Simulation-based Retrieval of Adaptation Knowledge

Alexander Frommgen

Patrick Wagner

Alejandro Buchmann

DVS, TU Darmstadt, Germany
{froemmgen, wagner, buchmann}@dvs.tu-darmstadt.de

ABSTRACT

Today’s networking applications have to operate under
changing environmental conditions. Web browsers on
mobile devices, for example, are facing rapidly changing
network conditions. Even though browsers and network
stacks provide fine grained configuration options, it is
challenging to find configurations which perform well in
these changing environments.

In this paper, we propose to adapt the configuration
to changing network conditions at runtime. Based on
monitored network properties, a k-nearest neighbour
classifier predicts suitable configurations. For a first
evaluation, we trained the classifier for a web brows-
ing scenario with Firefox in Mininet simulations. The
predicted configurations outperform all static configu-
rations and reduce the average page load time by 1.5
seconds, realizing 68% of the possible improvement of
an optimal prediction.

1. INTRODUCTION

Users expect network applications to work under dif-
ferent network conditions. Especially applications on
mobile devices with multiple access technologies are fac-
ing rapidly changing network conditions regarding band-
width, latency, and packet drops. Optimizing the appli-
cation for all possible environments at the same time is
challenging. Applications such as modern web browsers
provide a multitude of configuration parameters [14],
e.g. the maximum number of parallel TCP connections
and the usage of HTTP pipelining [6]. However, as
these configurations are static, today’s applications are
statically configured in a highly dynamic environment.

In this paper, we propose to leverage the already ex-
isting configuration parameters and adapt the applica-
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

CoNEXT Student Workshop’15, December 01 2015, Heidelberg,
Germany

© 2015 ACM. ISBN 978-1-4503-4066-3/15/12... $15.00
DOL: 10.1145/2842665.2843564

Runtime i!
Monitoring Application Adaptation
M; .
redict
M, D Conf.
M; | Classifier
Design Time F Offline Training
Training Samples
Sample 1 Sample 2 Samplen
, » , » , »
./(Hi' ./.KHQ‘: A—tg‘:

Figure 1: The classifier predicts the optimal applica-
tion configuration at runtime based on offline retrieved
training samples from Mininet simulations.

tion at runtime to always execute a suitable configura-
tion. Therefore, we predict the optimal configuration
out of a huge configuration space based on the cur-
rently monitored behaviour of the environment (Figure
1 top). To manage the inherently complex dependen-
cies, we propose to use a classifier for the prediction and
automatically train the classifier offline for a wide range
of environments. For a first evaluation of our approach,
we executed a typical web browsing example with the
Firefox browser in 175,500 Mininet [11] simulations with
different network conditions to train a k-nearest neigh-
bour classifier (Figure 1 bottom).

Using simulations to learn desired behaviour offline
was successfully applied by Winstein et al. [20], who
automatically generated congestion controls which out-
perform analytically derived algorithms. Our presented
approach follows the MAPE-K cycle of autonomous
computing [15] for managing adaptive behaviour. Com-
pared with existing approaches, such as the Fossa [7, §]
framework, our approach uses configuration parameters
of real world applications and is not restricted to a rule
based representation of the adaptation logic.

2. PREDICTION ENGINE

The prediction engine maps a set of monitored at-
tributes (mon_attry, ..., mon_attr,) to the target con-
figuration. The monitoring attributes should be chosen
carefully, as they are essential for a high classification
performance. For applications which use TCP, connec-
tion details such as the round trip time and the expe-
rienced packet drops are obvious candidates. They are
easily accessible from the socket state [16].

= no pipe/cubic
Y agg. pipe/reno

[77] pipe/cubic
@ no pipe/vegas

19%

16% = 149

— DO w

(=) =) =)

X X X
T

0%

Best Configuration
Avg Page Load Time

Configuration

FH agg. pipe/cubic
[pipe/vegas

[T no pipe/reno ¥Z) pipe/reno
Hl agg. pipe/vegas 177 predicted

|
24 s[21.6]
28| B e 188 177186 |
16s | 3t G 13.713.714.6 5 o
115 s |- - £ -
8 s e
4s|
0s

Configuration

(a) Distribution of the optimal configurations for different (b) Average page load time of the configurations for the tested

network conditions in the Mininet simulations.

web pages. The average over all optimal configurations is 11.5s.

Figure 2: Evaluation of the prediction engine with 175,500 simulations.

Regarding the choice of the classifier, first evalua-
tions showed that a k-nearest neighbour classifier out-
performs both tree based classifiers and support vector
machines. The k-nearest neighbour classifier uses a dis-
tance function to choose the target configuration based
on the majority of the k nearest trained samples [18].

3. TRAIN THE ENGINE

The classifier uses training samples with a set of at-
tributes and their target label for training. In the web
browser example, the classifier minimizes the time from
starting the HT'TP request until the document and all
dependent resources are loaded. Thus, the label is the
configuration which leads to the lowest page load time
regarding the Navigation Timing interface [9].

As the classifier requires a huge amount of training
data, we automatically generate these in Mininet sim-
ulations with different network conditions. Mininet al-
lows to run unmodified binaries and supports all rel-
evant network parameters for bandwidth, delay, and
loss. We developed a mass simulation environment to
run simulations on a multitude of server instances in
parallel. Additionally, we extended Mininet’s Python
API' to natively support both Apache 2.4.7 and Fire-
fox 39.0. Our extension supports the manipulation of
configuration parameters, e.g. setFirefoxParameter(hl,
‘network. hitp.pipelining’, ’true’), and to control a head-
less running Firefox from the Mininet API.

4. EVALUATION

For the evaluation, we implemented the presented
frameworks and optimized the page load time of the
front pages of three popular web pages (Google, Ama-
zon, and Wikipedia). As configuration parameters, we
used three congestion controls (Reno, Cubic, and Ve-
gas [10, 2]) and the HTTP pipelining modes of Firefox:
off, on, and aggressive. HTTP pipelining allows the
client to send multiple requests over a persistent con-
nection without waiting for a response and thereby re-
duces the number of required round trip times for mul-
tiple requests [17]. We tested 650 network conditions
for access networks as reported in the literature: band-

! Available at http://dvs.tu-darmstadt.de/simu

Mor— no pipe/cubic -
— pipe/cubic o

0.8/ — agg. pipe/cubic B
—— no pipe/reno g /4

0.6 — Pipe/reno <

agg. pipe/reno
— no pipe/vegas
0.4 — pipe/vegas

Cumulative Distribution Function

— agg. pipe/vegas
0.2~~~ predicted
0.0 1s 10s

Page Load Time
Figure 3: Cumulative page load time distribution.

width between 0.384 and 100 Mbit/s, latency between 0
and 300ms, and packet drop rates between 0 and 5% [1,
3, 4, 5, 12, 13, 19]. Each simulation was repeated 10
times, leading to 3-3-3-650-10 = 175, 500 simulations.

The evaluation shows that no pipe/cubic is the opti-
mal configuration for 26% of all tested network condi-
tions (Figure 2a). No pipe/vegas and pipe/vegas, how-
ever, have the lowest average page load time 13.7s of all
configurations (Figure 2b). Thus, they should be chosen
for a static solution. The trained prediction engine has
an average page load time of 12.2s. The optimal solu-
tion, which always executes the optimal configuration,
would lead to 11.5s. The prediction engine easily out-
performs static solutions, and reduces the average page
load time by 1.5s of the possible 2.2s, realizing 68%
of the possible improvement of an optimal prediction.
The CDF shows that the predicted solution improves
especially medium and high page load times (Figure 3).

5. CONCLUSION AND OUTLOOK

This paper proposed a simulation-based retrieval of
adaptation knowledge for networking applications. We
showed that runtime adaptations between Firefox con-
figurations and congestion control algorithms reduce the
average page load time. For future work, we plan to ap-
ply our framework on more applications and to evaluate
the classifiers in real world scenarios.

Acknowledgments

This work has been funded by the German Research
Foundation (DFG) as part of projects A02 within the
Collaborative Research Center (CRC) 1053 — MAKI.

6.
[1]

[10]

[11]

REFERENCES

A. Balachandran, G. M. Voelker, P. Bahl, and
P. V. Rangan. Characterizing user behavior and
network performance in a public wireless lan. In
Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS
02, pages 195-205, New York, NY, USA, 2002.
ACM.

L. S. Brakmo and L. L. Peterson. Tcp vegas: End
to end congestion avoidance on a global internet.
IEEE J.Sel. A. Commun., 13(8):1465-1480, Sept.
2006.

Y .-C. Chen, Y.-s. Lim, R. J. Gibbens et al. A
Measurement-based Study of MultiPath TCP
Performance over Wireless Networks. In IMC;
2013.

S. Deng, R. Netravali, A. Sivaraman, and

H. Balakrishnan. WiFi, LTE, or Both?: Measuring
Multi-Homed Wireless Internet Performance. In
Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC 14, pages
181-194, New York, NY, USA, 2014. ACM.

M. Dischinger, A. Haeberlen, K. P. Gummadi,
and S. Saroiu. Characterizing residential
broadband networks. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet
Measurement, IMC 07, pages 43-56, New York,
NY, USA, 2007. ACM.

R. Fielding, J. Gettys, J. Mogul et al. Hypertext
transfer protocol — http/1.1, 1999.

A. Froemmgen, R. Rehner, M. Lehn, and

A. Buchmann. Fossa: Learning ECA Rules for
Adaptive Distributed Systems. In Autonomic
Computing (ICAC), 2015 IEEE International
Conference on, pages 207-210. IEEE, 2015.

A. Froemmgen, R. Rehner, M. Lehn, and

A. Buchmann. Fossa: Using Genetic
Programming to Learn ECA Rules for Adaptive
Networking Applications. In Local Computer
Networks (LCN), 2015 IEEE International
Conference on. IEEE, 2015.

W. P. W. Group. Navigation timing - w3c
recommendation 17 december 2012.
http://www.w3.org/TR/2012/REC-navigation-t
iming-20121217/, 2012.

S. Ha, I. Rhee, and L. Xu. Cubic: A new
tcp-friendly high-speed tcp variant. SIGOPS
Oper. Syst. Rev., 42(5):64-74, July 2008.

N. Handigol, B. Heller, V. Jeyakumar et al.

Reproducible network experiments using
container-based emulation. In Proceedings of the
8th International Conference on Emerging
Networking Fxperiments and Technologies,
CoNEXT ’12, pages 253264, New York, NY,
USA, 2012. ACM.

J. Huang, F. Qian, Y. Guo et al. An in-depth

study of lte: Effect of network protocol and

application behavior on performance. In

Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM, SIGCOMM ’13, pages

363-374, New York, NY, USA, 2013. ACM.

[13] T. Jehaes, D. De Vleeschauwer, T. Coppens et al.
Access network delay in networked games. In
Proceedings of the 2Nd Workshop on Network and
System Support for Games, NetGames '03, pages
63-71, New York, NY, USA, 2003. ACM.

[14] D. Jin, X. Qu, M. B. Cohen, and B. Robinson.
Configurations everywhere: Implications for
testing and debugging in practice. In Companion
Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014,
pages 215-224, New York, NY, USA, 2014. ACM.

[15] J. Kephart and D. Chess. The vision of autonomic
computing. pages 41-50, Jan 2003.

[16] U. Manpage. ss - another utility to investigate
sockets. http://manpages.ubuntu.com/manpage
s/trusty/en/man8/ss.8.html, 2015. [Online; last
accessed 09.07.2015].

[17] H. F. Nielsen, J. Gettys, A. Baird-Smith et al.
Network performance effects of http/1.1, cssl, and
png. In Proceedings of the ACM SIGCOMM 97
Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communication, SIGCOMM ’97, pages 155-166,
New York, NY, USA, 1997. ACM.

[18] C. Sammut and G. I. Webb. Encyclopedia of
Machine Learning. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[19] J. Sommers and P. Barford. Cell vs. wifi: On the
performance of metro area mobile connections. In
Proceedings of the 2012 ACM Conference on
Internet Measurement Conference, IMC 12, pages
301-314, New York, NY, USA, 2012. ACM.

[20] K. Winstein and H. Balakrishnan. Tcp ex
machina: Computer-generated congestion control.
In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM 13, pages
123-134, New York, NY, USA, 2013. ACM.

12

