-flips and
stuck-at, and high-level hardware failures, such as hard disk failures or fail-
ures of the interconnection network. Hardware faults are especially relevant
in systems prone to electrical interferences.

Concerning the definition of the workload, the job is considerably simpli-
fied by the existence of workloads from performance benchmarks. Obviously,
these already established workloads are the natural choice for a dependability
benchmark. However, when adopting an existing workload some changes may
be required in order to target specific system features. An important aspect to
keep in mind when choosing a workload is that the goal is not only to evaluate
the performance but also assess specific dependability features.

The procedures and rules define the correct steps to run a benchmark and
obtain the measures. These rules are, of course, dependent on the specific bench-
mark but the following points give some guidelines on specific aspects needed in
most of the cases:

– Procedures for ’translating’ the workload and faultload defined in the bench-
mark specification into the actual workload and faultload that will apply to
the system.

– Uniform conditions to build the setup and run the dependability benchmark.

– Rules related to the collection of the experimental results.

– Rules for the production of the final measures from the direct experimental
results.

– Scaling rules to adapt the same benchmark to systems of very different sizes.

– System configuration disclosures required for interpreting the benchmark
results.

– Rules to avoid optimistic or biased results.



The awareness of the importance of dependability benchmarks has increased
in the recent years and dependability benchmarking is currently the subject
of strong research. The following subsections present the recent advances on
dependability benchmarking, both at universities and computer industry sites.

3.1 Special Interest Group on Dependability Benchmarking
(SIGDeB)

The Special Interest Group on Dependability Benchmarking (SIGDeB) was cre-
ated by the International Federation for Information Processing (IFIP) Working
Group 10.4 in 1999 to promote the research, practice, and adoption of bench-
marks for computer-related systems dependability. The work carried out in the
context of the SIGDeB is particularly relevant and merges contributions from
both industry and academia.

A preliminary proposal issued by the SIGDeB was in the form of a set of stan-
dardized classes for characterizing the dependability of computer systems [18].
The goal of the proposed classification was to allow the comparison among com-
puter systems concerning four different dimensions: availability, data integrity,
disaster recovery, and security. The authors have specifically developed the de-
tails of the proposal for transaction processing applications. This work proposes
that the evaluation of a system should be done by answering a set of standardized
questions or performing tests that validate the evaluation criteria.

A very relevant effort in the context of SIGDeB is a book on dependability
benchmarking of computer systems [34]. This book presents several relevant
benchmarking initiatives carried out by different organizations, ranging from
academia to large industrial companies.

3.2 DBench Project

The DBench project was funded by the European Commission, under the In-
formation Society Technologies Programme (IST), Fifth Framework Programme
(FP5). The main goal of DBench project was to devise benchmarks to evaluate
and compare the dependability of COTS and COTS-based systems, in embed-
ded, real time, and transactional systems. Several works on dependability bench-
marking have been carried out in the DBench project. The following subsections
summarize those works.

General purpose operating systems The works presented in [30–33] ad-
dress the problem of dependability benchmarking for general purpose operating
systems (OS), focusing mainly on the robustness of the OS (in particular of the
OS kernel) with respect to faulty applications.

The measures provided are: 1) OS robustness in the presence of faulty system
calls, 2) OS reaction time for faulty system calls and 3) OS restart time after the
activation of faulty system calls. Three workloads are considered: 1) a realistic



application that implements the experiments control system of the TPC-C per-
formance benchmark [57]. 2) the PostMark [35] file system performance bench-
mark for operating systems and 3) the Java Virtual Machine (JVM) middleware.
The faultload is based on the corruption of systems call parameters.

Another research work on the practical characterization of operating systems
behaviour in the presence of software faults in OS components is presented in
[20]. The methodology used is based on the emulation of software faults in device
drivers and the observation of the behaviour of the overall system regarding a
comprehensive set of failure modes analyzed according to different dimensions
related to different user perspectives.

Real time kernels in onboard space systems The work presented in [43]
is a preliminary proposal of a dependability benchmark for real time kernels for
onboard space systems. This benchmark, called DBench-RTK, focuses mainly
on the assessment of the predictability of response time of service calls in a
Real-Time Kernel (RTK).

The DBench-RTK dependability benchmark provides a single measure that
represents the predictability of response time of the service calls of RTKs used in
space domain systems. The workload consists in an Onboard Scheduler (OBS)
process based on a functional model derived from the Packet Utilization Stan-
dard [50]. The faultload consists of a set of faults that are injected into kernel
functions calls at the parameter level by corrupting parameter values.

Engine control applications in automotive systems The work presented
in [45] represents a preliminary proposal of a dependability benchmark for engine
control applications for automotive systems. This benchmark focuses on the
robustness of the control applications running inside the Electronic Control Units
(ECU) with respect to transient hardware faults.

This dependability benchmark provides a set of measures that allows the
comparison of the safety of different engine control systems. The workload is
based on the standards used in Europe for the emission certification of light
duty vehicles [23]. The faultload consists of transient hardware faults that affect
the cells of the memory holding the software used in the engine control.

On-line transaction processing systems The DBench-OLTP dependability
benchmark [59,60] is a dependability benchmark for on-line transaction process-
ing systems. The DBench-OLTP measures are divided in three groups: baseline
performance measures, performance measures in the presence of the faultload,
and dependability measures. The DBench-OLTP benchmark can be used con-
sidering three different faultloads each one based on a different class of faults,
namely: operator faults, software faults and high-level hardware failures.

In [12] it is presented a preliminary proposal of another dependability bench-
mark for on-line transaction processing systems. The measures provided by this
dependability benchmark are the system availability and the total cost of failures.



These measures are based on both measurements obtained from experimenta-
tion (e.g., percentages of the various failure modes) and external data (e.g., the
failure rates and the repair rates). The external data used to calculate the mea-
sures must be provided by the benchmark user. The workload was adopted from
the TPC-C performance benchmark [57] and the faultload includes exclusively
hardware faults, such as faults in the storage hardware and in the network.

Web-servers The work presented in [22] proposes a dependability benchmark
for web-servers (the WEB-DB dependability benchmark). This dependability
benchmark uses the basic experimental setup, the workload, and the performance
measures specified in the SPECWeb99 performance benchmark [51].

The measures reported by WEB-DB are grouped into three categories: base-
line performance measures, performance measures in the presence of the fault-
load, and dependability measures. The WEB-DB benchmark uses two different
faultloads: one based on software faults that emulate realistic software defects
(see [21]) and another based on operational faults that emulate the effects of
hardware and operator faults.

3.3 Berkeley University

The work developed at Berkeley University has highly contributed to the progress
of research on dependability benchmarking in the last few years, principally on
what concerns benchmarking the dependability of human-assisted recovery pro-
cesses.

A general methodology for benchmarking the availability of computer sys-
tems is introduced in [10]. The workload and performance measures are adopted
from existing performance benchmarks and the measure of availability of the
system under test is defined in terms of the service provided by the system.
The faultload (called fault workload by the authors) may be composed of a
single-fault (single-fault workload) or of several faults (multi-fault workload).

The work presented in [11] addresses human error as an important aspect in
system dependability, and proposes that human behaviour must be considered
in dependability benchmarks and system designs.

A technique to develop dependability benchmarks that capture the impact
of human operators on the tested system is proposed in [9]. The workload and
measures are adopted from existing performance benchmarks and the depend-
ability of the system can be characterized by examining how the performance
measures deviate from their normal values as the system is perturbed by injected
faults. In addition to faults injected using traditional fault injection, perturba-
tions are generated by actions of human operators that actually participate in
the benchmarking procedure.

In [7] are presented the first steps towards the development of a dependability
benchmark for human assisted recovery processes and tools. This work proposes
a methodology to evaluate human-assisted failure recovery tools and processes in



server systems. This methodology can be used to both quantify the dependabil-
ity of single recovery systems and compare different recovery approaches, and
combines dependability benchmarking with human user studies.

3.4 Carnegie Mellon University

Vajra [44] is a research project whose goal is benchmarking the survivability
in distributed systems, focusing on the objective and quantitative comparison
of the runtime implementations of different Byzantine fault-tolerant distributed
systems. The benchmark uses as the point of injection APIs that are common
across various Byzantine fault-tolerant systems. A variety of accidental and ma-
licious faults are injected at various rates across the system.

Although not resulting in a formal benchmark proposal, the research on ro-
bustness testing developed at the Carnegie Mellon University [36] has effectively
set the basis for robustness benchmarks of operating systems. This will be further
discussed in Chapter ?, which includes a survey on robustness testing techniques.

3.5 Sun Microsystems

Research at Sun Microsystems has defined a high-level framework [62] specifi-
cally dedicated to availability benchmarking of computer systems. The proposed
framework follows a hierarchical approach that decomposes availability into three
key components: fault/maintenance rate, robustness, and recovery. The goal was
to develop a suite of benchmarks, each one measuring an aspect of the availability
of the system. Within the framework proposed by [62], two specific benchmarks
have already been developed.

In [63] is proposed a benchmark for measuring a system’s robustness (degree
of protection that exists in a system against outage events) in handling main-
tenance events, such as the replacement of a failed hardware component or the
installation of a software patch.

In [41] is proposed a benchmark for measuring system recovery in a non-
clustered standalone system. This benchmark measures three specific system
events; clean system shutdown (provides a baseline metric), clean system boot-
strap (corresponds to rebooting a system following a clean shutdown), and a
system reboot after a fatal fault event (provides a metric that represents the
time between the injection of a fault and the moment when the system returns
to a useful state).

Another effort at Sun Microsystems are the Analytical RAS Benchmarks
[24], which consists of three analytical benchmarks that examine the Reliability,
Availability, and Serviceability (RAS) characteristics of computer systems:

– The Fault Robustness Benchmark (FRB-A) allows assessing and comparing
the techniques used to enhance resiliency, including redundancy and auto-
matic fault correction.

– The Maintenance Robustness Benchmark (MRB-A) assesses how mainte-
nance activities affect the ability of the system to provide a continuous ser-
vice.



– The Service Complexity Benchmark (SCB-A) examines the complexity of
mechanical components replacement.

3.6 Intel Corporation

Work at Intel Corporation has focused on benchmarking semiconductor technol-
ogy. The work presented in [16] shows the impact of semiconductor technology
scaling on neutron induced SER (soft error rate) and presents an experimen-
tal methodology and results of accelerated measurements carried out on Intel
Itanium¨ microprocessors. The proposed approach can be used as a dependabil-
ity benchmarking tool and does not require proprietary information about the
microprocessor under benchmarking.

Another study [15] presents a set of benchmarks that rely on environmental
test tools to benchmark undetected computational errors, also known as silent
data corruption (SDC). In this work, a temperature and voltage operating test
(known as the four corners test) is performed on several prototype systems.

3.7 IBM Autonomic Computing Initiative

At IBM, the Autonomic Computing initiative developed benchmarks to quantify
a system’s level of autonomic capability, which is defined as the capacity of the
system to react autonomously to problems and changes in the environment.
The goal was to produce a suite of benchmarks covering the four categories
of autonomic capabilities: self-configuration, self-healing, self-optimization, and
self-protection.

The first steps towards a benchmark for autonomic computing are described
in [40]. The benchmark addresses the four attributes of autonomic computing
and is able to test systems at different levels of autonomic maturity.

The work presented in [8] identifies the challenges and pitfalls that must be
taken into account in the development of benchmarks for autonomic computing
capabilities. This paper proposes the use of the workload and driver system from
performance benchmarks and the introduction of changes into benchmarking
environment in order to characterize a given autonomic capability of the system.
The paper proposes that autonomic benchmarks must quantify the level of the
response, the quality of the response, the impact of the response on the users,
and the cost of any extra resources needed to support the autonomic response.

4 Security Benchmarking

Theoretically, a security benchmark provides a metric (or small set of metrics)
able to characterize the degree to which security goals are met in a given piece
of code [29], allowing developers and administrators to make informed decisions.
However, one of the biggest difficulties in designing such metric is related to
the fact that security assessment is, usually, much more dependent on what



is unknown about the applications (e.g. unknown bugs, hidden vulnerabilities)
than by what is known (e.g., known features, existing security mechanisms).

Security metrics are hard to define and compute [53] because they involve
making isolated estimations about the ability of an unknown individual (e.g.,
a hacker) to discover and maliciously exploit an unknown system characteris-
tic (e.g., a vulnerability). A feasible alternative is to assume that such metrics
can be obtained using information about the system itself, without taking into
account external factors. In fact, a security benchmark based on such metrics
would allow characterizing the degree to which security goals are met in a given
web application or component. In practice, due to the difficulties of quantify-
ing security, most works on security benchmarking are based on analysis and
qualification of configurations/systems.

Several security evaluation methods have been proposed in the past [13, 14,
19,48]. The Orange Book [19] and the Common Criteria for Information Technol-
ogy Security Evaluation [14] define a set of generic rules that allow developers to
specify the security attributes of their products and evaluators to verify if prod-
ucts actually meet their claims. Another example is the red team strategy [48],
which consists of a group of experts trying to hack its own computer systems
to evaluate security. However, none of these security evaluation approaches is
oriented towards security benchmarking, as comparing security has been largely
absent from these security evaluation methods.

The work presented in [42] addresses the problem of determining, in a thor-
ough and consistent way, the reliability and accuracy of anomaly detectors. This
work addresses some key aspects that must be taken into consideration when
benchmarking the performance of anomaly detection in the cyber-domain.

The set of security configuration benchmarks created by the Center for Inter-
net Security (CIS) is a very interesting initiative. CIS is a non-profit organization
formed by several well-known academic, commercial, and governmental entities
that has created a series of security configuration documents for several commer-
cial and open source systems. These documents focus on the practical aspects of
the configuration of these systems and state the concrete values each configura-
tion option should have in order to enhance overall security of real installations.
Although CIS refers to these documents as benchmarks they mainly reflect best
practices and are not explicitly designed for systems assessment or comparison.

A practical way to characterize the security mechanisms in database systems
is proposed in [61]. In this approach database management systems (DBMS) are
classified according to a set of security classes ranging from Class 0 to Class 5
(from the worst to the best). Systems are classified in a given class according
to the security requirements satisfied. In [2] the authors analyze the security
best practices behind the many configuration options available in several well-
known DBMS. These security best practices are then generalized and used to
define a set of configuration tests that can be used to compare different database
installations. An improved set of best practices is then used in [5] to benchmark
the security of database servers configurations.



A benchmark that allows database administrators to assess and compare
database configurations is presented in [3]. The benchmark provides a trust-
based security metric, named minimum untrustworthiness, that expresses the
minimum level of distrust the DBA should have in a given configuration regard-
ing its ability to prevent attacks. The use of trust-based metrics as an alternative
to security measurement is discussed in [4].

5 Resilience Benchmarking

A resilience benchmark should provide generic ways for characterizing a system
behavior in the presence of perturbations. If a system is effective and efficient
in accommodating or adjusting to perturbations, avoiding failures as much as
possible, it is reasonable to consider it as being resilient. This capability can be
benchmarked by submitting the system to various types of perturbations and by
observing the failures (and their frequency), as well as time and resources ded-
icated to avoid/recover from them. Still, the perturbations that the system has
to face may lead to performance and dependability attributes degradation with-
out leading necessarily to catastrophic system failures. Thus, we need to assess
variations of the properties of interest (e.g., performance, availability, integrity)
when the system is under varying context conditions, in order to characterize its
behavior from a resilience perspective.

Evaluating resilience must consider the system and environment dynamics
that are beyond those typically addressed in the evaluation of performance and
dependability. While maintaining similar workloads, dependability benchmarks
enhanced performance benchmarks by introducing a faultload and dependability
metrics, which include performance metrics under faulty conditions. A resilience
benchmark must comprise a more wide-ranging set of perturbations, which will
certainly include (but will be not limited to) faults. For instance, variations on
the workload or in system parameters should be part of those perturbations.
New metrics for characterizing resilience are also needed, although some will
naturally be based on measures of performance and dependability while facing
changes.

In practice, resilience benchmarking includes performance, dependability, and
security aspects, and aims at providing generic, repeatable and widely accepted
methods for characterizing and quantifying the system (or component) behavior
in the presence of faults, and comparing alternative solutions [34]. Although
many works have been conducted in the area of performance and dependability
benchmarking, it is clear that many key issues must be addressed towards the
definition of concrete resilience benchmarks, which, theoretically, should include
the following main components:

– Benchmarking metrics: the benchmark metrics should allow characterizing
and quantifying the system behavior when facing perturbations (i.e., faults,
attacks, and operational environment variations). At first sight, resilience
benchmarking metrics must characterize performance, dependability and se-
curity.



– Workload: during the benchmark execution, the system under test must be
submitted to a representative set of tasks, which should be as close to real
conditions as possible. An important aspect is that a workload cannot be
static and must exercise the resilience capabilities of the system, as the real
conditions would.

– Perturbations-load: a system may be subjected to distinct types of pertur-
bations during its operation, and a benchmark must try to emulate those as
realistically as possible. These perturbations may be of three different types:
faults, attacks, and perturbations related to system’s maintenance.

In the context of the AMBER Coordination Action, funded by the European
Union under the Seventh Framework Programme, a set of research needs related
to resilience benchmarking have been identified, namely (see details at [1]):

1. Agreed, cost effective, easy to use, fast and representative enough depend-
ability benchmarks for well defined domains.

2. Benchmark frameworks (components and tools) able to be reused to create
benchmarks in different benchmarking domains.

3. Inclusion of adequate design methodologies to facilitate benchmark imple-
mentation and configuration in future components, systems, and infrastruc-
tures.

4. Uniform (standardized) benchmarking process that can be applied by in-
dependent organizations to offer certification of the dependability of COTS
products (like in the case of standards compliance testing).

These needs raise a set of research challenges that have to be addressed in
order to be able to define a (resilience) benchmark, namely (see [1] for details):

1. Defining benchmark domains (components, systems, application domains)
in order to divide the problem space in adequate/tractable segments.

2. Defining key benchmark elements such as measures, workload, faultload,
models, to ensure the necessary properties (e.g., representativeness, portabil-
ity, scalability, repeatability) that allow agreement on benchmark proposals.

3. Coping with highly complex, adaptable and evolving benchmark targets (com-
ponents, systems and services).

4. Coping with human factors in the definition and execution of benchmarks.

5. Assuring proper validation of dependability benchmarks in order to achieve
the necessary agreement to establish benchmarks. This implies the validation
of the different benchmark properties.

6. Assuring reusability of benchmark frameworks (components and tools) to
create benchmarks in different benchmarking domains.

7. Defining and agreeing on a domain-specific dependability benchmarking pro-
cess that can be accepted by the parties concerned (supplier, customer and
certifier) and can be adapted to different products in the domain (e.g., in a
product line).



6 Further Trends in Benchmarking Research

Besides resilience benchmarking we see some further research trends in the area
of benchmarking, which we discuss in this section.

6.1 Benchmark Engineering

While developing benchmarks, we faced a lack of methodology that describes how
to develop good and meaningful benchmarks. Since benchmark development has
turned into a complex team effort, there is a need for a development methodology
taking the specifics of benchmarks into account. Compared to traditional soft-
ware, the development process has different goals and challenges. New concepts
and processes are needed which address the whole development and life-cycle
management of benchmarks. We refer to them including benchmark methodol-
ogy and measurement techniques with the term Benchmark Engineering [46].
First work is already in progress. As example, SPEC is working on development
guidelines.

6.2 Benchmarking of Large Scale Systems

Large scale, highly distributed systems are increasingly used in mainstream ap-
plications. However, for these systems traditional benchmarking approaches fail:
how can we benchmark a system with 500,000 nodes? What does a typical work-
load look like and how does it scale? What should be the distribution of the
faultload? etc.

Since it is not feasible to run benchmarks in a realistic environment with
thousands of nodes, new methods are needed which allow us to benchmark large
scale systems in a realistic way on limited resources. As a consequence, we see a
need for research in the area of simulated benchmarks.

Similar questions are currently under discussion in several research areas.
In [39] the authors discuss requirements for peer-to-peer (P2P) benchmarking
and present two exemplary approaches to benchmark such systems. They point
out the challenges of developing P2P benchmarks compared to conventional
benchmarks.

A very active community can be found in the area of cloud benchmarking.
A discussion why traditional benchmarks are not sufficient for evaluating cloud
services can be found in [6]. The authors present some initial ideas how a cloud
benchmark should be designed including a list of requirements for such a bench-
mark. In [17] the Yahoo! Cloud Serving Benchmark (YCSB) framework was
introduced including a core set of benchmarks. YCSB targets cloud data serv-
ing services, allows to create new workloads and is extendible. Another example
is the Cloudstone benchmark, which consists of a social-events web application
(with PHP and Ruby implementations) and a set of automation tools for load
generation and performance measurement [49]. When running the benchmark,
the load is generated against the web application, which in turn generates load
on the underlying database.



There are still many open questions in the area of P2P and cloud bench-
marking. This is the reason, why the SPEC Research Group decided to launch
two subcommittees working on these topics.

6.3 Power Consumption

In the past, benchmarking focused mainly on computation performance. Since
industry and governments are increasingly concerned about the energy use of
servers, there is a need to reflect the power consumption in the result of a bench-
mark. The first standard benchmark providing a metrics, which represents com-
putation performance as well as energy consumption was the SPECpower ssj2008
benchmark. Nowadays, more and more benchmarks include energy consumption
in their result, such as SPEC or TPC benchmarks. Consequently, the SPEC is
working on the Server Efficiency Rating Tool (SERT), a tool set to measure and
evaluate the energy efficiency of computer servers [58].

A metric for power consumption has to reflect both, traditional performance
metrics in relation to the power consumption and not only peak performance is
of interest. However, energy consumption scenarios are only one example, where
traditional benchmark metrics fail or are hard to apply. A major challenge of
future benchmark development is the definition of meaningful metrics, which
take other aspect than performance and dependability into account (see also
Section 5).

7 Conclusion

This chapter presented the state-of-the-art on benchmarking. The work on per-
formance benchmarking has started long ago and has contributed to improve
successive generations of systems. Dependability benchmarking efforts both at
universities and computer industry sites are quite recent. Security is a newcomer
to the benchmarking world and little work has been performed so far.

Although performance benchmarking is a very well established field, further
work on dependability benchmarking seems to be necessary in several application
areas (e.g., real-time systems, grid computing, parallel systems, etc). Addition-
ally, no dependability benchmark has achieved the status of a real benchmark
endorsed by a standardization body. This may be due to several reasons (that
need to be studied) but clearly shows that additional work is still needed.

In the area of security benchmarking, a lot of work is clearly needed, as this
is a new and quite challenging field for which little work has been developed
so far. A key issue is the definition of useful and meaningful security metrics.
In fact, the problem of security quantification is a longstanding one. A useful
security metric must portray the degree to which security goals are met in a
given system, allowing a system administrator to make informed decisions. One
of the biggest difficulties in designing such a metric is related to the fact that
security is, usually, much more dependent on what is unknown about the system
than on what is known about it. In fact, security metrics are hard to define



and compute as they involve making isolated estimations about the ability of
an unknown individual (e.g., a hacker) to discover and maliciously exploit an
unknown system characteristic (e.g., a vulnerability).

To tackle the challenges related to the future implementation of resilience
benchmarks, the following research steps are foreseen:

1. Study the metrics that better characterize resilience.
2. Study the definition of dynamic workloads via field studies and analysis of

existing workloads.
3. Study the characterization of perturbation loads. This can be based on field

studies and on the analysis of already existing faultloads.
4. Define the steps needed for the execution of a resilience benchmark. These

steps define the benchmark procedure and should be as generic as possible
to allow the portability of the benchmarking approach.

5. Conduct benchmarking campaigns to demonstrate the benchmark and vali-
date its properties.

6. Generalize the resilience benchmarking approach to make possible its appli-
cation in different domains.

7. Disseminate the benchmarking approach. A key aspect is to identify the
best way to foster the adoption by industry and to facilitate the support by
a standardization body like TPC and SPEC.

8 Acknowledgements

The work of Marco Vieira and Henrique Madeira was partially funded by the Eu-
ropean Commission under project AMBER - Assessing, Measuring and Bench-
marking Resilience, IST - 216295, funded by the European Union, 2009.

The work of Samuel Kounev was partially funded by the German Research
Foundation (DFG) under grant No. KO 3445/6-1.

References

1. A. Bondavalli et al. Research Roadmap - Deliverable D3.2, AMBER - Assessing,
Measuring and Benchmarking Resilience, IST - 216295 funded by the European
Union, 2009. Technical report, 2009. http://amber-dbserver.dei.uc.pt:81/roadmap.

2. A. Araujo Neto and M. Vieira. Towards Assessing the Security of DBMS Con-
figurations. In Proceedings of the 2008 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2008), 2008.

3. A. Araujo Neto and M. Vieira. A Trust-Based Benchmark for DBMS Configura-
tionss. In Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2009), 2009.

4. A. Araujo Neto and M. Vieira. Benchmarking Untrustworthiness: An Alternative
to Security Measurement. International Journal of Dependable and Trustworthy
Information Systems, 1(2):32–54, 2010.

5. A. Araujo Neto, M. Vieira, and H. Madeira. An Appraisal to Assess the Security of
Database Configurations. In Proceedings of The Second International Conference
on Dependability (DSN 2009), 2009.



6. C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather tomor-
row?: towards a benchmark for the cloud. In Proceedings of the 2nd International
Workshop on Testing Database Systems, DBTest 2009, Providence, Rhode Island,
USA, June 29, 2009, 2009.

7. A. Brown, L. Chung, W. Kakes, C. Ling, and D. A. Patterson. Dependability
Benchmarking of Human-Assisted Recovery Processes. In Proceedings of the 2004
International Conference on Dependable Systems and Networks (DSN 2004), 2004.

8. A. Brown, J. Hellerstein, M. Hogstrom, T. Lau, S. Lightstone, P. Shum, and M. P.
Yost. Benchmarking Autonomic Capabilities: Promises and Pitfallss. In Proceed-
ings of the 1st International Conference on Autonomic Computing (ICAC 2004),
2004.

9. A. Brown, C. L.C., and D. A. Patterson. Including the Human Factor in Depend-
ability Benchmarks. In DSN 2002 Workshop on Dependability Benchmarking, 2002.

10. A. Brown and D. A. Patterson. Towards Availability Benchmarks: A Cases Study
of Software RAID Systems. In Proceedings of the 2000 USENIX Annual Technical
Conference, 2000.

11. A. Brown and D. A. Patterson. To Err is Human. In First Workshop on Evaluating
and Architecting System Dependability (EASY), 2001.

12. K. Buchacker, M. Dal Cin, H.-J. Hoxer, R. Karch, V. Sieh, and T. O. Repro-
ducible Dependability Benchmarking Experiments Based on Unambiguous Bench-
mark Setup Descriptions. In Proceedings of the IEEE/IFIP 2003 International
Conference on Dependable Systems and Networks (DSN 2003), 2003.

13. Commission of the European Communities. Information Technology Security Eval-
uation Manual (ITSEM), 1993.

14. Common Criteria. Common Criteria for Information Technology Security Evalua-
tion: User Guide, 1999.

15. C. Constantinescu. Dependability benchmarking using environmental tools. In
Proceedings of the Annual Reliability and Maintanability Symposium (RAMS 205),
2005.

16. C. Constantinescu. Neutron SER characterization of microprocessors. In Proceed-
ings of the 2005 International Conference on Dependable Systems and Networks
(DSN 2005), 2005.

17. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing (SoCC ’10), 2010.

18. D. Wilson, B. Murphy, and L. Spainhower. Progress on defining standardized
classes for comparing the dependability of computer systems. In Proceedings of the
DSN 2002 Workshop on Dependability Benchmarking, 2002.

19. Department of Defense. Trusted Computer System Evaluation Criteria, 1985.

20. J. Duraes and H. Madeira. Characterization of Operating Systems Behaviour in the
Presence of Faulty Drivers Through Software Fault Emulation. In Proceedings of
the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC
2002), 2002.

21. J. Duraes and H. Madeira. Generic faultloads based on software faults for de-
pendability benchmarking. In Proceedings of the IEEE/IFIP 2004 International
Conference on Dependable Systems and Networks (DSN 2004), 2004.

22. J. Duraes, M. Vieira, and H. Madeira. Dependability Benchmarking of Web-
Servers. In Proceedings of The 23rd International Conference on Computer Safety,
Reliability and Security (SAFECOMP 2004), 2004.



23. EEC Directive 90/C81/01. Emission Test Cycles for the Certifica-
tion of light duty vehicles in Europe, EEC Emission Cycles, 1999.
http://www.dieselnet.com/standards/cycles.

24. R. Elling, I. Pramanick, J. Mauro, W. Bryson, and D. Tang. Analytical RAS
Benchmarks, Dependability Benchmarking for Computer Systems. Wiley-IEEE
Computer Society Press, 2008.

25. Embedded Microprocessor Benchmark Consortium. EEMBC homepage, 2011.
http://www.eembc.org/home.php.

26. J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems
(2nd Edition). Morgan Kaufmann, 1993.

27. K. Huppler. The Art of Building a Good Benchmark. In First TPC Technology
Conference (TPCTC 2009), volume 5895 of Lecture Notes in Computer Science,
2009.

28. J.-C. Laprie. Dependable computing: Concepts, limits, challenges. In Proceedings
of the 25th International Symposium on Fault-Tolerant Computing (FTCS-25),
1995.

29. Jansen, W. Directions in Security Metrics Research - NISTIR 7564. Technical
report, 2009.

30. A. Kalakech, T. Jarboui, A. Arlat, Y. Crouzet, and K. Kanoun. Benchmarking
Operating Systems Dependability: Windows as a Case Study. In Proceedings of
the 2004 Pacific Rim International Symposium on Dependable Computing (PRDC
2004), 2004.

31. A. Kalakech, K. Kanoun, Y. Crouzet, and A. Arlat. Benchmarking the Depend-
ability of Windows NT, 2000 and XP. In Proceedings of the 2004 International
Conference on Dependable Systems and Networks (DSN 2004), 2004.

32. K. Kanoun and Y. Crouret. Dependability Benchmarking for Operating Systems.
International Journal of Performance Engineering, 2(3):275–287, 2006.

33. K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau. Benchmarking
the Dependability of Windows and Linux using Postmark workloads. In Proceedings
of the 16th International Symposium on Software Reliability Engineering (ISSRE
2005), 2005.

34. K. Kanoun and L. Spainhower, editors. Dependability Benchmarking for Computer
Systems. Wiley-IEEE Computer Society Press, 2008.

35. Katcher, J. PostMark: A New File System Benchmark, Network Appliance. Spec-
ification, 1997.

36. P. Koopman and J. DeVale. The Exception Handling Effectiveness of POSIX
Operating Systems. IEEE Transactions on Software Engineering, 26(9), 2000.

37. S. Kounev. Performance Engineering of Distributed Component-Based Systems
- Benchmarking, Modeling and Performance Prediction. PhD thesis, Technische
Universität Darmstadt, 2005.

38. K.-D. Lange. Identifying Shades of Green: The SPECpower Benchmarks. Com-
puter, 42(3):95–97, 2009.

39. M. Lehn, T. Triebel, C. Gross, D. Stingl, K. Saller, W. Effelsberg, A. Kovacevic, and
R. Steinmetz. From Active Data Management to Event-Based Systems and More,
volume 6462 of Lecture Notes in Computer Science, chapter Designing Benchmarks
for P2P Systems, pages 209–229. Springer, nov 2010.

40. S. Lightstone, J. Hellerstein, W. Tetzlaff, P. Janson, E. Lassettre, C. Norton, B. Ra-
jaraman, and L. Spainhower. Towards Benchmarking Autonomic Computing Ma-
turity. In Proceedings of the First IEEE Conference on Industrial Automatics
(INDIN 2003), 2003.



41. J. Mauro, J. Zhu, and I. Pramanick. The System Recovery Benchmark. In Proceed-
ings of the 2004 Pacific Rim International Symposium on Dependable Computing
(PRDC 2004), 2004.

42. R. Maxion and K. Tan. Benchmarking Anomaly-Based Detection Systems. In
Proceedings of the International Conference on Dependable Systems and Networks
(DSN 2000), 2000.

43. F. Moreira, R. Maia, D. Costa, N. Duro, P. Rodriguez-Dapena, and K. Hjortnaes.
Static and Dynamic Verification of Critical Software for Space Applications. In
Proceedings of the Data Systems In Aerospace (DASIA 2003), 2003.

44. Narasimhan, P. Vajra: Benchmarking Survivability in Distributed Systems. Tech-
nical report, 2008. http://www.cylab.cmu.edu/default.aspx?id=1990.

45. J.-C. Ruiz, P. Yuste, P. Gil, and L. Lemus. On Benchmarking the Dependability of
Automotive Engine Control Applications. In Proceedings of the IEEE/IFIP 2004
International Conference on Dependable Systems and Networks (DSN 2004), 2004.

46. K. Sachs. Performance Modeling and Benchmarking of Event-Based Systems. PhD
thesis, TU Darmstadt, 2010.

47. K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evaluation of
message-oriented middleware using the SPECjms2007 benchmark. Performance
Evaluation, 66(8):410–434, Aug 2009.

48. Sandia National Laboratories. Information Operations Red Team and
AssessmentsTM. http://www.sandia.gov/iorta/.

49. W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov,
S. Patil, O. Fox, and D. Patterson. Cloudstone: Multi-platform, multi-language
benchmark and measurement tools for web 2.0, 2008.

50. Space Engineering - Ground systems and operations. Telemetry and telecommand
packet utilization (ECSS-E-70-41A), 2003.

51. Standard Performance Evaluation Corporation (SPEC). SPECweb99 Release 1.02
Documentation. Specification, 2000. http://www.spec.org/web99/.

52. Standard Performance Evaluation Corporation (SPEC). Website, 2011.
53. M. Torgerson. Security Metrics for Communication Systems. In Proceedings of the

12TH ICCRTS, 2007.
54. Transaction Processing Performance Council. http://www.tpc.org/.
55. Transaction Processing Performance Council. TPC BenchmarkTM App (TPC-

App). Specification, Dec. 2004. http://www.tpc.org/tpc app/.
56. Transaction Processing Performance Council. TPC BenchmarkTM W (TPC-W).

Specification, 2004. http://www.tpc.org/tpcw/.
57. Transaction Processing Performance Council. TPC BenchmarkTM C (TPC-C).

Specification, 2010. http://www.tpc.org/tpcc/.
58. M. G. Tricker and K.-D. Lange. The Design and Development of SPEC’s Server Ef-

ficiency Rating Tool (SERT). In Proceedings of the 2nd ACM/SPEC International
Conference on Performance Engineering (ICPE’ 11), 2011.

59. M. Vieira and H. Madeira. A Dependability Benchmark for OLTP Application
Environments. In Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB 2003), 2003.

60. M. Vieira and H. Madeira. Benchmarking the Dependability of Different OLTP
Systems. In Proceedings of the IEEE/IFIP 2003 International Conference on De-
pendable Systems and Networks (DSN 2003), 2003.

61. M. Vieira and H. Madeira. Towards a security benchmark for Database Manage-
ment Systems. In Proceedings of the 2005 International Conference on Dependable
Systems and Networks (DSN 2005), 2005.



62. J. Zhu, J. Mauro, and I. Pramanick. R3 - A Framework for Availability Benchmark-
ing. In Proceedings of the IEEE/IFIP 2003 International Conference on Dependable
Systems and Networks (DSN 2003), 2003.

63. J. Zhu, J. Mauro, and I. Pramanick. Robustness Benchmarking for Hardware Main-
tenance Events. In Proceedings of the IEEE/IFIP 2003 International Conference
on Dependable Systems and Networks (DSN 2003), 2003.


