
From Calls to Events:

Architecting Future BPM Systems

Alejandro Buchmann, Stefan Appel, Tobias Freudenreich,
Sebastian Frischbier, and Pablo E. Guerrero

TU Darmstadt, Germany
lastname@dvs.tu-darmstadt.de

Abstract. Contemporary BPM systems fit very well with traditional
architectures that are based on a pull invocation principle, such as SOA.
The proliferation of sensors and streams of events has led to event driven
architectures that decouple event producers and consumers. EDAs are
push-based and support different control structures. Future BPM sys-
tems must therefore deal both with pull and push-based architectures.
In this talk we will analyze the interplay of the different architectures,
their components and the desirable and achievable correctness notions
and non-functional properties.

1 Introduction

By 2020 it is predicted that a large portion of enterprises will be process driven
[20]. The key driving forces that are mentioned are customer centricity, opera-
tional excellence, new regulations, new business models, and a global workforce.
In this world Business Process Management (BPM) will play a deciding role. A
BPM system, according to [28] is “a generic software system that is driven by
explicit process designs to enact and manage operational business processes”.
We will refer to BPM systems in their most general form, including not only
traditional workflow management (WFM) but also Business Process Analysis
(BPA), Business Process Monitoring (BAM) and Process Aware Information
Systems (PAIS).

The traditional BPM lifecycle consists of process design, system configura-
tion, process enactment, and diagnosis. The result of business process diagno-
sis may result in process redesign. The automatic extraction of new business
processes through process mining of the event log is an alternative to manual
process (re)design. Emergent software [13] is a closely related topic. Researchers
in this area are trying to develop software systems that can adapt to changing
environments producing new behaviors from local events. The goal of Emergent
Enterprise Software Systems is to facilitate the cooperation across enterprise
boundaries by self-adapting the business process.

The degree of human involvement in the (re)design of business processes can
vary and is a continuum ranging from completely manual design to autonomic
behavior with enforcement of self-x properties, and finally the automatic extrac-
tion of new processes. This continuum is the top layer of Figure 1.

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 17–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



18 A. Buchmann et al.

Fig. 1. Business processes from the system perspective

Processes are at the core of process aware software systems. Processes must be
represented by a model in the corresponding formalism or language. The mod-
eling formalism may range from intuitive and mostly graphic representations,
such as BPMN, to more formal notations based, for example, on petri-nets or
variants of process algebras, such as CCS or Pi-calculus. To automate the pro-
cess design or redesign, a formal model is needed. Informal or intuitive graphical
notations are good for human consumption but unsuitable for automatic process
extraction. This is the middle tier in Figure 1.

Processes must be mapped to the corresponding execution environment for
enactment. The by now established platform for enactment of business processes
are web services. Many of the most interesting new applications, however, are
monitoring and reactive applications responding to events that are sensed by
a multitude of sensors or are generated through event aggregation, composition
and/or derivation. These applications are not well served by web services and ser-
vice oriented architectures. There are two main reasons: 1) Web services employ a
request-respond invocation mechanism, i.e., they are primarily pull-based. Mon-
itoring and reactive applications are better served by push-based dissemination
(of streams) of events and their associated data. 2) Web services have been con-
ceived as black boxes that hide the middleware they are running on. Only recent
efforts [21] have tried to provide for vertical service composition that enables the
execution of services on the best suited middleware platform. The lower portion
of Figure 1 shows the two complementary paradigms and the corresponding ar-
chitectures: Service Oriented Architecture (SOA) for more traditional pull-based
invocation and Event Driven Architecture (EDA) for push-based invocation. It
is our conviction that environments for execution of a broad range of business
processes must offer both kinds of invocation. However, since SOA is well estab-
lished for the processing of business processes, we will concentrate on EDA, its
advantages and challenges.



From Calls to Events: Architecting Future BPM Systems 19

The advantages of EDA consist in the loose coupling between producers and
consumers of events that lead to easy extensibility of systems, and the celer-
ity with which events are detected, propagated and reacted to. The challenges
consist in establishing a common understanding of the semantics of events and
the execution of triggered tasks, and in establishing understandable correctness
criteria for the execution of event driven business processes.

The remainder of this paper discusses events and event composition in Section
2; Section 3 presents briefly EDA; Section 4 discusses quality of service in Event
Driven Architectures; Section 5 presents the concluding discussion.

2 Events and Event Composition

There exist many interpretations of what an event is. Often these different in-
terpretations are community-specific. Therefore, we start by introducing a clas-
sification proposed by Chandy and Schulte in their book ’Event Processing,
Designing IT Systems for Agile Companies’ [7] that reflects some of the ongoing
debate. There are three views of what an event is, each being true from one per-
spective but none describing the whole truth or being equally useful in different
situations.

– An event is a happening of interest. This is an activity-based view of events
and quite intuitive. For example, a person entering a room or a container
leaving a warehouse. While easy to understand and useful for describing
a situation it is not helpful computationally and must be translated into
measurable quantities.

– An event is a (meaningful) change of state. This definition considers any
change in the model of reality that is observed as a potential event. Such a
change could be the detection of an RFID tag on a container at the warehouse
gate. This approach is very useful in implementing event based systems but
often requires deriving the more abstract event (e.g. the container leaving
the warehouse) from one or more observations. This definition depends on
detecting change and makes it difficult to handle observations that may be
of interest even though no change occurred.

– An event is a detectable condition that can trigger a notification. This is a
reporting-based view of events. This definition is somewhat more general
than the change of state view in that it also considers the absence of change
as a detectable condition. However, it depends on a reporting capability
in the form of notifications, defined as an event-triggered signal sent to a
run-time recipient. This view of events is quite useful to detect all kinds of
events, even observations that do not depend on a change, but anything that
is either not observed or not reported is not considered an event.

In [14] we expanded the second definition above, by including time as a basic
dimension, thereby allowing us to consider two observations taken at different
times to be considered as two events even if none of the other dimensions describ-
ing the state have changed. Notifications are the natural way of notifying parties
interested in an event, usually via a publish/subscribe notification service.



20 A. Buchmann et al.

2.1 Important Concepts in Event Driven Architectures

Event types and event instances: The event type determines the attributes of an
event and its structure. An event instance is a particular materialization of an
event type and may be identified either through an event-identifier or through a
unique combination of attribute values.

Event objects, event representations and notifications: An event carries a times-
tamp and descriptive parameters and is typically represented as a tuple of values.
This representation is called the event object. Event objects can have other rep-
resentations, for example, an XML document. When the event object is packaged
into a message, we talk about an event notification.

Temporal events are first class citizens. We distinguish between absolute tempo-
ral events and relative temporal events. Absolute temporal events conceptually
consist only of a timestamp and the source and have a simple representation.
The timestamp has a given granularity that is often encoded in the format of the
timestamp and an identifier of the clock that may be omitted in centralized sys-
tems. Relative temporal events are time offsets relative to a base event. The base
event can be either an absolute temporal event or it could be any other event.
The granularity of the offset can be specified as a function of the capability of
the clock and the requirements of the application.

State events are sometimes identified as a special kind of event to distinguish
them from change events, i.e. the change of state. State events are observations in
which the observed quantity may not have changed but only time has advanced.
Given the framework proposed earlier to include time as an integral part of
the definition of state, there is no need to make a distinction for state events.
Subscribers to state events must provide the frequency at which they need the
observation events.

Change events refer to any change of state. We must restrict ourselves to mean-
ingful state changes. What is meaningful is determined by an event consumer
who subscribes to events. The producer may generate events at a certain rate,
for example, every second, but one consumer of those events is only interested
in every tenth event while another consumer needs that type of event only every
minute, i.e. every 60th event.

Event filtering is applied to eliminate those events that were observed but for
which no interest exists. Event filtering can occur in principle anywhere along
the path between producer and consumer of a certain event type. Placing the
filter near the event source minimizes the notification costs and the processing
cost for the event consumer.

Simple events are basic events that are not the result of some composition.

Complex events are all the events that are the result of an event processing step
that combines several events or enriches the events with context information.
We distinguish between composite and derived events.



From Calls to Events: Architecting Future BPM Systems 21

Composite events are the result of combining multiple events, typically through
the operations of an event algebra. Although this is not always accepted, the
glossary of the Event Processing Technical Society (EPTS) [19] defines that
composite events always must carry all the constituting events. A special case
of composite events are aggregate events which are formed through applica-
tions of the standard aggregation operators, such as average, sum, max, min,
count, or top-k. Aggregate events rarely carry the full set of simple events
that were aggregated. Particularly in wireless sensor networks it is the goal
to reduce the volume of transferred events and only the aggregation is propa-
gated.

Derived events are events of a higher level of abstraction. For example, if we
observe 3 failed login attempts we might consider this to be an attempt to
penetrate the system, or 10 temperature readings that increase monotonically
imply a failure of the air conditioning system. Derived events are the events one
typically expects when talking about complex event processing. They can be
quite abstract and may involve correlation of events with external information.
For example, the sale of stock by a manager of a pharmaceutical company two
days before it is publicly known that a new drug will not be approved by the FDA
might be an insider trading event. The combination of events with additional
information, either from external sources or from databases, is generally referred
to as event enrichment or event contextualization.

Complex event processing encompasses event filtering, aggregation, composition
and derivation, as well as event contextualization. Complex event processing
can be accomplished with several mechanisms. Most common is the processing
of streams of event objects on which windows are defined [5]. Stream processing
systems apply the operators of an algebra, for example those of relational algebra,
to the instances of event objects in a window. Windows can be defined based on
a number of objects in the window or based on time intervals. They can also be
sliding or tumbling. Sliding windows open a new window at predefined intervals.
If the interval for opening a new window is the size of the window, we speak of
tumbling windows.

An alternative (or complement) to stream processing is the correlation of
events, e.g. based on time. This approach is typical in sensor fusion. More so-
phisticated event compositions are based on event algebras that typically contain
operators for sequencing (ordered events), intersection (AND, two events occur-
ring in any order), union (OR, any of two events occurring), negation (an event
NOT occurring in a well-defined interval), accumulation (ANY n events occurring
in a well-defined interval), etc. [10,6]. Complex events are then represented as
expressions of the event algebra. These expressions are transformed into a tree
structure in which the inner nodes are the operators of the algebra and the
operands (event objects) are at the leaves. These graphs are evaluated similarly
to query graphs in a database from the leaves to the root with the composite
event being the result of the evaluation of the root node.



22 A. Buchmann et al.

2.2 Events in BPM

Usage of events is supported in mainstream business process models such as
BPMN and UML activity diagrams by means of two workflow patterns: the “de-
ferred choice” pattern [25] and the “event-based task trigger” pattern [26]. These
offer an activity-based view of events; events are sent as messages to trigger sub-
processes. The producer of the event sends a single event as a direct message to
activate the subprocess. In this sense it is comparable with imperative program-
ming. The notion of streams of events, subscriptions and composition/derivation
of events is not considered yet.

3 Event Driven Architecture

A basic tenet of EDA is the loose coupling between event producers and event
consumers. This means that the producer of events need not be aware of who
will eventually consume the produced events. It also means that producer and
consumer of events should be decoupled in space and time. Spatial decoupling
results in distributed systems, temporal decoupling in asynchronous systems.
The main properties an EDA should fulfill as stated in [7] are:

– Reporting of current events as they happen
– Pushing notifications of events from the producer to the consumer
– Responding immediately to recognized events
– Communicating one-way without the need for acknowledgements
– Reacting to event notifications and not to commands

Events should be reported as soon as they happen rather than being stored
and later forwarded or requested by the consumer. Events will be reported as
discrete event objects that are packaged in a notification. A notification service
is thus responsible for prompt delivery of notifications. Consumers of events,
i.e. the applications, should respond immediately to relevant events. These three
conditions guarantee timely response of event driven systems.

Decoupling is important since events occur independently of the reactions.
Interested parties must subscribe to events in order to receive the corresponding
event notifications. Subscribers can also unsubscribe and this does not affect
the future detection of the events, only their notification. The event based in-
teraction pattern does not require any answer, i.e., the event producer will not
block. Because the event producer is not aware of the event consumers, it cannot
request the event consumer to execute any actions. Event driven systems are,
therefore, consumer controlled. Loose coupling provides the desired flexibility
because components need not be active at the same time and new components
can be added without affecting existing components as long as the notifications
do not change.



From Calls to Events: Architecting Future BPM Systems 23

3.1 Components of an Event Driven Architecture

An EDA minimally consists of three components: event producer, notification
mechanism, and event consumer, as shown in Figure 2. Event objects are ac-
cepted by the notification mechanism and packaged into notifications.

Fig. 2. Components of an EDA

Event producers detect events and produce event objects. The event object has
a structure that is defined by the event type and contains the necessary event
parameters. Event parameters are instantiated by the event detection process
and the event contextualization process. The event detection process typically
will probe the environment. The event contextualization process will add context
information, such as location of the detector and timestamp but may rely on
external data sources as shown in Figure 3, although for practical reasons type
and context information may be held locally.

Fig. 3. Event Producer

Event consumers receive event notifications from the notification mechanism.
Event consumers must unpack the event notification, extract the event object
and execute an action in response to the received event. In principle, the response
may be a local action, the invocation of a (remote) service or business process,
a rule that must be triggered, an event composition or storage of the event for
logging. Event consumers may act as event producers, for example, when they
produce a composite event that is forwarded. Figure 4 shows schematically an
event consumer.



24 A. Buchmann et al.

Fig. 4. Event Consumer

The notification mechanism is the most interesting component of the whole
EDA. Its function is that of a communication channel that pushes events from
the producers to the consumers thereby providing an end-to-end push-style com-
munication. Because in an event driven interaction the producer does not know
the consumer, the notification mechanism must mediate the communication. In
its simplest form this could be a dedicated communication channel carrying all
the events of a producer to the consumer, or it could be a sophisticated pub-
lish/subscribe system. We will analyze the spectrum of options. The relevant
questions are:

– How are producers and consumers brought together?
– Does the channel deliver all messages or does it filter?
– If filtering is done, on what criteria and where are the filters placed?
– Are events transformed or only routed by the notification mechanism?
– If transformations are applied, where are they applied and what are they?

3.2 Channel-Based Notification Systems

Common Area Channels of two kinds are popular: blackboards and queues. In
a blackboard-type channel, publishers post their detected events to a common
area and consumers pick up events from there. Examples of blackboard-type
common areas are tuple-spaces. An extreme form of a persistent tuple-space
is a relational database. Queues are message buffering structures administered
by a queue manager. Queues come in a variety of flavors: persistent vs. non-
persistent, transactional vs. non-transactional. Common-area channels provide
asynchrony and loose coupling but do not fulfill the requirement of end-to-end
push-style notification required for EDA, since consumers must pull events from
the common area. Therefore, we will not pursue common-area channels further
in this discussion.

Notification Routing Channels contain one or more brokers that implement some
form of routing table. Routing tables are built based on event subscriptions.
Consumers declare their interest in certain (types of) events and the brokers
mediate between producers and consumers. If no filtering occurs in the broker, we



From Calls to Events: Architecting Future BPM Systems 25

Fig. 5. Event Transforming Broker

speak about flooding. The power of notification routing channels, however, lies in
the ability to filter event notifications and deliver only the relevant notifications
to the consumer.

Notification Transforming Channels consist of a network of brokers, each of which
can act as a consumer and producer of events. Notification transforming chan-
nels in their simplest form take in an event and change the structure of the
event object and/or the format of one or more parameters. Events can also be
enriched with external context data, aggregated or composed with other events.
The Notification Transforming Broker receives an event notification, unpacks it,
transforms the event, re-packs it into a notification and routes the new notifica-
tion according to its routing table. This type of broker is shown schematically
in Figure 5. Event transforming brokers are used in some advanced types of
publish/subscribe systems and Enterprise Service Busses.

3.3 Publish/Subscribe Notification Systems

Publish/Subscribe is the mechanism of choice in Event Driven Architectures.
Although it is possible to implement an EDA with other notification channels,
Pub/Sub offers many advantages. In a Pub/Sub system, consumers subscribe
to events of interest. Subscriptions are mapped to routing tables and to filters.
Optionally, event producers can advertise the types of events they are prepared
to produce. Depending on the filtering and the kind of routing performed by the
brokers, we can distinguish different classes of publish/subscribe systems:

Channel-based Pub/Sub provides a named channel to which subscribers can sub-
scribe. All the events of a given type are dumped into the channel. The subscriber
receives all the notifications published to this channel and must apply the filters.
This is the approach used in early middleware platforms, e.g. CORBA Event Ser-
vice [22]. The CORBA Notification Service [23] improves the Event Service by
providing filters.

Type-based Pub/Sub uses path expressions and subtype inclusion tests to se-
lect notifications. Through multiple inheritance, the subject tree can thus be



26 A. Buchmann et al.

converted into a type lattice with multiple rooted paths to the same node. This
approach circumvents some of the limitations of simple subject hierarchies [24].

Topic-based Pub/Sub is the approach associated with the Java Messaging Service
[27]. Topic-based pub/sub uses channels that include filters. Filtering is done
through Boolean predicates defined on the envelope of the notification. While
the filters that can be expressed are quite flexible their expressiveness is limited
by the fact that they can only be defined over the metadata contained in the
header.

Content-based Pub/Sub extends matching to the content of the body of the
message rather than limiting it to the header. The expressiveness of this approach
is determined to a large extent by the data model used for the content and the
corresponding formalism for expressing the filter predicates. Systems have been
proposed based on simple template matching [9], filter expressions on name/value
pairs [1] and XPath expressions on XML documents [11]. A tacit assumption
for content-based pub/sub to work is the existence of a common name space
and context used by publishers and subscribers. This is often the case in small
systems but rarely in large, heterogeneous environments.

Concept-based Pub/Sub [8,12] addresses the problem of implicitly assumed se-
mantics and makes the semantics of advertisements, subscriptions and notifica-
tions explicit. Concept-based pub/sub associates a context with each notification
and filter. Matching compares first if the contexts of filter and notification are
the same. If true, the normal content-based pub/sub approach kicks in. If the
contexts of filter and notification are different, an ontology service is invoked
to resolve the different semantics, for example by converting currencies or for-
mats of dates. This approach can be used in conjunction with many of the other
pub/sub approaches in large, heterogeneous environments.

3.4 Hybrid Architectures

Real-life systems rarely conform to the pure reference architecture. Therefore, it
is necessary to combine different invocation styles in the form of hybrid archi-
tectures. Referring to Figure 4, the event consumer may trigger a request-driven
interaction to a business process or a service in a SOA, resulting in an event
driven SOA. Likewise, an event may trigger a request to a queue to pick up
something posted there. Both architectural styles must coexist.

4 Quality of Service in Event Driven Architectures

End to end Quality of Service (QoS) in an EDA can be affected by various
components. Large event driven systems are often distributed, so the network
characteristics play a big role. For example, messages may be delayed, lost or
arrive out of order. This must be considered when looking at the achievable QoS
of the components of an EDA. We will consider four aspects in this section:
the QoS of the stream processing mechanism, the QoS of the algebra-based



From Calls to Events: Architecting Future BPM Systems 27

event composition mechanism, the QoS provided by the notification mechanism,
and the effect on transactional behavior of business (sub)processes if these are
triggered by an event.

4.1 QoS of Stream Processing

Stream processing is used to detect patterns and raise alarms or trigger rules or
actions when certain patterns are observed. Stream processing is highly depen-
dent on the nature of the streams. While the operators used in stream processing
resemble the operators of relational algebra but applied to windows (when the
event objects are tuples), the nature of streams is quite different from the na-
ture of data in a database. Event objects in a stream arrive continuously and are
usually processed in arrival order. They are generated by external sources that
are outside the control of the stream processing system. Therefore, the input
characteristics can’t be controlled and event objects may be lost or corrupted.
The volume of incoming streams may vary widely depending on the subscription
pattern of the application, and the structure of the event objects may range from
simple tuples to XML documents or even unstructured data, such as images.

Stream processing requires continuous processing of incoming event objects.
Since applications depending on stream processing typically have timing con-
straints to meet, the timeliness of a response is one of the most relevant QoS
requirements. Many applications that depend on stream processing can tolerate
approximate results. Therefore, it is common to trade-off accuracy for timeliness.
A closely related QoS metric is the achievable throughput. Throughput is less
sensitive to load than response time.

Stream processing systems attempt to optimize continuous query execution
to maximize throughput. However, load shedding is often the only practical ap-
proach, resulting in a trade-off of accuracy for timeliness. Application processes
must be aware of this and specifications of expected timeliness and tolerable
accuracy are required during business process design.

Another issue that is application dependent is the tolerance to events being
processed out of order. Research on how to deal with out of order events in
streams [4] has been incorporated into some of the industrial offerings.

4.2 QoS of Event Composition

The achievable QoS in event composition depends largely on the possibility to
establish an ordering between events. While operators such as intersection and
union do not require ordering, the sequence operator, which is part of most event
algebras, requires an ordering of events. The natural ordering is done on time.
This is perfectly fine if there is only one central clock and at most one event can
occur per clock tick. As soon as multiple events can occur simultaneously and
are time-stamped by different clocks it becomes impossible to establish a total
order.

The granularity of time is also important when trying to establish an ordering.
Two events with distinguishable order with timestamps of fine granularity (e.g.



28 A. Buchmann et al.

milliseconds) may not be distinguishable with coarser timestamps (e.g. seconds).
Some applications are not affected, while for others it is essential. For example,
if a tagged container passes two RFID readers, the proper sequence determines
the derived event that the container has either entered or left the warehouse.
It is often the case that application semantics or additional information sources
must be brought in to resolve ambiguities. However, in case of ambiguity, the
underlying middleware should never arbitrarily choose a solution and pretend
there exists an unambiguous ordering.

The delay or loss of messages, especially in wide area networks, is another
source of potential ambiguity. To evaluate the negation operator, i.e. to deter-
mine whether an event did not occur in a given interval, one must be able to
establish that the message with the notification is neither lost nor delayed. In
networks with bounded delay, the 2g precedence model is adequate [15]. It es-
tablishes that anything outside an interval formed by one maximum delay before
to one maximum delay after a given point in time can be known with certainty.
For unbounded networks, such as the Internet, an approach based on sweeper
events has been proposed [16]. It does not assume ordering, but requires only
that two events in the same channel do not overtake each other. By injecting the
heartbeat events from an outside time service, the recipient knows that every-
thing coming over that channel after the heartbeat must be younger. Delivery
in publishing order can be ensured by the messaging middleware. The past be-
fore the heartbeat thus becomes certain while the past between the heartbeat’s
timestamp and the present is still uncertain.

The last issue impacting the QoS of the event composition is the order in
which events are consumed. Event expressions are written based on event types.
Expressions are instantiated by the arrival of instances of events that are part of
an expression. If we do not specify in what order the events should be consumed,
we can’t have clear semantics. For example, the expression E AND C with an event
stream e1, e2, c1 would consume e1 AND c1 under chronological consumption,
but e2 AND c1 if we use the most current instances of an event type. A good
solution to this problem was given in [6], but the domain expert must decide what
semantics fit the application. It is equally important that the event composition
software offers the right choices.

4.3 QoS of the Notification Mechanism

The notification mechanism is essential to disseminate event notifications in an
asynchronous and decoupled way. Event driven business process components
subscribe to events and a single event notification can trigger or change the
execution of a business process. It is thus necessary to make business process
components aware of the QoS of the underlying notification mechanisms. Com-
ponents that rely on events should therefore be able to express QoS demands.
Different QoS properties are adopted in current notification middleware, e.g., in
JMS brokers.



From Calls to Events: Architecting Future BPM Systems 29

– Persistence: The middleware takes extra care to ensure that no event noti-
fications are lost in case of a server crash by buffering them on persistent
storage.

– Delivery Mode: The delivery mode determines whether events are delivered
at least once, at most once, or exactly once.

– Durability: With non-durable subscriptions a subscriber will only receive
notifications that are published while he is active. With durable subscriptions
notifications are buffered in case subscribers temporarily disconnect.

– Transactions : A notification session can be transactional or non-transactional.
A transaction is a set of notification operations that is executed as an atomic
unit of work, e.g., send all or discard all notifications in a session.

– Order : When order of event notifications is guaranteed, the middleware en-
sures that notifications arrive in the order they were published.

– Performance: The number of event notifications that can be handled by the
middleware in time (throughput and latency).

A more detailed discussion of quality of service in Publish/Subscribe systems is
presented in [2].

4.4 QoS of Transaction Management

Business processes often require transactional behavior. However, transactions
come in many different flavors. Database transactions are tightly coupled and
guarantee full ACID properties (atomicity, consistency, isolation and durability).
This is possible because the DBMS has full control over (synchronous) commu-
nication, execution, storage, and release of results. In object transactions, the
components communicate directly with each other 1:1 and communication is
reference based, i.e., each component knows its counterpart and how to address
it directly. Interaction requires communicating components to be present at the
same time and the requestor blocks while the other component answers. This
ought to be compared to a mediated communication based on publish/subscribe,
where n producers communicate with m consumers, the addressing is not refer-
ence based but logical, e.g. content-based, and asynchronous. If transactions are
to be executed successfully when producers and consumers of notifications are
completely decoupled by the middleware, the middleware must be incorporated
into the transaction.

This is the approach originally purposed by Middleware Mediated Transac-
tions (MMT) [18,17]. The key to this proposal is to incorporate the sending
and receiving of notifications into the transactional boundaries of the producer
and/or the consumer of the notification. This, together with a controlled delivery
mode by the messaging middleware as described above, defines a very flexible
and powerful transaction model for event driven systems.

The key properties of MMTs are grouped by so-called coupling modes that
reflect the visibility rules, commit and abort dependencies of complex transaction
models [3].



30 A. Buchmann et al.

– Visibility refers to when a notification is sent to consumers relative to the
completion of the producer’s transaction: with immediate visibility, notifica-
tions are sent to the middleware and on to consumers before the producer’s
transaction commits. On commit (abort), notifications are sent out only af-
ter a commit (abort) of the producing transaction. Deferred visibility means
that notifications are propagated when the producer begins the commit pro-
cess.

– Context allows the recipient of a notification to join the same transaction
context as the producer (shared context) or the middleware or the consumer
may establish a separate context for the recipient (separate context).

– Forward dependency limits the freedom of the consumer of a notification
to commit. A forward commit dependency means that the consumer of a
notification may only commit if the producer commits. Likewise, a forward
abort dependency states that the consumer can only commit if the producer
aborts.

– Backward dependency limits the freedom of the producer of an event noti-
fication to commit. If vitally coupled, the producer may only commit if the
consumer transaction committed. A marked-rollback producer may complete
but may be rolled back on request of the consumer.

– Production of a notification in transactional mode limits the delivery of the
event notification to the mediating middleware to after the commit of the
producer. An independent production policy leaves the decision to the pro-
ducing transaction how a failure in delivery should be handled.

– Consumption refers to when the event notification is considered to have been
delivered. It could be either on delivery, or when the recipient returns from
executing its reaction, or when the consumer begins commit.

QoS of event driven systems is still a wide open area. We do not advocate
a specific solution for stream processing, event composition, notification or a
transaction model for EDA. Instead, we raise awareness of the issues that must
be addressed jointly by researchers, product vendors and domain experts.

5 Summary and Conclusions

An increasing number of sensors and other sources are generating streams of
valuable information that business processes should exploit. To support this,
process models and the formalisms used for their description need to be expanded
to represent more powerful notions of events and their integration as first class
citizens in the specification and design of business processes.

We made a case for hybrid architectures combining a Service Oriented Archi-
tecture with an Event Driven Architecture. Both architectural styles are needed
to satisfy the requirements of modern process oriented enterprises.

Domain experts should exploit the benefits of event processing to improve
timeliness and agility. At the same time they must be aware of limitations and
potential pitfalls.



From Calls to Events: Architecting Future BPM Systems 31

End to end QoS is important for business processes. We identified four aspects
that can affect the end to end QoS in an Event Driven Architecture. Additional
elements are required in the modeling formalisms for the specification of quality
of service expected by business processes and the acceptable trade-offs.

Acknowledgements. We wish to acknowledge many interesting discussions
with Mani Chandy, Dimitrios Georgakopoulos, Annika Hinze and Christoph
Liebig. Research underlying the present position paper was sponsored by Ger-
man Federal Ministry of Education and Research (BMBF) under research grants
ADiWa (01IS09020D) and Software-Cluster EMERGENT (01IC10S01) as well
as by Hessen Ministry of Higher Education, Research and the Arts under re-
search grant LOEWE Dynamo PLV. The authors assume responsibility for the
content.

References

1. Antollini, J., Antollini, M., Guerrero, P., Cilia, M.: Extending Rebeca to Support
Concept-Based Addressing. In: ASIS 2004 (2004)

2. Behnel, S., Fiege, L., Mühl, G.: On Quality-of-Service and Publish/Subscribe. In:
DEBS 2006 (2006)

3. Buchmann, A.P., Ozsu, M.T., Hornick, M., Georgakopoulos, D., Manola, F.A.: A
Transaction Model for Active Distributed Object Systems. In: Database Transac-
tion Models for Advanced Applications, pp. 123–158. Morgan-Kaufmann (1992)

4. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data
Management Applications. In: VLDB 2002. Morgan Kaufmann (2002)

5. Chakravarthy, S., Jiang, Q.: Stream Data Processing: A Quality of Service Per-
spective. Springer (2009)

6. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite Events for
Active Databases: Semantics, Contexts and Detection. In: VLDB 1994 (1994)

7. Chandy, K.M., Schulte, W.R.: Event Processing: Designing IT Systems for Agile
Companies. McGraw-Hill, Inc. (2010)

8. Cilia, M.A., Bornhövd, C., Buchmann, A.: CREAM: An Infrastructure for Dis-
tributed, Heterogeneous Event-Based Applications. In: Meersman, R., Tari, Z.,
Schmidt, D.C. (eds.) CoopIS/DOA/ODBASE 2003. LNCS, vol. 2888, pp. 482–502.
Springer, Heidelberg (2003)

9. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI Event-Based Infrastructure and
Its Application to the Development of the OPSS WFMS. IEEE Transactions on
Software Engineering (TSE) 27, 827–850 (2001)

10. Dayal, U., Buchmann, A.P., McCarthy, D.R.: Rules are Objects Too: A Knowledge
Model for an Active, Object-Oriented Database System. In: Dittrich, K.R. (ed.)
OODBS 1988. LNCS, vol. 334, pp. 129–143. Springer, Heidelberg (1988)

11. Diao, Y., Franklin, M.J.: XML Publish/Subscribe. In: Encyclopedia of Database
Systems, pp. 3608–3613 (2009)

12. Freudenreich, T., Appel, S., Frischbier, S., Buchmann, A.: ACTrESS - Automatic
Context Transformation in Event-based Software Systems. In: DEBS 2012 (2012)

13. Frischbier, S., Gesmann, M., Mayer, D., Roth, A., Webel, C.: Emergence as Com-
petitive Advantage - Engineering Tomorrow’s Enterprise Software Systems. In:
ICEIS 2012 (2012)



32 A. Buchmann et al.

14. Hinze, A., Sachs, K., Buchmann, A.: Event-Based Applications and Enabling Tech-
nologies. In: DEBS 2009 (2009)

15. Kopetz, H.: Sparse Time versus Dense Time in Distributed Real-Time Systems.
In: ICDCS 1992 (1992)

16. Liebig, C., Cilia, M., Buchmann, A.: Event Composition in Time-dependent Dis-
tributed Systems. In: CoopIS 1999 (1999)

17. Liebig, C., Malva, M., Buchman, A.: Integrating Notifications and Transactions:
Concepts and X2TS Prototype. In: Emmerich, W., Tai, S. (eds.) EDO 2000. LNCS,
vol. 1999, pp. 194–214. Springer, Heidelberg (2001)

18. Liebig, C., Tai, S.: Middleware mediated transactions. In: Blair, G., Schmidt, D.,
Takizawa, M. (eds.) DOA 2001. IEEE Computer Society (September 2001)

19. Luckham, D., Schulte, R., Adkins, J., Bizarro, P., Jacobsen, H.-A., Mavashev, A.,
Michelson, B.M., Niblett, P., Tucker, D.: Event processing glossary (2011)

20. Mann, S.: ebizQ (2012),
http://www.ebizq.net/topics/int_sbp/features/13366.html

21. Mietzner, R., Fehling, C., Karastoyanova, D., Leymann, F.: Combining Horizontal
and Vertical Composition of Services. In: SOCA 2010 (2010)

22. OMG. CORBA Event Service (2004), http://www.omg.org/spec/EVNT/1.2/PDF/
23. OMG. CORBA Notification Service (2004), http://www.omg.org/spec/NOT/1.1/
24. Pietzuch, P., Bacon, J.: Hermes: A distributed event-based middleware architec-

ture. In: ICDCSW 2002 (2002)
25. Russell, N., ter Hofstede, A.H.M., Mulyar, N.: Workflow ControlFlow Patterns: A

Revised View. Technical report (2006)
26. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow

Data Patterns: Identification, Representation and Tool Support. In: Delcambre, L.,
Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716,
pp. 353–368. Springer, Heidelberg (2005)

27. Sun Microsystems, Inc. Java Message Service (JMS) Specification - Ver. 1.1 (2002)
28. Weske, M., van der Aalst, W.M.P., Verbeek, H.M.W.: Advances in Business Process

Management. Data Knowl. Eng. 50(1), 1–8 (2004)

http://www.ebizq.net/topics/int_sbp/features/13366.html
http://www.omg.org/spec/EVNT/1.2/PDF/
http://www.omg.org/spec/NOT/1.1/

	From Calls to Events:Architecting Future BPM Systems
	Introduction
	Events and Event Composition
	Important Concepts in Event Driven Architectures
	Events in BPM

	Event Driven Architecture
	Components of an Event Driven Architecture
	Channel-Based Notification Systems
	Publish/Subscribe Notification Systems
	Hybrid Architectures

	Quality of Service in Event Driven Architectures
	QoS of Stream Processing
	QoS of Event Composition
	QoS of the Notification Mechanism
	QoS of Transaction Management

	Summary and Conclusions
	References




