
ASIA: Application-Specific Integrated Aggregation for
Publish/Subscribe Middleware∗

Sebastian Frischbier
TU Darmstadt

frischbier@dvs.tu-
darmstadt.de

Alessandro Margara
Vrije Universiteit Amsterdam

a.margara@vu.nl

Tobias Freudenreich
TU Darmstadt

freudenreich@dvs.tu-
darmstadt.de

Patrick Eugster
Purdue University

p@cs.purdue.edu

David Eyers
University of Otago

dme@cs.otago.ac.nz

Peter Pietzuch
Imperial College London

prp@doc.ic.ac.uk

ABSTRACT
The publish/subscribe (pub/sub) communications paradigm
is suitable for building large-scale, widely distributed ap-
plications. Distributed pub/sub middleware scales well be-
cause it decouples communicating clients. However, com-
plete decoupling of clients make it more challenging to de-
sign distributed applications using pub/sub middleware: of-
ten clients want some information about each other. We
thus augment the pub/sub communication model through
addition of an integrated aggregation mechanism—ASIA—
that facilitates bidirectional exchange of information with-
out compromising scalability. Our prototype implementa-
tion demonstrates that ASIA can be integrated into a typ-
ical distributed pub/sub middleware with little effort, and
that the aggregation capability adds little overhead in terms
of message throughput and latency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications

General Terms
Design, Management, Measurement

1. INTRODUCTION
Most large-scale distributed applications, such as social

networking sites, logistics management and server monitor-
ing, require communication between software components
that are deployed over a large number of sites. In many

∗Supported by German BMBF Software-Cluster EMER-
GENT (01IC10S01), LOEWE Dynamo PLV, Dutch national
program COMMIT, NSF grant 0644013, Alexander von
Humboldt Foundation, DARPA grant N11AP20014. The
authors assume responsibility for the content.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Middleware 2012 Posters and Demos Track December 3–7, 2012, Montreal,
Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1612-5/12/12 ...$15.00.

cases, these applications can derive benefit from publish/sub-
scribe (pub/sub) communications middleware: messages
can be disseminated efficiently from information produc-
ers (publishers) to consumers (subscribers) based on a fine-
grained specification of subscribers’ interests. Distributed
pub/sub middleware involves the construction of an over-
lay network of message brokers that can build dissemination
graphs linking publishers and subscribers. Its potential for
scalability is based on the decoupling of publishers and sub-
scribers: subscribers remain largely anonymous, with unidi-
rectional flow of information from publishers to subscribers.

Despite its potential applicability, distributed pub/sub
middleware has not been as widely adopted as would be
expected [4]. An obstacle is the complete decoupling of
publishers and subscribers, making it more challenging to
support applications that require any additional information
exchange between them without compromising scalability.

Consider a global logistics organisation that tracks the de-
livery status of its goods, relying on large-scale enterprise ar-
chitectures in combination with decentralised cyber-physical
systems (e.g. RFID [5] and wireless sensor networks) to man-
age freight across different means of transportation. Data
about the delivery status and position of each good is desired
along the supply-chain and provided in near real-time to the
logistics provider, its sub-contractors and end-customers.
However this may come at a significant cost in terms of en-
ergy (e.g. battery-powered sensors), or where manual check-
ing of data is required. Thus, usage information about de-
mand and supply of tracking data has to be obtained.

Current options to obtain such desired information include
the use of less scalable, centralised pub/sub middleware sys-
tems, group communication systems that provide a form
of membership view [1], or straightforward extraneous di-
rect point-to-point communication between software com-
ponents. Several dedicated distributed aggregation systems
have also been proposed, e.g. SDIMS [7] and Adam2 [6].
However, deploying such a stand-alone system alongside a
pub/sub middleware has multiple drawbacks, duplicating
network connections because it cannot access the brokers’
routing information and increased network traffic as aggre-
gation results cannot be piggy-backed [2]. The alternative
that we provide is an Application-Specific Integrated Aggre-
gation mechanism—ASIA—for distributed pub/sub middle-
ware. ASIA1 allows the various components of the dis-

1www.dvs.tu-darmstadt.de/research/events/asia/

Client
c1

Client
c4

Broker
b1

Broker
b4

Client
c3

Broker
b5

Broker
b2

Broker
b3

Client
c2{1}

{2}

{1}

{1}

{1} {3}

{1}

{1}

Figure 1: Aggregation messages regarding sub-
scriber counts reaching client c1

tributed system to collect (aggregated) information about
each other, e.g. their interests, or their publication rates,
thus enabling reactive behaviours.

2. ASIA MODEL
ASIA integrates a conventional mixed topic and content-

based distributed pub/sub model with an aggregation mech-
anism, which collects and delivers information as required
by applications. Fig. 1 shows an example subscriber count
aggregation reaching client c1. Our approach provides the
following features:

Integration: ASIA does not rely on a centralised aggre-
gation system and introduces little overhead. It uses the
pub/sub system’s routing trees for aggregating data. This
provides two advantages: (i) it eliminates the costs for creat-
ing and maintaining a separate infrastructure; (ii) it enables
piggy-backing of information to existing messages.

Precision-control: ASIA provides clients with a mecha-
nism to specify the desired precision of their requested data.
We can either lower the precision of distributed aggregation
computation to reduce the number of aggregation-related
messages sent, or have more precise data with a higher ad-
ditional message load. In our logistics example, it may be
costly in terms of battery power for containers to frequently
report their GPS coordinates. By using ASIA, the contain-
ers can receive a “back channel” informing them of the num-
ber of subscribers to their messages. If a container’s delivery
priority is escalated, it can react by expending more energy
to report its position more frequently.

Broker-state: ASIA has access to internal broker state
and can provide clients with aggregated system metrics. For
example, salient properties about the broker network itself
can be reported to interested clients.

Bidirectional feedback: ASIA supports both down-
stream (publisher to subscriber) and upstream (subscriber
to publisher) aggregations, by exploiting the overlay topol-
ogy maintained by the pub/sub middleware for event prop-
agation.

ASIA thus allows for decoupled, distributed communica-
tion between publishers and subscribers while still providing
them with information about the system.

3. IMPLEMENTATION AND EVALUATION
We have implemented ASIA within the REDS open-source

pub/sub middleware [3], which provides a framework of Java
classes and defines the architecture of a generic broker using
a set of components with well-defined interfaces. Our imple-
mentation of ASIA in REDS requires fewer than 9000 new

lines of code, and no changes to existing code: we thus be-
lieve that other pub/sub middleware can be similarly ex-
tended without major refactoring efforts. To evaluate ASIA,
we implemented several different aggregation functions, in-
cluding subscriber and publisher counts, subscription and
publication rates (over a time-based window), and counts of
active publishers (in a time-based window). This provides a
reusable set of basic operations (e.g. sum, moving average,
etc.).

With our experimental evaluation we want to gauge the
overhead introduced by ASIA when compared to a “bare”
pub/sub system, and to understand the benefits of integrat-
ing aggregation with pub/sub. We consider three metrics:
(i) overall network traffic generated, (i) maximum through-
put, and (iii) delay for delivering messages to clients.

We use 32 Intel Core i7 nodes (8 x 3.4 GHz, 8 GiB RAM,
Linux 3.0.3). We consider a network of 16 brokers, each
connected to 3 other brokers and serving 100 clients. An
additional 16 nodes host the clients.

Overhead. ASIA does not introduce a visible overhead
with respect to a traditional pub/sub system, both in terms
of throughput and in terms of delay for message delivery.
Moreover, the low traffic overhead introduced by ASIA’s ag-
gregation mechanisms rapidly decreases when a higher im-
precision is allowed. ASIA’s traffic is close to that of the
baseline pub/sub system at higher imprecision levels, de-
spite providing aggregation information.

Benefits. Compared to a separate aggregation system,
ASIA reduces overall network traffic as aggregation update
messages are piggy-backed to the data packets exchanged be-
tween brokers, whenever possible. Moreover, the integration
of the aggregation mechanisms within the pub/sub middle-
ware makes it possible to re-use the same overlay, without
incurring an additional cost for building and maintaining a
separate infrastructure.

We conclude that ASIA is a practical extension of pub/sub
middleware to provide clients with aggregation information
that can be computed in a cheap, distributed manner.

4. REFERENCES
[1] G. Chockler, I. Keidar, and R. Vitenberg. Group

communication specifications: a comprehensive study.
ACM Comput. Surv., 33(4):427–469, 2001.

[2] G. Cugola, M. Migliavacca, and A. Monguzzi. On
adding replies to publish-subscribe. In DEBS’07, 2007.

[3] G. Cugola and G. P. Picco. REDS: a reconfigurable
dispatching system. In SEM’06, 2006.

[4] D. Eyers, T. Freudenreich, A. Margara, S. Frischbier,
P. Pietzuch, and P. Eugster. Living in the present:
on-the-fly information processing in scalable web
architectures. In CloudCP, 2012.

[5] S. Frischbier, K. Sachs, and A. Buchmann. Evaluating
RFID Infrastructures. In ITG-Fachbericht - 2.
Workshop RFID, 2006.

[6] J. Sacha, J. Napper, C. Stratan, and G. Pierre. Adam2:
Reliable distribution estimation in decentralised
environments. In ICDCS’10, 2010.

[7] P. Yalagandula and M. Dahlin. A scalable distributed
information management system. In SICOMM’04, 2004.

