
Ludger Fiege,
Mariano Cilia, Gero Mühl,
and Alejandro Buchmann
Darmstadt University of Technology

Publish–Subscribe Grows Up
Support for Management,Visibility Control,
and Heterogeneity

Message-oriented middleware is used to decouple the operation of cooperating

applications. Existing approaches have concentrated mainly on scalability issues,

but dynamic business processes and the integration of a wide range of data sources

and applications require a middleware that is customizable. The Rebeca

publish–subscribe service uses scoping to structure both middleware and

applications. It thus offers advanced routing mechanisms to subsystems that need

high scalability and it allows for heterogeneous message models that are

transparently mapped onto each other.

Messaging systems have proven to
be an important building block in
modern computing systems — they

facilitate the paradigm shift from cen-
tralized applications and data stores
toward data-driven systems that com-
prise autonomously operating compo-
nents and services. Data management
and scalability in terms of sustainable
message throughput and reliability have
been major factors driving the develop-
ment of messaging services.

With the advent of radio frequency
identification (RFID) tags, the automation
of business processes continues to include
an ever-broader range of data sources.1

From low-level sensors to high-level
business objects, communication must
scale to span various levels of detail to
facilitate process automation. But when
boundaries are crossed, problems arise:

administrative boundaries raise manage-
ment and security issues; geographic
boundaries in large systems require scal-
able systems; and application boundaries
add heterogeneity of data models.

Researches have investigated scalabil-
ity in detail,2 whereas mostly ad hoc solu-
tions are available for the rest of these
problems.

In this article, we concentrate on
publish–subscribe services as a special
case of message-oriented middleware
(MOM)3 and on the resulting system
architectures (see Figure 1). With a pub-
lish–subscribe service, producers publish
notifications to inform about events
they have observed. The classic exam-
ples are stock quotations, weather news,
and load-monitoring events. Consumers
subscribe to notifications in which
they’re interested. For instance, a user

48 JANUARY • FEBRUARY 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

A
sy

nc
hr

on
ou

s
M

id
dl

ew
ar

e
an

d
Se

rv
ic

es

might be interested in weather news about Berlin
or might ask for notifications if CPU load
increases above 70 percent. The underlying pub-
lish–subscribe service delivers notifications to
consumers with matching subscriptions. The ser-
vice itself consists of a network of brokers that
convey and filter the notifications. Sometimes,
producers send advertisements to announce the
kinds of notifications they’re going to publish.
This simplifies the routing of notifications and
subscriptions.

On higher levels of abstraction, producers and
consumers, which are arbitrary software compo-
nents, are composed into applications that in turn
form a system of collaborating applications. Fig-
ure 1 sketches two applications that are composed
of producers and consumers (red lines), which
communicate with each other by sending notifica-
tions on network lines (green lines). The resulting
event-driven architecture is loosely coupled, easi-
ly adaptable, and facilitates scalable implementa-
tions of networked services.

These benefits can be exploited in large set-
tings, but the indirect communication also hides
system structure. A weakness of many existing
publish–subscribe systems is their inability to
structure and control communication without
impeding the desired loose coupling. Deployment,
orchestration, and management of these systems
is then mostly considered as an afterthought.

In this article, we introduce a scoping concept
for structuring publish–subscribe systems. It pro-
vides primitives to control the disseminated infor-
mation’s visibility, and it allows for the integration
of different messaging and routing implementations
(there is no one-size-fits-all solution). Based on an
analysis of application requirements, we introduce
scopes as a system engineering tool that provides
modularization and customizability in a
publish–subscribe middleware. Scopes are the basis
for handling security and management issues as
well as for improving scalability and dealing with
heterogeneity.

Application Requirements
Application requirements are changing; as the
speed at which business is conducted increases,
service-orientation and automation require faster
and deeper integration of business processes than
were possible in the past.

For instance, smart-item technology, such as
SAP’s Auto-ID infrastructure,1 links physical
goods, their movements, and their transport con-

ditions with business processes, all without human
interaction. The lessons learned from these pilot
projects are that cross-organizational cooperation
is necessary; different applications running on the
same infrastructure require different quality of ser-
vice (QoS); and current solutions still lack the full
support they need for distribution of functionali-
ty and data.

Smart-item technology is just one example.
Other application domains have similar require-
ments.4 But the common denominator is the
requirement for a networked IT infrastructure that
integrates data sources and drives functionality on
a global scale. Key requirements for such systems
typically go far beyond mere scalability issues.

Open Issues
Frequent changes of processes, collaboration part-
ners, and, thus, communication requirements have
an important impact on networked infrastructure.
A one-size-fits-all solution won’t sustain the full
range of processes that we outlined earlier. The
necessary federation of notification services and
applications is still a field of ongoing research.
Namely, we need support for management and
customization, heterogeneity, and security.

The core problem here is the lack of support
for managing federated notification services; thus,
the customization of the QoS provided to applica-
tions is insufficient. If a component is used in
multiple applications, its notifications could be
subject to different QoS constraints. To maintain

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 49

Publish–Subscribe Grows Up

Figure 1. Participants of a distributed event-based system. Producers
and consumers (red lines) communicate with each other by sending
notifications on network lines (green lines).

Pub–sub API

Broker network

Applications

Application
components

Border
broker

Inner broker

...Consumer

Producer

loose coupling, we don’t want producers to dis-
tinguish any destinations themselves — this would
impede deployment time and any future runtime
changes. Instead, the mediating infrastructure
must be aware of the participating applications —
that is, of the system’s structure. Once the com-
munication subsystem is aware of this structure,
we can provide differentiated services and recon-
figure the system without modifying producers
and consumers.

In loosely coupled systems, the exchanged data
must be able to interact and understand the data
beyond the closed confines of a single component
or application. That includes applications that
interact across traditional borders regardless of
economic, cultural, or linguistic differences (in the
simplest form, for example, systems of units, cur-
rency, or date/time format). Most existing MOMs
expose the messages’ data structure but not the
explicit semantics. They require that each produc-
er and consumer application share the same
homogeneous namespace. This reflects the low-
level support of current infrastructures for the inte-
gration of heterogeneous data.

Finally, security measures seem to contradict the
loose coupling of publish–subscribe functionality,
but they are essential in any but toy settings, such
as sandbox games. The rather limited support for
security is one reason that MOMs can’t fully offer
their benefits as open-integration platforms.

Scoping
To support system management tasks, we must
identify system parts — that is, administrative
domains on which the tasks operate.

Administrative domains must be delimited to
control and limit the effects of customization. On
the other hand, interaction between these domains
must be possible in a controlled way to prevent a
complete partitioning of the system.

Taken together, the fundamental problem is

visibility control, and to face it, we’ve introduced
the notion of scoping in event-based systems.

Scoping Model
The main idea of the scoping concept is to control
the visibility of notifications outside of applica-
tion components and orthogonal to their sub-
scriptions.5 A scope bundles a set of application
components and can contain other scopes. A
directed acyclic graph of simple and complex
components (scopes) gives the system’s resulting
structure (see Figure 2). This scope graph hierar-
chically structures publish–subscribe applications
and imposes visibility constraints.

Notifications’ visibility is initially limited to the
scope in which they’re published. The transition of
notifications between scopes is governed by scope
interfaces — that is, a scope issues subscriptions
and advertisements in order to act as a regular
producer and consumer in its superscopes. In Fig-
ure 2, scope R is the superscope of T and U, which
look like simple components within R. A scope’s
interface selects the internal notifications that are
forwarded to its superscopes; the external notifi-
cations are then relayed toward the scope’s sub-
components. For instance, in Figure 2, the
publish–subscribe service delivers a notification
that Z publishes to Y and to any other consumers
in T and U if their subscriptions match. This noti-
fication is also visible in R if it matches T or U’s
output interface, but it’s not visible in S.

Scoping isn’t an alternative to using estab-
lished organization schemes such as topics, types,
and filters. It controls visibility in addition and
orthogonal to these schemes. Individual compo-
nents still need to express their interests with sub-
scriptions of any kind.

Using Scopes
Obviously, we can use scopes to compose applica-
tions. Scopes offer a structuring mechanism, on both
the application and the infrastructure level (as we
will see later). They govern the communication with-
out intrusive changes to application components.

Using scopes is about creating and maintain-
ing the scope graph. We have created a scope
graph specification language that we use to model
scopes as well as deploy preconfigured scopes and
update them at runtime. The following example
defines a scope named temp containing
components of the existing scope world, plus
components A and B, in which the attribute has-
temp-sensor is set to one:

50 JANUARY • FEBRUARY 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Asynchronous Middleware and Services

Figure 2. An exemplary scope graph that structures a publish-
subscribe application. The scope graph hierarchically structures
publish–subscribe applications and imposes visibility constraints.

Scope

Simple component

Scope

Simple component

U

Scope interface

Scope membership

Y

S

R

X Z

T

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world), A, B
WHERE has-temp-sensor = 1

We now extend the definition, allowing the
components of temp to send only temperature
notifications, while temp itself forwards only alarm
notifications to its superscopes

DEFINE SCOPE temp AS
ALL FROM MEMBERS(world)
WHERE has-temp-sensor = 1 : {
INTERFACES OUTPUT(TempNotification),

INPUT(0)
}
INTERFACES OUTPUT(Alarm

Notification)

We can deploy such a scope in several super-
scopes S1, S2,… by

DEPLOY temp
SUPERSCOPE ALL FROM S1, S2,...

The deployment command might carry additional
implementation specific parameters.

Alternatively, programmers can access scoping
through an API at runtime. In addition to the plain
API functions (pub, sub), four new functions are
necessary for maintaining a scope graph: creating
and destroying scopes with cscope and dscope,
and joining and leaving an existing scope with
jscope and lscope.

Implementing Scopes
We now look to the distributed implementation of
scopes. This approach opens the black box of a
notification service and determines groups of bro-
kers that implement a specific scope, thus corre-
lating groups on the application and system levels.

Integrated routing reconciles distributed notifi-
cation routing with the visibility constraints that
the scope graph defines. Each broker’s original
routing table is divided into multiple tables, one
for each locally available scope. Thus, for each
scope, a connected subset of brokers constitutes an
overlay within the broker network that conveys
scope-internal traffic. Another routing table, the
scope routing table, records scope-link pairs in
each broker to signify in which directions we can
find brokers of the respective scope.

Upon scope creation, an initially empty rout-
ing table is created at a broker, together with any

management information regarding this scope,
such as interface definitions. A notification
announces the creation and distributes it through-
out the network to update the scope routing tables.
The overlay can either be extended manually by
administrative commands to preset a certain extent
of the overlay, or dynamically when other compo-
nents join the scope. Either way, a scope join
request is always issued at a broker that’s current-
ly not part of the overlay. A request travels in the
direction stored in the scope’s routing table, leav-
ing a temporary trail of references to the request
source. The first broker encountered that’s part of
the requested scope processes the request and
sends a reply back along the trail. If affirmative,
the reply contains management information need-
ed to set up the routing tables in the involved bro-
kers; they become part of the scope’s overlay.

The transition of notifications between two
scopes requires the two scope overlays to share at
least one broker. Consider scopes T and R of Fig-
ure 2; T is a component of and has joined R. For
each subscription of T, a respective entry gets
added to R’s routing table that points to T’s table.
For each advertisement, an entry is added in T’s
table that points to R. Mechanisms are in place to
prevent multiple transitions at different brokers,
but they are discussed here.

With this implementation, scopes not only
group clients of the publish–subscribe service on
the application level, but they’re also an important
tool for grouping brokers, thereby extending their
structuring capabilities to the infrastructure. They
determine which subset of brokers belongs to the
same grouping and even allow for different rout-
ing algorithms in separate overlays, as long as the
transition between the scopes adheres to the scope
graph’s constraints.

Data Heterogeneity
The exchanged notifications encapsulate data about
a given event of interest, which users and develop-
ers can properly interpret and use only when they
have sufficient context information. In traditional
systems, this context information is typically left
implicit and is normally lost when data crosses
component or institutional boundaries.

As we mentioned earlier, today’s MOM
(publish–subscribe) infrastructures don’t support
data integration aspects such as an explicit
descriptions of the intended meaning of notifica-
tion content (for example, the implicit assumptions
made by event/data producers). Without this kind

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 51

Publish–Subscribe Grows Up

of information, data producers and consumers are
expected to comply with implicit assumptions
made by participating software components or
applications. Even in the case of a very small set
of applications within an enterprise, this approach
is questionable.

When trying to tackle the problem of
data/event heterogeneity, we must consider two
main issues. The first concentrates on the vocab-
ulary that all participants share. The second relates
to the contextual information of applications that
produce and consume data.

Processing exchanged data in a semantically
meaningful way requires explicit information
about the semantics of events and data. Because a
scope groups participants who share commonali-
ties, we decided to enrich it with the association of
a vocabulary and the corresponding assumptions
(metadata) about the data that’s produced and con-
sumed within the scope in question. Vocabularies
(ontologies) represent the semantics, structure, and
relationships of the terms (concepts) in a given
business domain. Data assumptions (also known
as contextual information) are represented by a set
of properties and their values. Those properties
refer to concepts in a vocabulary, making this self-
containing. Additionally, vocabularies incorporate
conversion functions that make possible an auto-
matic data transformation between different con-
texts (for instance, date/time formats, systems of
units, and currency conversions).

Scopes explicitly support the association of
metadata about the notifications flowing within.
To be in the same scope implies a shared context.
For example, notifications sent by RFID readers
in a warehouse need not specify their origin as
long as they’re processed within the warehouse.
Additional information is necessary only when
notifications leave the shared context — in this
case, the warehouse. Generally, when messages
cross scope boundaries, we might need to add
information or map the terms used within one
scope into the terms used in the other. If they
share the same ontology but refer to different
contexts (such as metric and American units), the
conversion can occur automatically. If they use
different ontologies, the scope administrator
must manually specify the mapping of terms
because integrating ontologies is a very difficult
task. Once we solve the vocabulary problems, the
notifications exchanged across scopes can be
automatically transformed to the context of the
target scope with the conversion functions. This

approach greatly simplifies data integration
(even if using a single vocabulary) by moving
code related to integration from participating
applications into the infrastructure that orches-
trates their integration.

Security
The preceding discussion introduced scopes as a
means to group application and infrastructure
components. They are therefore an apparent place
to implement groups of trust — that is, those whose
members, belong to the same authentication
domain.6 To establish trust relationships in scopes,
we have to deal with client access control and with
securing the networked infrastructure itself.

In many scenarios, access to the publish–
subscribe service must be controlled on the sub-
scriptions and publications level. Only authorized
clients should have access to the network of brokers
to publish and subscribe to authorized notifications.

Our prototype implementation, Rebeca, uses
rather simple policies because the main focus lies
on how security is integrated — more sophisticat-
ed policies would be available if role-based access
control schemes are bound to scopes.7

We use attribute certificates (AC; as specified
in RFC 3281) to encode privileges and a public key
infrastructure to bind the certificates to the clients.
An AC is a credential with a digitally signed iden-
tity and a set of attributes. It carries the commands
a component is allowed to issue, such as autho-
rized filter expressions or scope creation com-
mands. ACs are issued either by the provider of the
broker network, by some other previously autho-
rized (scope) administrator, or by the notifications’
producers. In this way, we can build an authoriza-
tion hierarchy.

When a client subscribes to some information
at a border broker, it also gives its credentials in
the form of an AC. The border broker checks the
signature of the certificate with the network
provider key and the key associated with the
client’s scope. Only if the certificate covers the
subscription is it processed further, such as in a
standard publish–subscribe case.

To secure the communication within a scope,
the administrator can mandate that all traffic with-
in the scope be encrypted. In the presented scope
architecture, scopes connect with subgraphs in the
broker network — that is, each communication link
is between scope participants that can share a ses-
sion key for encryption. If new components join,
the session key is propagated to them.

52 JANUARY • FEBRUARY 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Asynchronous Middleware and Services

If new brokers are added to the overlay in order
to reach new components, these brokers can either
be included in the trusted overlay, or the infra-
structure can create tunnels toward the new com-
ponents. If the authorization hierarchy includes
network providers that host brokers in a globally
operating publish–subscribe network, we can use
attribute certificates to establish a trusted overlay
network of brokers of a trusted provider, whereas
tunneling can be used to bridge intermediate
untrusted brokers.

Our Platform for
Experiments: Rebeca
Our distributed notification service prototype,
Rebeca, implements the scoping concept, serves
as a testbed for routing algorithms, and supports
data integration aspects to transparently map
between different data models. Several PhD and
masters’ theses contributed to the prototype dur-
ing the past years.

Event brokers constitute the routing network
and also connect individual components to the
network — that is, the fan-out of the network. They
are implemented as separate processes either on
designated nodes or mixed with other processes.
The default broker maintains a routing table for
unscoped traffic and TCP connections to other bro-
kers and to clients. We have left the use of IP mul-
ticast as an option for future optimizing, for
example, to improve the implementation of scope
overlays or the network fan-out.

Brokers are customizable software containers8

and, as such, we can configure the routing engine,
connection pooling, and transmission protocols at
deployment time. All software building blocks act
as message handlers that register themselves for
internal events, so that incoming messages pass
through deserialization handlers, protocol imple-
mentations, scope-specific routing tables, and so
on. A node-internal network of connected handlers
constitutes the broker implementation.

We are currently working on a new architec-
ture to investigate the construction of the notifi-
cation service.9 Modules of major MOM building
blocks, such as matching, network topology main-
tenance, and so on, are composed using a service-
oriented approach, such as the Open Services
Gateway Initiative (OSGi; www.osgi.org). Thus,
exactly the desired functions are packed into a spe-
cific notification service instance, and even run-
time modifications of service implementation
become possible.

Scopes are a runtime mechanism that delimit
different implementations of the publish–subscribe
API. Starting from a model of the system’s struc-
ture as given in the scope graph, the administrator
deploys and manages the systems at scope granu-
larity. An administrator responsible for some sub-
graph chooses (and deploys) a MOM instance for
each scope and customizes its deployment para-
meters. In our prototype, scope-graph design and
deployment is supported with a plug-in to the
Eclipse development environment (www.eclipse.
org) that offers a graphical interface for graph lay-
out, as well as a text editor for editing the XML
representation of the graph directly. Furthermore,
the prototype is implemented in Java (an alterna-
tive version running on .NET is available), and we
can use the Eclipse development environment to
modify functionality just before deployment. We
access the configuration of running scopes
through a remote management interface using
Java Management Extensions (JMX).

The current Rebeca architecture doesn’t allow
for the easy inclusion of security policies because
several core classes are involved and would have
to be reimplemented. To achieve greater flexibil-
ity, we employ aspect-oriented programming
(AOP) techniques10 to implement the security
aspects of scopes. Briefly, let’s look at two secu-
rity extensions.

First, access control on the API level is required
for the authorization to invoke management func-
tions. Provider keys are stored on all brokers and
clients send certificates with each call to the bro-
ker. The broker then checks the certificates before
granting access to management functionality.

Second, when we extend an overlay in inte-
grated routing, we ensure that the new next-hop
broker belongs to a trusted network provider by
checking its certificates. This test checks chains of
certificates in the authorization hierarchy and is
evaluated prior to calling the handler that process-
es the actual scope extension. An encrypted fan-

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 53

Publish–Subscribe Grows Up

The desired functions are packed into a
specific notification service instance, and
even runtime modifications of service
implementation become possible.

out to consumers uses point-to-point connections;
in the case of performance problems, administra-
tors might employ caching schemes like the one
described in Opyrchal and Prakash’s work.11

Rebeca Extensions
We used Rebeca to investigate several extensions.12

Mobile systems are a natural application domain
of messaging. We investigated physical and logi-
cal mobility as extensions to a static notification
infrastructure.13 Physical — that is, client — mobil-
ity brings location transparency, whereas logical
mobility supports navigating in a location/state
space that’s orthogonal to the notification infra-
structure’s layout.

We recently extended this work into the area of
multipurpose wireless sensor networks (WSNs), in
which scoping could serve as a generic node selec-
tion scheme that subsumes existing approaches.14

Message dissemination’s instantaneous nature
leads to isochronous communication. Caching

mechanisms are needed to decouple components
in time. Message queues on top of database sys-
tems offer flexible and powerful solutions, but we
can also incorporate handling of historic data
into the distributed notification service.15,16 In
particular, when considering mobility, mobile
devices might require a bootstrap phase to get in
sync with the notifications flow. For this partic-
ular purpose, we developed a best-effort in-net-
work caching approach to deliver recently
published notifications, thereby reducing boot-
strapping time.

A data-driven system depends on the appro-
priate reaction to notifications. We have developed
a reactive functionality service that processes
event-condition-action rules (ECA-rules). This
allows a smooth integration of notifications into
business process automation. This service provides
several benefits: rule definitions could include
contextual information to more easily facilitate the
integration, and we could tailor rule-definition
languages for different domains using a concep-
tual representation, providing end users the most

appropriate way to define rules. This conceptual
representation enables the use of a “generic” reac-
tive functionality service for different domains,
making the underlying service independent from
the rule specification.

In this article, we’ve shown how scopes, as first-
class structuring mechanisms, help manage and

control publish–subscribe infrastructures. Scopes
also provide the necessary primitives for visibility
and access control, as well as the containers to
which context information and mapping functions
can be attached.

We implemented these concepts in the Rebeca
notification service, and we’re extending them to
deal with new sources of data with limited
resources, such as RFID readers, heterogeneous
sensor nodes, and mobile components.

Although scopes are our response to the need
for management, security, and heterogeneity in
publish–subscribe infrastructures, we’re convinced
that similar abstractions and primitives are essen-
tial for mature message-oriented middleware.

References

1. C. Bornhövd et al., “Integrating Automatic Data Acquisi-

tion with Business Processes — Experiences with SAP’s

Auto-ID Infrastructure,” Proc. 30th Int’l Conf. Very Large

Data Bases (VLDB 04), M.A. Nascimento et al., eds., Mor-

gan Kaufmann, 2004, pp. 1182–1188.

2. G. Mühl et al., “Evaluating Advanced Routing Algorithms

for Content-Based Publish-Subscribe Systems,” Proc. 10th

IEEE/ACM Int’l Symp. Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (MASCOTS

02), pp. 167–176.

3. P.T. Eugster et al., “The Many Faces of Publish–Subscribe,”

ACM Computing Surveys, vol. 35, no. 2, 2003, pp. 114–131.

4. G. Banavar et al., “A Case for Message-Oriented Middle-

ware,” Proc. 13th Int’l Symp. Distributed Comp. (DISC 99),

LNCS 1693, P. Jayanti, ed., Springer-Verlag, 1999, pp.

1–17.

5. L. Fiege et al., “Engineering Event-Based Systems with

Scopes,” Proc. European Conf. Object-Oriented Program-

ming (ECOOP), LNCS 2374, B. Magnusson, ed., Springer-

Verlag, 2002, pp. 309–333.

6. L. Fiege et al., “Security Aspects in Publish–Subscribe Sys-

tems,” Proc. 3rd Int’l Workshop Distributed Event-Based

Sys. (DEBS 04), A. Carzaniga and P. Fenkam, eds., IEE,

2004, pp. 44–49.

7. A. Belokosztolszki et al., “Role-Based Access Control for

Publish–Subscribe Middleware Architectures,” Proc. 2nd

Int’l Workshop Distributed Event-Based Sys. (DEBS 03), H.-

54 JANUARY • FEBRUARY 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Asynchronous Middleware and Services

A data-driven system depends on
the appropriate reaction to
notifications.

Arno Jacobsen, ed., ACM Press, 2003, pp. 1–8.

8. M. Fowler, “Inversion of Control Containers and the Depen-

dency Injection Pattern,” Jan. 2004; http://martinfowler.

com/articles/injection.html#InversionOfControl.

9. C. Fiorentino et al., “Building a Configurable Publish–

Subscribe Notification Service,” IFIP Int’l Conf. Distributed

Applications and Interoperable Sys. (DAIS 05), LNCS 3543,

Springer-Verlag, 2005, pp. 136–147.

10. T. Elrad, R.E. Filman, and A. Bader, “Aspect-Oriented Pro-

gramming: Introduction,” special issue on aspect-oriented

programming, Comm. ACM, vol. 44, no. 10, 2001, pp. 29–32.

11. L. Opyrchal and A. Prakash, “Secure Distribution of Events

in Content-Based Publish–Subscribe Systems,” Proc. 10th

Usenix Security Symp., Usenix Assoc., 2001, pp. 281–295.

12. A. Buchmann et al., “Dream: Distributed Reliable Event-

Based Application Management,” Web Dynamics—Adapt-

ing to Change in Content, Size, Topology and Use, M.

Levene and A. Poulovassilis, eds., Springer-Verlag, 2004,

pp. 319–349.

13. L. Fiege et al., “Supporting Mobility in Content-Based

Publish–Subscribe Middleware,” ACM/IFIP/Usenix Int’l

Middleware Conf. (Middleware 03), M. Endler and D.C.

Schmidt, eds., LNCS 2672, Springer-Verlag, 2003, pp.

103–122.

14. J. Steffan et al., “Towards Multi-Purpose Wireless Sensor

Networks,” Int’l Conf. Sensor Networks (SENET 05), P. Dini

et al., eds., IEEE CS Press, 2005, pp. 336–341.

15. A. Ulbrich et al., “Programming Abstractions for Content-

Based Publish–Subscribe in Object-Oriented Languages,”

Confederated Int’l Conf. CoopIS, DOA, and ODBASE 2004,

LNCS 3291, Springer-Verlag, 2004, pp. 1538–1557.

16. J. Bacon et al., “Event Storage and Federation using

ODMG,” Proc. 9th Int’l Workshop on Persistent Object Sys.

(POS 9), LNCS 2135, G. Kirby, A. Dearle, and D. Sjøberg,

eds., Springer-Verlag, pp. 265–281.

Ludger Fiege is an engineer at the corporate technology depart-

ment of Siemens AG in Munich, Germany. His research

interests include software architecture of enterprise sys-

tems, event-based systems, and configurable middleware

and programming paradigms. Fiege has a PhD in comput-

er science from the Technische Universität Darmstadt, Ger-

many. Contact him at fiege@acm.org.

Mariano Cilia is a postdoctoral researcher at the Department

of Computer Science at Technische Universität Darm-

stadt. He is also visiting professor at the Faculty of Sci-

ences, Universidad Nacional del Centro de la Provincia

de Buenos Aires (UNICEN), Argentina. His research inter-

ests include data dissemination, semantic data integra-

tion, pervasive computing, event-driven systems, and

middleware. Cilia has an MSc in computer science from

University of Campinas (UNICAMP), Brazil, and a PhD in

computer science from the Technische Universität Darm-

stadt. He is a member of the IEEE and the ACM. Contact

him at mcilia@acm.org.

Gero Mühl is a postdoctoral researcher at the Berlin Universi-

ty of Technology. His research interests include middle-

ware, event-based systems, self-organization, and mobile

computing. Mühl has a PhD in computer science from the

Technische Universität Darmstadt. Contact him at

g_muehl@acm.org.

Alejandro Buchmann is a professor of databases and distributed

systems and chairman of the Department of Computer Sci-

ence of the Technische Universität Darmstadt. His research

interests include event-based systems, ambient intelligence,

data dissemination, peer-to-peer and sensor networks, and

performance of middleware-based systems. Buchmann has

a BS degree from Universidad Nacional Autónoma de Méx-

ico (UNAM) and an MS and a PhD in chemical engineer-

ing from the University of Texas, Austin. Contact him at

buchmann@dvs1.informatik.tu-darmstadt.de.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2006 55

Publish–Subscribe Grows Up

Ensure that your networks operate
safely and provide critical services

even in the face of attacks. Develop
lasting security solutions, with this peer-

reviewed publication.

Top security professionals in the field share
information you can rely on:

Wireless Security • Securing the Enterprise •
Designing for Security Infrastructure • Privacy Is-

sues • Legal Issues • Cybercrime • Digital Rights
Management • Intellectual Property Protection and

Piracy • The Security Profession • Education

Order your subscription today.

www.computer.org/security/

BE SECURE.BE SECURE.

DON’T RUN THE RISK.DON’T RUN THE RISK.

