
Dealing with Uncertainty in Mobile Publish/Subscribe Middleware

Ludger Fiege Andreas Zeidler
Darmstadt University of Technology (TUD)

64283 Darmstadt, Germany
{fiege|az }@dvs1.informatik.tu-darmstadt.de

Felix C. G̈artner Sidath B. Handurukande
Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
fcg@acm.org , sidath.handurukande@epfl.ch

Abstract
Because of its loose coupling between event producers and consumers, publish/subscribe (pub/sub) middleware has
many advantages when implementing systems for spontaneous, ad-hoc, pervasive applications. One main aspect of
such applications is device mobility, but unfortunately, most of the current pub/sub systems do not adequately support
mobile clients. Mobility has two orthogonal aspects:physical mobilityis concerned with location transparency (i.e.,
roaming clients) whilelogical mobility deals with location awareness (i.e., subscriptions are automatically adapted
to a client’s current location). To efficiently support mobility, it is necessary to adequately deal with the uncertainty
introduced by client movement. This paper sketches how this is done in the existing pub/sub middleware REBECA

and shows how to increase the efficiency of logical mobility by adapting the implementation of physical mobility.
The paper closes with a list of open research issues related to the use of pub/sub middleware in the context of mobile
and pervasive computing.

1 Introduction

Publish/subscribe systems for pervasive comput-
ing. The publish/subscribe (pub/sub) communication
paradigm is increasingly used in many application do-
mains and areas of computer science. It allows pro-
cesses to exchange information based on message type
or content rather than particular destination addresses.
Information about some event is published via notifica-
tions, which are conveyed by the underlying pub/sub no-
tification service. A consumer registers its interest in
certain kinds of notifications by issuing subscriptions,
and it gets notified by the notification service about any
newly published notification that matches at least one of
its subscriptions. Theloose couplingof producers and
consumers is the prime advantage of pub/sub systems
and has many applications in the context of spontaneous,
ad-hoc and pervasive environments.

Mobility support in pub/sub middleware. One ma-
jor characteristic of pervasive applications is mobility.
However, up to now research is mainly focused on us-
ing pub/sub middleware in rather static, non-mobile en-

vironments, i.e., systems where clients (producers and
consumers) do not roam and the infrastructure itself
stays rather fixed or is only changing slowly during the
system’s lifetime. Consequently, most pub/sub infras-
tructures (e.g., SIENA [1], JEDI [2], REBECA [3], to
name a few) have optimized algorithms for information
delivery in those settings. Support and optimizations for
mobile clients are not built-in features of the infrastruc-
ture; it is left to the applications to adapt or reissue sub-
scriptions.

Location transparency and physical mobility. A
first step towards mobility is to enhance existing pub/sub
middleware to allow for roaming clients so that existing
applications can be used in mobile environments. This
means that the interfaces for accessing the middleware
and the applications on top are not required to change.
More importantly, the quality of service offered by the
middleware must not degrade substantially. Generally
speaking,location transparencyis what makes existing
applications mobile, e.g., stock quote monitoring can
be seamlessly transferred from PCs to PDAs. Location
transparency is the main aspect of what is calledphysical
mobility.

Broker at Home Broker at Work

Broker Network

Roaming User

Office Floor

Broker
"Logical Mobility"

Figure 1: Physical mobility (left) and logical mobility (right).

Physical mobility is also a concern in the context of
disconnections. Clients often have to disconnect from
the pub/sub system (due to power-saving requirements
or because of geographical or administrative reasons
while roaming, e.g., different network cells or chang-
ing responsibilities). Often, theborder broker(i.e., the
access point to the pub/sub network) has changed after
reconnecting. For example, the border broker at home
is (physically and administratively) not the same as the
border broker at the office (see left side of Fig.1). For
the ease of use, change of location should be transparent
to the application as long as possible.

Location awareness and logical mobility. Full lo-
cation transparency can be counterproductive in some
cases. Most strikingly, location-based services (like
pervasive tourist guides) rely on an explicit knowledge
about the current location. More specifically, a system
supporting mobility should not only blend out unwanted
phenomena, like disconnectedness, but should also fa-
cilitate location awareness. Location awareness is the
main characteristic of what is calledlogical mobility,
that is, mobility that transfers an application into a differ-
ent context that requires to adapt subscriptions (note the
difference to the logical mobility as defined in LIME [4]
where it denotes code mobility).

A simple way to support logical mobility is to provide
location-dependent filters[5]. A location-dependent
filter is a subscription that refers to the current loca-
tion of the subscriber, thus makinglocation a first-
class concept within the pub/sub system. More pre-
cisely, location-dependent subscriptions postulate a spe-
cific markermyloc to be used in a subscription. The
marker stands for a specific set of locations that depends
on the current location of the client.

For example, a client could express his interest in
all temperature readings referring to his current loca-
tion (i.e., the particular office) as follows:(service =
“temperature”), (location ∈ myloc). The pub/sub sys-

tem ensures that this subscription is always mapped to
an appropriate set of locations which is application de-
pendent (see right side of Fig.1).

Logical and physical mobility in REBECA. Physical
and logical mobility are two orthogonal aspects of mo-
bility that can be treated completely separately. While
the former deals with rerouting subscriptions to new lo-
cations, the latter automates the adaption of subscrip-
tions. While the former is bound to the granularity of
the broker network, the latter can refer to a totally dif-
ferent notion of “location” (physical, system dependent
vs. logical, application dependent).

Logical and physical mobility have been studied in the
context of the REBECA system [6, 7]. The main prob-
lem when implementing both types of mobility is to deal
with the uncertainty in a client’s movement. When im-
plementing physical mobility, a complex reconfiguration
algorithm combined with a certain amount of buffering
ensures that a relocated client receives a transparent, un-
interrupted flow of notifications matching his subscrip-
tions [8].

When implementing logical mobility, a mobile client
moving from one location to another, e.g., from one
room to another on an office floor, will also expect a
frictionless change of location without a notable setup
time. The adaptation of location-dependent subscrip-
tions should take place “instantaneously.” Intuitively, we
would like to experience the notion of being subscribed
to “everything, everywhere, all the time” and increase
the reactivity of the system to clients moving. In the al-
gorithm for logical mobility [5] this is achieved by using
a movement graphthat reflects the possible locations a
client might move to. This graph can be regarded as a
formalization of movement constraints, thereby making
the uncertaintyexploitable by the mechanism of event
routing.

Aim of this paper. We have observed that the notion
of a location is not completely different in logical and
physical mobility. In general, the movement graph in
logical mobility is a refinement of the graph of possible
border brokers, i.e., logical mobility allows for mobility
within the scope of a single broker (as shown in Fig.1).
In this paper, we sketch how to exploit this observation
to implement an efficient handling of logical mobility in
cases where a change in logical location coincides with
a change in physical location.

Approach: Pre-subscriptions and virtual clients. In
the current implementation [5], location-awareness is
only efficiently supported if client movements remain
within the boundaries of a single border broker. When-
ever a client leaves this range, the location-dependent
subscriptions have to be re-issued at the next broker the
client connects to causing a non-negligible overhead.
This seems to be acceptable whenever a change of bro-
ker also implies a change of “view” or applications. For
example, location-aware applications typically found in
an office environment usually are different from those
found at home. But on the other hand, some applica-
tions in the context of pervasive computing do not draw
from those “logical localities” but rely on a longer last-
ing and more general notion of location-awareness, e.g.,
the weather at the region someone is currently located
in or the menus of restaurants along the route of a car.
Here, another notion of quality-of-service is needed: the
client wants to be informed about the situation at a new
location immediately.

Additionally, the client cannot rely on the fact that no-
tifications, for example, of the type “restaurant menu,”
happen to be published just as the client enters the new
broker’s range. The client may miss important notifi-
cations by a fraction of a second. In general this is
not avoidable without explicit support ofevent histo-
ries, introducing a complete new set of open research
issues, e.g., expiration and relevance of information. To
circumvent such problems we propose a more hands-
on approach and introducepre-subscriptionsandvirtual
clients: location-dependent subscriptions are issued at
probable new locations the client will emerge atin the
future while moving, before it actually gets there. In a
sense pre-subscriptions are “virtual clients” or “informa-
tion shadows” cast at possible new locations, subscrib-
ing to information related to the new location with only
a proxy being there. This approach exploits the ideas
in the REBECA implementation of logical-mobility [5].
The basic idea is to emulate the exact behavior of the
real client, with respect to location-dependent informa-
tion, without processing the information but buffering

them instead. This is exactly the “listen for a while” se-
mantics we intended: once a client actually arrives, all
buffered messages are delivered as if the client has been
there some time. In a sense, for the client this is equiva-
lent to asubscription in the past.

Related work. We are only aware of some pub/sub
systems offering support for mobile clients to some ex-
tent. Huang and Garcia-Molina [9] provide a good
overview of possible options for supporting mobility. An
extension to Elvin exists that allows for disconnected-
ness using a central caching proxy [10], but it is not
used for location-dependent subscriptions. CEA [11]
and JEDI [2], too, tackle problems of mobility. JEDI
uses explicit moveIn and moveOut operations to relo-
cate clients but also has no explicit notion of location as
a first class concept for pub/sub systems. The mobility
extensions of SIENA [12] are very similar to the JEDI ap-
proach. Probably the most related work is STEAM [13],
a middleware service designed for wireless local area
networks using the ad-hoc network model where there
are no access points and system wide services. Sub-
scribers only consume notifications produced by geo-
graphically close-by publishers. For this it relies on
proximity-based group communication. As a result it is
not clear how this approach can be applied in an appli-
cation like weather forecast for a particular remote lo-
cation produced by a forecasting service in a given re-
gion. Other communication paradigms facilitating loose
coupling, like Linda tuple spaces [14], were also inves-
tigated for their potential support of mobility (e.g., in
L IME [4]). However, for this paper we concentrate on
pub/sub systems and mobility.

Paper outline. We first give a very brief background
of basic pub/sub terminology in Sect.2. The extension
of current mobility approaches are presented in Sect.3.
We conclude this paper with a list of open research ques-
tions which we think are worthwhile to pursue.

2 Content-Based Publish/Subscribe

The following discussion is based on the REBECA no-
tification service [3, 7], which we use as basis for the
proposed mobility support.

Architecture. Processes of a system based on pub/sub
communication, which is also called anevent-based sys-
tem, can act both as producers and consumers, they are

clients of the underlying notification service. The com-
munication interface to the service is rather simple and
consists ofpub, sub, unsub, andnotify calls only; the
last one is an output function called on the registered
client to deliver a notification. Anotification is a mes-
sage that reifies and describes an occurred event. Notifi-
cations are not published towards a specific receiver, but
conveyed by the underlying notification service to those
consumers that have registered a matching subscription.

Filters are boolean-valued functions over notifica-
tions and a common way of implementing subscriptions.
The most flexible scheme for specifying these filters is
content-based filtering, which utilizes predicates on the
entire content of a notification [15].

B4

B1

X5

B2

B5

X1

X7

X8

X6

X2

X3

X4

B3

Local Client

Broker

Figure 2: The router network of REBECA.

The service implementation is distributed to meet the
mobility scenario and scalability considerations. The
communication topology of the pub/sub system is given
by a graph, which is assumed to be acyclic and con-
nected (Fig.2). The graph consists of brokers and
clients. The edges are communication links that are
point-to-point. Furthermore, messages are required to be
delivered in FIFO order on each link. Brokers are pro-
cesses that route the notifications along multiple hops to
the appropriate clients. Three types of brokers are dis-
tinguished:Local brokersconstitute the clients’ access
point to the middleware and are part of the communi-
cation library loaded into the clients; they are not rep-
resented in the graph, but only used for implementation
issues. A local broker is connected to at most one border
broker. Border brokersform the boundary of the dis-
tributed communication middleware and maintain con-
nections to local brokers, i.e., the clients.Inner brokers
are connected to other inner or border brokers and do not
maintain any connections to clients.

Possible routing strategies. Each broker maintains a
routing table that determines in which directions a noti-
fication is forwarded. Each table entry is a pair(F,L)
containing a filter and the link from which it was re-
ceived, denoting that a matching subscription is to be
forwarded alongL; this is a widely used data struc-
ture [1, 2]. The routing decision is assumed to be an
atomic operation so that the end-to-end sender FIFO
characteristic holds. The routing tables are maintained
to correspond to the available information about active
consumers and their subscriptions. Each broker for-
wards these information according to the routing algo-
rithm used.

The basic form of routing issimple routing: active
filters are simply added to the routing table according
to the link they belong to. Although improvements to
this strategy (e.g.,coveringandmerging) are available
in REBECA, for the sake of simplicity we assume simple
routing throughout this paper.

Mobile REBECA. In a pub/sub system implemented
using REBECA, it is also possible to support applications
running on small devices like smart cards, sensors, smart
labels that are connected to the immobile infrastructure
through a wireless link. Generally, these small devices
run some sort of application that should participate in the
event system, i.e., produce and consume notifications.
Two types of devices are distinguished: (i) devices pow-
erful enough to host a local broker, then it is no problem
to connect the device to the infrastructure. As long as it
is possible to establish and maintain a (TCP) connection
between the device and some event broker in the RE-
BECA backbone; and (ii) devices not powerful enough
to host a local broker. In this case it is possible to pro-
vide aproxywith the same interface as that of the event
broker through which the device transparently connects
to a virtual counterpart running at the border broker to
which it is connected (see Fig.3).

event broker event broker

stub

client
mobile device

virtual
client

wireless link

client

Figure 3: An architecture for mobile REBECA.

The translation between the operations is performed
over the wireless link using some existing technology
(WLAN, IrDA, Bluetooth) and hardware devices. We
assume that this hardware allows both the client and the
virtual counterpart to be “connection aware”, i.e., they
have means to check whether there is or is not an exist-
ing connection, and if there is no connection, whether
some border broker is in reachable distance. In the latter
case, it is possible to establish a connection to that bro-
ker, startup a virtual client and participate in the pub/sub
system.

3 Transparent Implementation of
Extended Logical Mobility

In this section we describe how extended logical mobil-
ity can be added to REBECA with physical and logical
mobility extensions using a clean layering approach (i.e.,
without having to change the internals of the underlying
routing framework). As we will argue later, this allows
to add the intended notion of “listening” to a pub/sub
system implementing logical and physical mobility.

3.1 Main Idea

The main idea of implementing extended logical mobil-
ity is to replicate the virtual client at several places in
order to set up notification flow for location-dependent
information well before the client reaches a particular
broker. Generally speaking, a virtual client is started
on every broker to which the client may connect in the
“near” future. As we cannot predict where a client will
move to in the future we do so to cope with the inher-
ent uncertaintyof movement in mobile systems. This
means, a client (and its associated virtual clients) is al-
ways surrounded by a set of identical virtual clients that
are ready to serve the mobile device as soon as it con-
nects to that particular broker. Of course, this set of vir-
tual clients must change when the client moves. New
virtual clients must be created at those brokers which
come into “range” of the client. Old virtual clients
(which leave the range) must be garbage collected.

At any time, only at most one of the virtual clients
is in fact associated with (and connected to) the “real”
client running on the mobile device. All other clients
should mimic the behavior of the real client, i.e., they
should subscribe and unsubscibe to the same location-
dependent filters as the client. However, only the vir-
tual client which is in fact connected to the mobile de-
vice publishes notifications and delivers notifications to
the mobile device. Unconnected virtual clients do not

publish notifications at all. However, they do buffer all
delivered notifications according to some application-
specific buffering policy. Note that, due to the na-
ture of location-dependent subscriptions, they only re-
ceive and buffer information related to their own loca-
tion (i.e., those subscriptions a client arriving at that lo-
cation would have). Also note that the replication strat-
egy need not be applied to any subscription which is not
location-dependent. Those subscriptions are catered for
by the standard relocation algorithm for physical mobil-
ity as proposed in [8]. Consequently, subscriptions for
location-dependent information at the current broker are
not touched by the algorithm proposed here, for those
subscriptions are covered by standard logical mobility
as proposed in [5]. This is reasonable in order to keep
different aspects of mobility cleanly separated.

3.2 Algorithm

We have to assume that the mobile client obeys some
movement restriction. We formalize this restriction as a
movement graphwith brokers as vertices. In this graph,
an edge exists between brokerb1 andb2 if and only if
the client may connect tob2 after disconnecting from
b1. In many system settings it is feasible to define such a
movement graph. For example, if base stations in a GSM
network contain a local broker each, the neighborhood
relationship between them defines the movement graph
for the system (we will discuss the effects of different
movement graphs later).

Within the algorithm, the movement graph is formal-
ized as a functionnlb : B → 2B , whereB denotes the
set of all local brokers and2B denotes the powerset of
B, i.e., the set of all subsets ofB. The name “nlb” stands
for “next local broker”. For someb ∈ B, nlb(b) yields
the set of all brokers which are reachable fromb using
exactly one edge in the movement graph. This set can be
seen as the “neighborhood” ofb (excludingb itself).

The algorithm is implemented within a horizontal
layer between virtual clients and local border brokers
(see Figure4). With every broker process we associate
an additionalreplicator process. This process offers the
same interface as the actual broker. Instead of invoking
methods of the broker interface itself, virtual clients in-
teract with the replicator process of the broker.

The replicator process is transparent to virtual clients.
The operationspublish, subscribe, andunsubscribeare
passed (downwards) through to the local border broker.
Similarly, invocations ofnotify are passed (upwards) to
the virtual client. Additionally, the replicator process

event broker event brokerevent broker

replicator replicator replicator

client B

stub

client A
mobile device

wireless link

active virtual client
buffering virtual client

for A for A
client
virtual

client
virtual

Figure 4: Transparent implementation of extended logical mobility on top of a mobile pub/sub system.

can interact autonomously with the replicator processes
at neighboring event brokers through direct TCP con-
nections (see Figure4). The replicator knows thenlb
function and is aware of which virtual client is currently
connected to a mobile device and which is not.

3.2.1 Client Setup

Whenever an application is started on a mobile device
which is connected to some local border brokerb, a vir-
tual client is started for the application at the broker. To
implement extended logical mobility, the replicator in-
spects the setnlb(b) and instructs all border brokers in
this set to create the same virtual client together with
the same set of location-dependent subscriptions. In this
way, whenever the client moves to a neighboring broker,
a virtual client will already exist there and provide an
initialized stream of (buffered) notifications relevant for
the new location.

3.2.2 Client Operation

Operations likepublish and notify are handled trans-
parently by the replicator layer. However, if the client
subscribes or unsubscribes to a particular location-
dependent filter, the replicator must also instruct all bro-
kers innlb(b) to (un)subscribe to the same filter.

3.2.3 Client Handover

Whenever the mobile device on which the client runs
leaves the range of brokerb1, the virtual client atb1 no-
tices this and starts to buffer notifications instead of de-
livering them to the client. When the device enters the

range of brokerb2, the virtual client atb2 notices this and
starts to deliver notifications to the client whenever they
arrive. The delivery starts with a replay of all buffered
notifications with information relevant to the new loca-
tion. The replicator atb2 must now inspect the following
two sets

oldset= nlb(b1) newset= nlb(b2)

which resemble the neighborhood of brokersb1 andb2

respectively. Now, the replicator must ensure that new
virtual clients for the application must be created on all
brokers innewset\ oldsetand the virtual clients can be
deleted on all brokers inoldset\ newset.

3.2.4 Client Removal

Whenever an application is turned off, the system deletes
the associated virtual client on the local brokerb. Addi-
tionally, the replicator atb has to garbage collect all vir-
tual clients which are running on the neighboring bro-
kers, i.e., all brokers in the setnlb(b).

4 Open Issues and Research Agenda

Mobility support in existing pub/sub systems is far from
perfect. Taking up some open points from the previous
section, we conclude the paper by stating some of the
new research questions which we consider worthwhile
pursuing.

Scalability and dynamic environments

Scalability of efficient content-based filtering algorithms
has been investigated for the standard, i.e., non-mobile,
environments [16]. Pervasive environments with their
complex issues of different forms of mobility pose
greater challenges both in the number of clients to sup-
port as well as in the dynamics of their behavior. How
scalable are implementations of logical and physical mo-
bility? How can the efficiency of the underlying routing
framework best be exploited?

Dealing with further uncertainty in user movement

The job of the replicator layer is to ensure that a virtual
client is running on every local broker which is “around”
the current physical location of the client. This ensures
that when a client moves to a new local broker, he can
immediately start to receive a stream of notifications
without having to subscribe to his interests anew. With
an application-dependent buffering scheme it is also pos-
sible to cater for longer periods of disconnection, as long
as the next broker to which the client connects is one of
the neighboring brokers on which a virtual client is al-
ready running.

One reason for disconnecting from the network is to
save power by shutting down the device. Combined with
client movement, this implies that a client may always
“pop up” atany placein the broker network, i.e., places
which are not covered bynlb and hence where no vir-
tual client is running. Basically it would be possible
to change the definition ofnlb to cover (almost) every
broker. However, this would mean that a virtual client
is running (almost) everywhere in the system. In this
case the scheme would degenerate to flooding, a very
unpleasant situation.

In practice it will be a challenge to devise instances of
nlb that are as “large” as necessary (to cater for a lot of
different forms of user movement) but are as “small” as
possible (to not waste too much bandwidth). In is sensi-
ble to offer an “exception mode,” meaning that if a client
connects to a local broker where no appropriate virtual
client is running, it may be possible to start such a virtual
client on the fly and retrieve buffered notifications from
some other virtual client of the application. In general,
it will probably be acceptable for users to expect some
form of degraded service after long periods of discon-
nection.

Embedding event histories

Event histories can provide a certain form of buffering of
notifications at virtual clients. Event histories can also
be introduced at well-chosen points within the imple-
mentation of logical mobility. In general, such a history
is specified by a garbage collection policy.

Garbage collection can be time-based, history-based
or semantic-based. In a time-based scheme, all notifi-
cations published more thant seconds ago are deleted
from the buffer. In a history-based scheme, the buffer
always keeps the lastn notifications. Both schemes can
be combined. In semantic-based scheme new events
can nullify old events (similar to [17]). In general, the
buffering scheme is application dependent. What are
the best buffering schemes for certain applications and
where should buffering take place exactly?

If virtual clients buffer notifications individually, they
may consume memory redundantly by keeping the same
data. A shared buffer at the border broker can be used
and virtual clients can keep only the digest (e.g., IDs or
hash) of the events. Then the digest can be used to fetch
events from this buffer and the events can be garbage
collected according to a chosen policy when none of the
virtual clients need them. Such schemes that reduce the
resources at virtual clients need more exploration.

From location-awareness to context-awareness

Another important building block for the use in per-
vasive environments is to generalize the concept of
location-dependent subscriptions to “state-dependent”
subscriptions, opening the whole area of context-
awareness [18] to the domain of pub/sub middleware
systems. How can systems implement or make use of
such dynamic filters, which depend on a function of the
local state of the client (not only its current location)?

Acknowledgments

We thank Gero M̈uhl for his cooperation in the RE-
BECA project and Oliver Kasten for many helpful dis-
cussions on the topic of location-dependent subscrip-
tions. Work by Ludger Fiege and Felix Gärtner was sup-
ported by Deutsche Forschungsgemeinschaft (DFG) as
part of PhD program “Enabling Technologies for Elec-
tronic Commerce” and the Emmy Noether program, re-
spectively.

References

[1] Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Design and evaluation of
a wide-area event notification service.ACM
Transactions on Computer Systems, 19(3):332–
383, 2001.

[2] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS.IEEE Transac-
tions on Software Engineering, 27(9), 2001.

[3] Gero Mühl. Large-Scale Content-Based Pub-
lish/Subscribe Systems. PhD thesis, Darmstadt
University of Technology, 2002.

[4] Amy L. Murphy, Gian Pietro Picco, and Gruia-
Catalin Roman. LIME: A Middleware for Physi-
cal and Logical Mobility. In Forouzan Golshani,
Partha Dasgupta, and Wei Zhao, editors,Proceed-
ings of the 21st International Conference on Dis-
tributed Computing Systems (ICDCS-21), pages
524–533, May 2001.

[5] Ludger Fiege, Felix C. G̈artner, Oliver Kasten, and
Andreas Zeidler. Supporting mobility in content-
based publish/subscribe middleware. InIFIP/ACM
International Conference on Distributed Systems
Platforms and Open Distribued Processing (Mid-
dleware 2003), 2003.

[6] Ludger Fiege and Gero M̈uhl. Rebeca Event-
Based Electronic Commerce Architecture,
2000. http://www.gkec.informatik.
tu-darmstadt.de/rebeca

[7] Ludger Fiege, Gero M̈uhl, and Felix C. G̈artner. A
modular approach to build structured event-based
systems. InProceedings of the 2002 ACM Sympo-
sium on Applied Computing (SAC’02), pages 385–
392, Madrid, Spain, 2002. ACM Press.

[8] Andreas Zeidler and Ludger Fiege. Mobility sup-
port with REBECA. In Proceedings of the 23rd In-
ternational Conference on Distributed Computing
Systems (ICDCS) Workshop on Mobile Computing
Middleware (to appear), 2003.

[9] Yongqiang Huang and Hector Garcia-Molina. Pub-
lish/subscribe in a mobile environment. InPro-
ceedings of the 2nd ACM International Workshop
on Data Engineering for Wireless and Mobile Ac-
cess (MobiDE01), Santa Barbara, CA, May 2001.

[10] Peter Sutton, Rhys Arkins, and Bill Segall. Sup-
porting disconnectedness – transparent informa-
tion delivery for mobile and invisible computing.

In First International Symposium on Cluster Com-
puting and the Grid, pages 277–287, Brisbane,
Australia, May 2001. IEEE/ACM.

[11] Jean Bacon, Ken Moody, John Bates, Richard Hay-
ton, Chaoying Ma, Andrew McNeil, Oliver Seidel,
and Mark Spiteri. Generic support for distributed
applications.IEEE Computer, 33(3):68–76, 2000.

[12] Mauro Caporuscio, Paola Inverardi, and Patrizio
Pelliccione. Formal analysis of clients mobility in
the Siena publish/subscribe middleware. Technical
report, Department of Computer Science, Univer-
sity of L’Aquila, October 2002.

[13] R. Meier and V. Cahill. STEAM: Event-based mid-
dleware for wireless ad hoc networks. InPro-
ceedings of the International Workshop on Dis-
tributed Event-Based Systems (ICDCS/DEBS’02),
pages 639–644, 2002.

[14] N. Carriero and D. Gelernter. Linda in context.
Communication of the ACM, 32(4):444–458, April
1989.

[15] Gero Mühl. Generic constraints for content-
based publish/subscribe systems. In C. Ba-
tini, F. Giunchiglia, P. Giorgini, and M. Me-
cella, editors,Proceedings of the 6th International
Conference on Cooperative Information Systems
(CoopIS ’01), volume 2172 ofLNCS, pages 211–
225, Trento, Italy, 2001. Springer-Verlag.

[16] Gero Mühl, Ludger Fiege, Felix C. G̈artner,
and Alejandro P. Buchmann. Evaluating ad-
vanced routing algorithms for content-based pub-
lish/subscribe systems. In A. Boukerche and
S. Majumdar, editors,The Tenth IEEE/ACM In-
ternational Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems (MASCOTS 2002), Fort Worth, TX, USA,
October 2002. IEEE Press.

[17] J. Orlando, L. Rodrigues, and R. Oliveira. Seman-
tically reliable multicast protocols. InProceed-
ings of the 19th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2000), October 2000.

[18] Bill Schilit, Norman Adams, and Roy Want.
Context-aware computing applications. InIEEE
Workshop on Mobile Computing Systems and Ap-
plications, Santa Cruz, CA, USA, 1994.

http://www.gkec.informatik.tu-darmstadt.de/rebeca
http://www.gkec.informatik.tu-darmstadt.de/rebeca

	1 Introduction
	2 Content-Based Publish/Subscribe
	3 Transparent Implementation of Extended Logical Mobility
	3.1 Main Idea
	3.2 Algorithm
	3.2.1 Client Setup
	3.2.2 Client Operation
	3.2.3 Client Handover
	3.2.4 Client Removal

	4 Open Issues and Research Agenda

