
Towards a Common Interface for Overlay Network Simulators

Christian Groß1, Max Lehn1, Dominik Stingl1, Aleksandra Kovacevic1,
Alejandro Buchmann, and Ralf Steinmetz

Multimedia Communications Lab, Databases and Distributed Systems,
Technische Universität Darmstadt, Germany

Email: {gross, stingl, sandra, steinmetz}@kom.tu-darmstadt.de,
{max lehn, buchmann}@dvs.tu-darmstadt.de

Abstract—Simulation has become an important evalua-
tion method in the area of Peer-to-Peer (P2P) research
due to the scalability limitations of evaluation testbeds
such as PlanetLab or G-Lab. Current simulators provide
various abstraction levels for different underlay models,
such that applications can be evaluated at different gran-
ularity. However, existing simulators suffer from a lack
of interoperability and portability making the comparison
of research results extremely difficult. To overcome this
problem, we present an approach for a generic application
interface for discrete-event P2P overlay network simula-
tors. It enables porting of the same implementation of a
targeted application once and then running it on various
simulators as well as in a real network environment,
thereby enabling a diverse and extensive evaluation. We
established the feasibility of our approach and showed
negligible memory and runtime overhead.

Index Terms—Simulation, Peer-to-Peer, Interface, Com-
mon API, Overlay, Testbed, Simulator-Design

I. INTRODUCTION

Since research in Peer-to-Peer (P2P) systems became
popular in the late nineties, the evaluation of such
large scale and complex systems has been a challenging
task. Test-bed platforms, such as PlanetLab or G-Lab,
where prototypical implementations can be deployed,
offer a realistic evaluation environment that is limited
to a few hundred peers. Scalability of P2P systems,
with several thousands and even millions of participants,
can be effectively assessed only by simulation. How-
ever, more detailed simulation models (e.g., considering
the underlay network) are not amenable to large-scale
simulations. This is the reason why accepted network
simulators such as ns-3 are seldom used in P2P research.
To address this tradeoff between scalability and realism,
most researchers tend to develop their own simulators
that are geared to focus on specific aspects, as shown by

1Authors supported by the German Research Foundation, Research
Group 733, “QuaP2P: Improvement of the Quality of Peer-to-Peer
Systems”.

Naiken et al. [15], [16]. This has resulted in a plethora
of simulators. As simulation models of P2P systems
can vary greatly in existing simulators, comparison of
evaluation results is difficult if not impossible. Taking
this comparability into account, having only one single
simulator comprising the different models of all simula-
tors would be an ideal solution.

In spite of their obvious shortcomings, the plethora
of existing simulators has the advantage of providing
various abstraction levels for different underlay models
such that applications can be evaluated at different levels
of granularity. However, due to incompatible simulator
APIs, it is hard to exploit these simulators effectively.
We therefore propose a generic application interface for
P2P simulators. This allows to reuse underlay mod-
els from existing P2P simulators by porting the same
implementation of a target application to the different
simulators as shown in Figure 1, and avoids the effort
of re-implementing the application on top of various
simulators. Furthermore, due to the abstract nature of
the interface that does not assume a specific execution
environment, applications built on top of our interface
can be directly tested in real network environments.
Throughout this paper we use the term ‘application’ for
the overlay (such as Chord [21], CAN [19], or Kademlia
[12]), as well as for the actual application generating the
workload for the particular scenario being simulated and
evaluated.

To motivate the need for our generic application
interface, we state some general properties regarding
the utilization of the interface on top of the different
simulators highlighting its benefits:

• Firstly, existing P2P overlays such as Chord [21],
CAN [19], or Kademlia [12] can be implemented
once based on the interface definition of our generic
application interface. In doing so, these P2P overlay
implementations can be re-used within all simula-
tors implementing our generic application interface.
So without the need of re-implementation new P2P

rst
Textfeld
Christian Groß, Max Lehn, Dominik Stingl, Aleksandra Kovacevic, Alejandro Buchmann, Ralf Steinmetz: Towards a Common Interface for Overlay Network Simulators. In: IEEE Computer Society: Proceedings of the 2010 16th International Conference on Parallel and Distributed Systems (ICPADS 2010), p. 27-34, IEEE Computer Society, December 2010. ISBN 978-0-7695-4307-9.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

Figure 1. Schematic of the common simulator interface.

overlays, the number of available overlays for a
given simulator increases, offering the possibility
for researchers to evaluate their P2P mechanisms
on a greater variety of P2P overlays on a single
simulator, while accuracy remains unchanged due
to the use of the same underlying simulator core
and network model.

• Secondly, researchers may stick to their favorite
simulator allowing them to work and simulate in a
well-known environment and to re-use tailored tools
such as data capturing and evaluation of simulated
scenarios.

• Thirdly, due to the fact that each simulator offers a
different set of underlay models (e.g., simple net-
work model with static delay, GNP network model
[17], wireless network model [3]) P2P mechanisms
can be evaluated using the provided underlay mod-
els from the different simulators.

We implemented the interface for three current
P2P simulators (PeerSim [13], ProtoPeer [6], Peerfact-
Sim.KOM [10]) and built a prototypical P2P application
performing random walks, similar to a simplified GIA
[4] implementation. We thereby proved the feasibility
of our approach and showed negligible memory and
runtime overhead.

In Section II the background of P2P simulators is
discussed and a brief overview of the architecture of
existing discrete-event overlay network simulators is
given. Section III deals with the requirements for a
common simulator interface, followed by a discussion
of design decisions in Section IV. A concrete interface
proposal is introduced in Section V, and a feasibility
and evaluation study of the interface is given in Section
VI. Finally, we present conclusions in Section VII and
present an outlook on the future work.

II. BACKGROUND

P2P simulators which aim at the simulation of P2P
systems in a realistic and scalable manner have been
widely researched. Most simulators, such as Peerfact-
Sim.KOM [10], PeerSim [13], ProtoPeer [6], PlanetSim
[18], and OverSim [1] have a layered architecture along
the lines of the ISO-OSI model. Conceptually, most
P2P simulators distinguish between a network layer, an
overlay layer and an application layer. The network layer
is responsible for modelling delays and message loss be-
tween different peers/nodes using different approaches,
such as euclidean embedding [11], [9] following the
approach of Ng et al. [17], the King dataset [8], or
shortest path algorithms based on generated Internet
topologies [23], [24]. The overlay layer contains the cor-
responding overlay implementations like Chord, CAN,
and Kademlia. P2P applications are built on top of
these overlays. All of the three aforementioned layers
use the discrete-event simulation engine for performing
asynchronous wait operations.

One of these simulators following the layered archi-
tecture approach is PeerfactSim.KOM which has been
introduced in [10]. The simulator is written in Java
and divided into dedicated layers which are triggered
by an event-based simulation engine. Beside the three
identified layers described above, PeerfactSim.KOM ex-
tends this general concept with further components.
These additional elements allow for modelling the user
behaviour and interaction with the P2P system, while
the segmentation of the underlay into a network and
a transport layer facilitates the simulation of scenarios
with multiple applications and different types of overlays
at the same time. Furthermore, it offers an integration
of different and customized churn models as well as a
monitoring architecture simplifying the data collection
during a simulation.

PeerSim [13] which is developed by Alberto Mon-
tresor et al., follows a slightly different architectural
design. In contrast to the other simulators, PeerSim offers
two different modes of operation, a cycle-based and the
event-based approach. The cycle-based mode allows for
large scale simulations using simplifying assumptions re-
garding the message transport, whereas the event-driven
mode aims at simulations requiring higher granularity
and more realistic results. Overlay networks in PeerSim
are modelled as a set of nodes each having a set of
protocols. A protocol implements application-specific
behaviour, thus being the extension point for additional
functionality.

ProtoPeer has been developed with the idea in mind
of switching between event-driven simulations and live
network deployment by exchanging the underlying net-
work component, such that no changes to the application
code should be necessary. This is achieved by sticking to
a modular architecture design which defines clear inter-
faces between different layers. In particular, the abstract
time and networking API is one of the key features of
the ProtoPeer architecture ensuring that application code
built on top does not need to be changed. Applications
in ProtoPeer are created by using so called Peerlets,
which define modularized, reusable and unit-testable
peer functionality. The simulator offers the opportunity
for running applications in a discrete event-driven mode
or as a prototype on a real network.

Beside the simulators introduced above, there exist
several other overlay simulators which are either not
written in Java or have not been updated recently. One of
the latter is PlanetSim [18]. PlanetSim is also structured
into an application, overlay, and network layer. Function-
ality in PlanetSim is structured in two different ways.
The first one defines node functionality as a protocol
which determines the actions a node has to perform,
e.g., in case of incoming and outgoing messages or
periodic tasks such as overlay maintenance. The second
one defines a behaviour model that allows for the imple-
mentation of differentiated aspects of node functionality
in separate classes that can be composed dynamically.

A prominent C++ overlay network simulator is Over-
Sim [1] which is based on the general-purpose discrete-
event simulation engine OMNeT++ [22]. Since the si-
mulation engine is provided by a separate project, there
is a clear apportionment of discrete-event simulation and
network modelling. OverSim provides a set of different
network models with varying granularity. There are
implementations for important overlay networks, such
as Chord, Kademlia, and GIA.

Each of the simulators was developed for specific
needs assuming that existing simulators do not satisfy
the particular requirements. All simulators define an
API for writing simulator-specific extensions that are
not compatible among simulators. A comparison of the
different simulators, however, shows that most simulators
are conceptually similar and provide equivalent function-
ality such that a generic application interface for these
can be derived. Each of the simulators is shipped with
a set of underlay models and overlays. But the set of
overlays usually consists of only a small subset of the
relevant systems. For example, PeerSim offers support
for the Chord, Kademlia and Pastry overlay, but lacks

from overlays such as CAN, GNutella, or Gia. In apply-
ing our interface to the simulator and to the overlays,
researchers using PeerSim benefit from it because a
much bigger variety of overlays is available. The naive
approach of increasing the availability of overlays for
an given simulator by adapting existing overlays causes
much more overhead as a typical overlay implementation
consists of several hundreds of lines of source codes and
are based on simulator specific concepts.

There is no other existing approach for defining a
generic interface for discrete event-based P2P simulators
that be ported to the relevant set of simulators with
reasonable effort.

The FreePastry [20] library which has been developed
by the Rice University defines a set of basic entities
(e.g., Application, EndPoint, Message, RouteMessage,
Id, and NodeHandle) called Common API (CAPI) an
application should use. This API definition has proven
to be applicable for a variety of prototypes using the
FreePastry library ([7], [14]). Although the API has been
desined to support prototypical and simulated execution,
it makes FreePastry-specific assumptions (e.g., neighbor
sets associated to endpoints and ID ranges). Furthermore,
it does not support the full set of required functionality
to run event-based simulation as identified in Section III.

Dabek et al. [5] introduced an interface definition for
structured overlays (key-based routing, KBR) which aims
for an easy interchangeability of overlay implementa-
tions. Although not developed particularly for simula-
tors, KBR is frequently applied there. Behnel et al. [2]
proposed an approach for rapid overlay implementation
including a modelling framework for overlay networks.
Both approaches focus on the overlay layer and its
interfaces, whereas the goal of our interface is to make
simulators exchangeable without the need for modifying
the application or overlay code.

III. REQUIREMENTS

Applications written for a specific simulator need
to have access to certain functionality of the simu-
lator. Based on our experience, the following set of
basic mechanisms represents the functional requirements
which need to be covered by the simulator interface in
order to satisfy the typical P2P simulation needs.

• Since distributed systems consist of a collection of
nodes, methods for starting and shutting down these
nodes are required.

• To enable communication between nodes, methods
for sending and receiving messages are necessary.

• For the evaluation of topology-aware overlays, it
is desirable to have access to network topology
information.

• An application must be able to perform temporal
operations (e.g., waiting, periodic activities). There-
fore, it must have direct access to the scheduler for
scheduling events.

• A typical problem related to the start-up process
of a P2P node is how to find bootstrap nodes to
connect to. Thus the common simulator interface
has to provide facilities for obtaining those in the
start-up phase.

• Nodes joining the network may either start as a
completely new node or as a re-joining node. Re-
joining nodes need to read their previous session’s
state, requiring some means for persistence.

• An essential functionality of simulators is a random
number generator that produces seeded pseudo ran-
dom numbers, ensuring a deterministic behaviour
such that experiments are reproducible.

• It might be necessary to pass certain node-specific
parameters to the application, for instance, to let
the application decide to behave differently based
on its connection properties.

• Logging should be covered by the simulator inter-
face for gathering information about the simulated
activities. In particular, per-node logging is desir-
able to identify a single node’s actions.

• Statistical and analytical functionality should be
provided for obtaining detailed simulation results.

Besides the listed functional requirements, the trans-
lation layer building the generic interface on top of a
particular simulator should be lightweight with respect
to both number of lines of code and runtime overhead.
Therefore, the interfaces should be designed with sim-
plicity in mind and only provide a necessary minimum
of functionality.

The purpose of the common simulator interface is to
ensure the portability and re-usability of applications
built on top of simulators. The configuration of the
simulator (e.g., the layers and their parameters or the
utilized network model) and of the scenario (number
of nodes, churn model, bandwidth, application work-
load, etc.) is explicitly not part of this interface since
this configuration heavily depends on the layers and
components of the particular simulator’s world model
and thus may not be easily generalized. Taking the
feasibility into account, the reason for neglecting this
functionality is that it is almost impossible to define a

generic configuration interface for all kinds of compo-
nents that the different simulators offer. Regarding the
formal requirements of the generic simulator interface,
this interface is geared to ensure the portability and the
re-usability of applications built on top of simulators
and not to provide a uniform usability of simulators.
Thus, when porting an application from one simulator
to another, the scenario definition for the simulation
still needs to be adapted. We see this as an orthogonal
topic which may be covered separately. Therefore, the
developed application on top of our simulator interface
should specify its own configuration in order to be
independent from the simulator specific configuration.

IV. DESIGN DECISIONS

This section introduces the basic components of the
interface based on the identified requirements.

A. Transport Protocol

One of the fundamental questions that must be an-
swered is, on which transport protocol (UDP, TCP, or
more abstracted messaging or streaming) the simulated
communication between nodes should be based. In order
to keep the communication API as simple as possible, we
have chosen a UDP-like messaging model as transport
protocol since it is a stateless communication protocol.
Conversely to UDP, TCP is a stateful protocol which
needs a more complex communication API. In addition
to that, most current P2P simulators offer a transport
layer API based on UDP or a more abstract messaging
model, as it is sufficient for many P2P applications.

B. Addressing Scheme for Nodes

Another basic issue to be discussed is how the address-
ing scheme using by the simulator should look like. Most
simulators use an abstract addressing scheme based on
integer values to identify peers. This addressing scheme
is very simple but cannot be applied within scenarios
were an applications should be executed in a native
execution environment with a real network layer. To
enable native execution of prototypes, it is necessary
to have a real address scheme based on IPv4 or IPv6
as it is required by the network device. Our common
simulator interface introduces an Address interface which
encapsulates the actual addressing scheme such that both
mentioned addressing schemes can be used.

C. Node Concept for Native Execution of Prototypes

The simulator interface should provide the opportunity
to easily switch applications developed for the simulator
to a live network deployment without the need for

changing the application or overlay network code. This
feature allows for evaluating applications even further
than on different network models of various simulators.
Finally, it enables a deployment of complete applications
for productive use. It can be provided by implementing a
scheduler running in real time and a messaging wrapper
that sends and receives massages over native UDP. The
main aspect enabling this live deployment is that nodes,
implementing the overlay and application functionality,
are started by the simulator or the translation layer. On
start-up, each node gets the necessary interface objects
which provide only the functionality that is available in
both simulation and live network deployment. In partic-
ular, the applications built on top of our interface cannot
depend on global knowledge which is only available
during simulations.

D. Time Units

Another essential design decision is how time should
be represented within simulated applications. Many si-
mulators define their own classes for handling time units
and offer methods for retrieving the current simulated
time in different resolutions. Others directly use a long
integer data type, typically with microsecond or millisec-
ond granularity. We define an interface representing time
which can be implemented depending on the needs of the
underlying simulators.

E. Handling of Obsolete Events

In case of failing or leaving nodes, it happens that
scheduled events become obsolete, leading to the ques-
tion of how to deal with such events. There are basically
two solutions for handling outdated events. The first
is to delete obsolete events of failed or leaving nodes,
causing additional overhead as the event queue needs
to be searched for those. The second approach is to
handle those events by the application itself, which
means that the application has to decide whether an
event fired by the simulation engine is obsolete and
thus discarded or not. Depending on the approach, the
interface for encapsulating the simulation engine has
to provide methods for deleting events. For the sake
of simplicity we have chosen the second approach and
allow the application to handle obsolete events.

V. A COMMON SIMULATOR INTERFACE

Based on the requirements gathered in Section III as
well as on the available design decisions identified in
Section IV, we developed the following interface design
covering the basic simulator functionality:

• The Node interface represents the basic en-
tity that encapsulates the application logic. The
NodeFactory interface is implemented by the
application and handed over to the simulator for
the creation of nodes. NodeInterface is imple-
mented by the simulator and encapsulates the per-
node API.

• The Scheduler interface represents the simu-
lation engine and offers methods for scheduling
events and requesting the current simulation time.
Time encapsulates the simulator-specific time unit.
EventHandler is implemented by components
that contain the functionality for processing events.

• The interface of the network layer used for
sending messages is NetworkInterface. The
Address interface transparently encapsulates
simulator-specific addresses (IPv4/v6 or just plain
numbers, depending on the simulator). The ba-
sic message type used for the communication be-
tween nodes is defined by the Message interface.
NetworkListener has to be implemented by an
application component for receiving messages.

• Random defines methods for retrieving pseudo ran-
dom numbers for reproducible simulations.

• Bootstrap allows nodes to register as a bootstrap
node and retrieve adresses of online nodes available
for bootstrapping.

Figure 2 shows how the above-mentioned interfaces are
integrated in a typical simulator architecture. The grey
shaded elements represent our common simulator inter-
face whereas the white parts depict the most important
parts of a simulator architecture. As already mentioned in
Section II, most of the simulators follow a layered archi-
tecture design which mainly consists of a network layer
and an overlay/application layer. To make an application
or overlay portable and independent from the concepts
and methods of a specific simulator, it is necessary to
wrap all these concepts and methods using an interfaces.
These interfaces then need to be implemented once for
each simulator forming a translation layer which maps
application actions onto simulator specific methods.

Among the listed interfaces, there are three core inter-
faces Node, Scheduler, and NetworkInterface
which we describe in more detail in the following
subsection.

A. Node Interface

The Node interface, as shown in Listing 1, has to
be implemented by the application, and represents the
basic entity in simulated P2P systems. Therefore, the

Network Layer

Scheduler

Application / Overlay Layer

Scheduler

Interface

Network

Interface

Node

Interface
Address

 Interface

Time

 Interface

Event Handler

 Interface

Node/Peer Manager

Bootstrap

Interface

Figure 2. Integration of the common simulator interface into the
simulator architecture

class implementing the Node interface should contain
the functionality of the simulated application. The in-
terface consists of two methods for setting up and
shutting down the node, which both are invoked by
the simulator. The method for starting a node passes
the NodeInterface object which encapsulates the
whole per-node API during the node’s lifetime. The
shutdown() method indicates a (graceful) shutdown
or crash of the node, depending on the crash argument.

void startup(NodeInterface nodeInterface);
void shutdown(boolean crash);

Listing 1. Node

NodeInterface provides getters for the interface
objects for the various categories of functionality as
described above (see Section III). The current imple-
mentation contains four of them (scheduler, network
interface, random source, and bootstrap address provider)
as shown in Listing 2.

Scheduler getScheduler();
NetworkInterface getNetworkInterface();
Random getRandom();
Bootstrap getBootstrap();

Listing 2. NodeInterface

B. Scheduler Interface

As mentioned above, the Scheduler interface en-
capsulates the discrete-event simulation engine. It offers
methods for scheduling events absolute or relative to the
current simulation time. The two respective methods, as
shown in Listing 3, each expect two arguments. The first
one specifies the absolute or relative time at which the
event should be fired. The second parameter is the event
handler to be associated with the event. In addition to
that, the interface contains methods for retrieving the
current simulation time and for creating Time instances
based on different time units.

Time getCurrentTime();
Time timeInMicroseconds(long time);
Time timeInMilliseconds(long time);
Time timeInSeconds(long time);
void scheduleIn(Time t, EventHandler h);
void scheduleAt(Time t, EventHandler h);

Listing 3. Scheduler

C. Network Interface

The network layer is represented by the interface
NetworkInterface as shown in Listing 4. This
interface is responsible for handling downcalls to the
network and therefore provides a method for sending
UDP-like messages as discussed in Section IV-A. As its
first argument the method expects the message object,
containing the application-defined message payload. The
second argument is the receiver address of the message.
Furthermore, the interface provides a method for obtain-
ing the local address.

void addListener(NetworkListener l);
void removeListener(NetworkListener l);
void sendMessage(Message msg, Address to);
Address getLocalAddress();

Listing 4. Network Interface

For handling incoming messages, we use the Listener
pattern. Components that want to receive messages have
to implement the NetworkListener interface and
register at the provided NetworkInterface object.

VI. EVALUATION

In order to evaluate our approach, we implemented a
translation layer for our generic simulator interface on
top of each of three widely used discrete-event based
simulators (ProtoPeer, PeerSim and PeerfactSim.KOM).
The focus of the evaluation lies on the applicability of
our approach and on the overhead caused with respect
to time and memory consumption. Although we im-
plemented the interface in Java, it is possible to port
it to every other object-oriented programming language
like C++ or C#. In order to give an impression on the
implementation effort necessary for implementing our
interface on top of each simulator, we have counted
the physical source lines of code (SLOC) for all three
interface implementations.

The results (Table I) clearly indicate that the imple-
mentation overhead for the interface to work within each
simulator is low, especially when comparing it to the
total number of lines of code of the simulators. The effort
necessary for porting a single overlay (as an example,

Simulator SLOC Simul. SLOC Interf.
PeerSim ˜7,300 237
ProtoPeer ˜7,700 225
PeerfactSim.KOM ˜88,000 225

Table I
PHYSICAL SOURCE LINES OF CODE (SLOC) FOR EACH

IMPLEMENTATION OF THE GENERIC SIMULATOR INTERFACE.

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

S
im

ul
at

io
n

T
im

e
[s

ec
]

Number of Peers

Protopeer
PeerSim

PeerfactSim
PeerfactSim (Native)

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000

M
em

or
y

[M
B

]

Number of Peers

Protopeer
PeerSim

PeerfactSim
PeerfactSim (Native)

Figure 3. Simulation duration and memory consumption.

the Pastry implementation for PeerSim has 1100 SLOC)
may already be higher as it builds on simulator-specific
concepts.

The prototypical application that we use for the eval-
uation of usability of our interface and runtime per-
formance is a simple P2P system, in which each node
periodically performs a random walk. Whenever a node
receives a (random walk) message from some other node,
it records the initiating node in its routing table.

We measured the runtime and memory consumption
for the three simulators using the translation layers with

10, 100, 1,000, 10,000, and 100,000 nodes (Figure 3).
We ran each simulation five times and calculated the
mean values for each simulator. We want to emphasize
that these measurements are not meant as a serious
simulator competition, since the performance of each of
the simulators heavily depends on the particular network
model. It rather gives an impression on the comparability
between simulators in general.

As a reference, we implemented our prototypical P2P
application natively on PeerfactSim.KOM (i.e., using the
PeerfactSim.KOM API) whose measurement results are
also included in the figure. With 100.000 nodes, the
runtime overhead using our translation layer compared
to the native implementation on PeerfactSim.KOM has
a maximum of 18%, which appears justifiable. The
memory overhead of less than 2% is negligible. All
simulators show the same scalability behaviour with
respect to runtime and memory consumption during the
simulations.

VII. CONCLUSION AND FUTURE WORK

In this paper we identified the requirements for a
general purpose application interface for discrete-event
overlay simulation. Based on these requirements we
proposed an approach towards a common interface for
discrete-event overlay network simulators.

Using our interface, a lot of future implementation
overhead can be avoided, as overlays and P2P appli-
cations that are implemented once can be reused with
other simulators. Moreover, we also intend to improve
the structure of future simulators by defining the generic
simulator interface. As a result of this reuse of code,
research results from existing or newly created simu-
lators are more comparable. Evaluation shows that the
overhead for using our interface on top of existing
simulators is justifiable and that the integration of our
interface is feasible with a reasonable implementation
effort. From our point of view, agreeing on a common
API for P2P overlay simulators enables a community-
driven development process for each overlay. In doing
so, the overlay implementations can be standardized and
research results based on these overlays can be compared
more easily.

For future work, we plan to implement our interface
using C++ to prove the portability to other object ori-
ented languages. Furthermore, we want to conduct a
detailed performance analysis of the translation layer
for each simulator that implements our common inter-
face. Based on this analysis, we intend to gain insight
on a possible impact of the translation layer on the

performance of the simulator as well as to compare
the performance between discrete-event overlay network
simulators. Finally, we plan to extend the interface to
support logging and statistics functionality as well as to
add functionality to the network interface for quering
topology information of the network which forms the
basis for locality-aware overlays.

VIII. AVAILABILITY

The source code of our implementation is available at:

http://www.kom.tu-darmstadt.de/˜chrgross
/CSI/CSI.zip

REFERENCES

[1] BAUMGART, I., HEEP, B., AND KRAUSE, S. OverSim: A Flex-
ible Overlay Network Simulation Framework. In Proceedings
of 10th IEEE Global Internet Symposium in conjunction with
IEEE INFOCOM (2007).

[2] BEHNEL, S., BUCHMANN, A., GRACE, P., PORTER, B., AND
COULSON, G. A Specification-to-Deployment Architecture for
Overlay Networks. In Proceedings of the Int. Symposium on
Distributed Objects and Applications (2006).

[3] BROCH, J., MALTZ, D., JOHNSON, D., HU, Y., AND
JETCHEVA, J. A Performance Comparison of Multi-hop Wire-
less ad hoc Network Routing Protocols. In Proceedings of
the 4th annual ACM/IEEE international conference on Mobile
computing and networking (1998), ACM, p. 97.

[4] CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM,
N., AND SHENKER, S. Making Gnutella-Like P2P Systems
Scalable. In Proceedings of the 2003 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communications (2003).

[5] DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AND
STOICA, I. Towards a Common API for Structured Peer-to-Peer
Overlays. Springer LNCS 2735 (2003), 33–44.

[6] GALUBA, W., ABERER, K., DESPOTOVIC, Z., AND
KELLERER, W. ProtoPeer: Bridging the Gap Between
Simulation and Live Deployment. In Proceedings of the 2nd
International Conference on Simulation Tools and Techniques
(2009).

[7] GRAFFI, K., PODRAJANSKI, S., MUKHERJEE, P., KOVACE-
VIC, A., AND STEINMETZ, R. A distributed platform for
multimedia communities. In IEEE International Symposium on
Multimedia (ISM ’08) (Berkley, USA, Dec 2008), IEEE, IEEE
Computer Society Press, p. 6.

[8] GUMMADI, K. P., SAROIU, S., AND GRIBBLE, S. D. King:
Estimating latency between arbitrary internet end hosts. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet
measurment (2002), ACM, pp. 5–18.

[9] KAUNE, S., PUSSEP, K., LENG, C., KOVACEVIC, A., TYSON,
G., AND STEINMETZ, R. Modelling the Internet Delay Space
Based on Geographical Locations. In Proceedings of the
2009 17th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (2009).

[10] KOVACEVIC, A., KAUNE, S., LIEBAU, N., STEINMETZ, R.,
AND MUKHERJEE, P. Benchmarking Platform for Peer-to-Peer
Systems. it - Information Technology 49, 5 (2007), 312–319.

[11] KUNZMANN, G., NAGEL, R., HOSSFELD, T., BINZENHÖFER,
A., AND EGER, K. Efficient Simulation of Large-Scale P2P
Networks: Modeling Network Transmission Times. In Pro-
ceedings of the 15th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (2007),
IEEE Computer Society, pp. 475–481.

[12] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A Peer-to-
Peer Information System Based on the XOR Metric. Springer
LNCS 2429 (2002), 53–65.

[13] MONTRESOR, A., AND JELASITY, M. PeerSim: A Scalable
P2P Simulator. In Proceedings of the 9th P2P Conference
(2009).

[14] MUKHERJEE, P., LENG, C., AND SCHÜRR, A. Piki - A Peer-
to-Peer based Wiki Engine. In Proceedings of the P2P 2008
(September 2008), IEEE Computer Society Press, pp. 185–186.

[15] NAICKEN, S., BASU, A., LIVINGSTON, B., AND RODHETB-
HAI, S. A survey of peer-to-peer network simulators. Citeseer.

[16] NAICKEN, S., LIVINGSTON, B., BASU, A., RODHETBHAI, S.,
WAKEMAN, I., AND CHALMERS, D. The State of Peer-to-
Peer Simulators and Simulations. ACM SIGCOMM Computer
Communication Review 37, 2 (March 2007), 95.

[17] NG, T., AND ZHANG, H. Towards Global Network Positioning.
In Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement (2001).

[18] PUJOL AHULLO, J., AND GARCIA LOPEZS, P. PlanetSim:
An Extensible Framework for Overlay Network and Services
Simulations. In Proceedings of the 1st International Confer-
ence on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops (2008).

[19] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SCHENKER, S. A Scalable Content-Addressable Network. In
Proceedings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communica-
tions (2001).

[20] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, Dis-
tributed Object Location and Routing for Large-Scale Peer-
to-Peer Systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware) (2001).

[21] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, F.,
CHORD, H. B., AND A. Chord: Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (2001).

[22] VARGA, A., AND OTHERS. The OMNeT++ Discrete Event
Simulation System. In Proceedings of the European Simulation
Multiconference (2001).

[23] WINICK, J., AND JAMIN, S. Inet-3.0: Internet Topology
Generator. Tech. rep., University of Michigan, 2002.

[24] ZEGURA, E., CALVERT, K., BHATTACHARJEE, S., AND OTH-
ERS. How to Model an Internetwork. In In Proceedings of
IEEE INFOCOM (1996).

