
Event-Based Applications and Enabling Technologies

Annika Hinze
University of Waikato, New Zealand

Humboldt University Berlin, Germany
hinze@cs.waikato.ac.nz

Kai Sachs, Alejandro Buchmann
Databases and Distributed Systems Group

University of Darmstadt, Germany
lastname@dvs.tu-darmstadt.de

ABSTRACT
Event processing has become the paradigm of choice in many
monitoring and reactive applications. However, the under-
standing of events, their composition and level of abstrac-
tion, the style of processing and the quality of service re-
quirements vary drastically across application domains. We
introduce the basic notions of event processing to create a
common understanding, present the enabling technologies
that are used for the implementation of event-based sys-
tems, survey a wide range of applications identifying their
main features, and discuss open research issues.

1. INTRODUCTION
Event processing has become the paradigm of choice in

many monitoring and reactive applications. These systems,
also known as sense-respond systems have been developed
in many different domains. Therefore, the understanding
of what are events, how they are propagated, filtered, ag-
gregated and composed into more complex events, and how
events of higher levels of abstraction are derived from basic
events varies widely across application domains and the dif-
ferent communities working on event-based systems. These
communities have developed partially overlapping concepts
and execution models, description languages and algebras,
and have different quality of service requirements [35, 36].

In this survey we pursue four goals:

• To define the basic terms and create a common under-
standing across domains

• To identify the contributing technologies

• To describe a broad range of applications and their
main features

• To identify problems and research issues that are com-
mon across application domains

We have chosen a set of concepts that we consider nec-
essary to create a common understanding (Section 2). We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6 – 9, Nashville, TN, USA.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

hope that our definitions are general enough to be applica-
ble in many application domains yet precise enough to avoid
misunderstandings. Event-based systems draw on many tech-
nologies whose contributions are briefly discussed (Section
3). In choosing the applications areas (Section 4) we aimed
to span a broad range, where the examples are only meant
as placeholders for many similar applications. Some have a
very broad scope while others are small and focused. This
fact is also typical of the huge variety of sense-respond sys-
tems. Several of the applications were discussed during the
Dagstuhl Workshop on Event Processing [8]. The biggest
challenge is the synthesis we attempt at the end: to iden-
tify similarities across applications and domains (Sections 5
and 6) and to identify areas in which we believe research is
needed to consolidate the area of event-based systems (Sec-
tion 7).

2. FOUNDATIONS
An event was defined by Chandy [9] as a significant change

in the state of the universe. Since time is an inherent di-
mension of the universe, two observations of the universe
at different time constitute two distinct events, even if no
other properties have changed. Chandy’s definition, how-
ever, refers to significant changes in the state of the universe,
thereby limiting the infinite number of events to those that
are relevant to an application. For an application, it may be
relevant that an object changed its position by a few meters
(change event), or to learn about the new reading of a tem-
perature sensor (status event). Even the observation that
two readings at different times yielded the same tempera-
ture constitutes an event. By considering time an integral
part of the state of the universe, both change and status
events can be modeled in a uniform manner.

Events must be observed to be reported and processed.
An observation captures a discrete instance of a (possibly
continuous) signal. An observation of an event carries a
timestamp and descriptive parameters and is typically rep-
resented as a tuple of values. Depending on the type of
event and application system, the timestamp may be just
one point (point semantics of time) or an interval (interval
semantics of time). Parameters may be absolute values or
deltas relative to older reference values.

Events, or more precisely, their representation, must be
reported to event consumers. It is generally accepted that
event notifications are routed from event producers to event
consumers by a notification service. The notification ser-
vice decouples producers and consumers, and provides the
routing from source to sink [36]. In the simplest form, this



may be a low-level channel into which event notifications are
placed and from where they are retrieved. In this case, the
envelope of the notification is minimal and streams of tuples
are delivered over a fixed channel. However, the notification
service may be a more sophisticated network of brokers rout-
ing the notifications based on type or content. Notifications
consist of one or more event representations packaged in an
envelope. Routing may occur on the content of the envelope
data or the content of the notification.

Events may be simple events or compositions of simple
and/or other composite events. Simple events may be in-
dividual sensor observations, method invocations or abso-
lute temporal events. Composite events are aggregations
of events. Composite events are produced from event rep-
resentations and the operators of an event algebra. Two
commonly used approaches to event composition exist: (1)
event trees consisting of events at the leaves and the opera-
tors of an event algebra in the inner nodes [6] pioneered by
active database systems, and (2) continuous or streaming
queries based on the operators of relational algebra applied
to subsets of streams of tuples (sliding windows) [7].

Derived events are caused by other events and often are
at a different level of abstraction. For example, five failed
logins with the wrong password may cause an intrusion at-
tempt event to be signaled. Derived events involve seman-
tic knowledge. They may be detected automatically, e.g.,
from a combination of sensor readings as the action part of
an event-condition-action (ECA) rule or be raised explic-
itly, e.g., based on direct observation of an event by a user.
Derived events are often enriched with data from external
sources.

An event-based system is a software system in which ob-
served events cause reactions in the system. Event-based
systems consist of three essential parts: a monitoring com-
ponent, a transmission mechanism, and a reactive compo-
nent. The monitoring component is responsible for event
observation, representation, and composition as described
above.

The transmission mechanism is responsible for event no-
tification. It is generally accepted that event notification is
push-based. In push-based systems, producers disseminate
information to consumers; in pull-based systems the con-
sumer must request the information. Some authors go as
far as requiring a complete decoupling of event producers
and event consumers through a publish/subscribe notifica-
tion service [36]. For generality, we also accept point-to-
point notification of events. This implies a tighter coupling
between producers and consumers, since the producers must
be aware of the consumers to notify them without the help
of a broker.

The reactive component of an event-based system expresses
the application logic in form of rules (or other code) trig-
gered by the corresponding events. Rules may have different
formats that result in different execution models. Procedu-
ral ECA rules are fired whenever the corresponding event
(simple, composite or derived) is raised. The condition acts
as a guard that can be used to express more complex ap-
plication logic. Only if the condition is met, the action is
executed. Missing conditions are considered to be true and
result in event-action rules. Much debate has occurred in the
past as to the best division of functionality between events
and conditions. More powerful event expressions decrease
the need for explicit conditions but require more powerful

event algebras. This also makes the event detection mecha-
nism heavier and more difficult for users to use properly. On
the other hand, a lightweight event mechanism can be more
responsive and is less error prone but requires an explicit
condition to express more powerful application logic. The
decision on the trade-off between expressiveness of the event
language and the lightweight nature of the event system is
domain-dependent.

While the logical distinction is clear, specific implementa-
tions of event-based systems may partition the functionality
differently. In particular the event composition may be im-
plemented at the monitoring component, in the notification
service, or as part of the reactive component. The decision
of where to realize event composition depends on many ap-
plication and environment specific factors, such as capabili-
ties of the sensing devices, bandwidth of the communication
channels, complexity of the composite events, and source of
the events that are to be composed.

3. CONTRIBUTING TECHNOLOGIES
Many different technologies have contributed to the field

of event-based systems. We will briefly review the contribu-
tions of these technologies.

3.1 Active Databases
Active databases were developed in the mid to late 1980s

[38, 49]. Two distinct strands can be identified: relational
and object-oriented active databases.

Relational active databases were limited mainly to basic
database events, such as update, insert and delete. They
could express conditions on either the old or new state of
a relation, and the action was always some SQL statement.
Today’s triggers in SQL are the relational incarnation of
simple ECA rules. Relational active databases introduced
the notions of before, after or instead execution, meaning
that the rule should be executed accordingly before, after or
instead of the triggering statement.

Object-oriented active databases had a richer event type
system. It included any method invocation, state changes
effected through generic accessor functions, temporal events,
control flow events, arbitrary user defined events, and com-
position of events through event algebras of varying expres-
siveness. The first generation of active ooDBMSs assumed a
central clock, point semantics for the events, and a complete
ordering of events. Active ooDBMSs introduced coupling
modes to define when a rule should be executed (immedi-
ately or deferred) and whether it should be executed within
the scope of the triggering transaction or as a separate trans-
action. If rules execute in separate transactions this can
occur independently or causally dependent, in which case
the triggered transaction may only begin or end execution
depending on the fate of the triggering transaction. The
various causal dependence modes take care of violations of
ACID properties that occur when uncommitted data is made
visible to independent transactions. Another major contri-
bution was the notion of event consumption, referring to
the way in which events are consumed during event com-
position. Four consumption modes (originally termed con-
texts) were defined: chronicle, recent, continuous, and cu-
mulative. These determine that the events be consumed
either in chronological order (typical in workflow-like appli-
cations), always using the most recent occurrence (typical in
control applications), in form of windows (typical in finan-



cial applications) or accumulating the effects of incoming
events until another event occurs (typical in inventory con-
trol situations).

3.2 Materialized Views
Materialized views can be seen as a particular application

of active database principles. Views are typically subsets of
a database that are defined in the database schema. They
are computed on the fly from the stored base tables. As an
optimization, views were materialized, i.e., stored, resulting
in the need for maintaining them whenever the base data
changed. Propagation of base-table updates to the materi-
alized views was accomplished using the mechanisms devel-
oped for active relational databases [24].

3.3 Continuous Queries, Stream Processing
Continuous queries [11] can be seen as an attempt to

change the processing paradigm from issuing a single non-
persisting query against stored, persistent data to storing
the query persistently in the database and applying it to
streams of incoming data. Continuous/continual queries
were expressed in variants of the SQL language modified
to operate on windows [34]. These can be defined either
through temporal events or through a count of incoming
events. While early work on continuous queries assumed
that the continuous queries would operate on the stored data
and would be executed by the traditional query engine, work
on streaming queries has changed the processing paradigm:
queries defined in a SQL dialect, such as StreamSQL, pro-
cess streams of data or events before they are placed in the
database and results of this processing step are only selec-
tively stored in the database. Many of the extensions to the
relational operators and how to process for example joins
on windows in continuous queries, have carried over to cur-
rent products for stream processing and have been extended
there for high volume applications [5].

3.4 Reactive Middleware
Reactive middleware can be traced back to the CORBA

platform and the event service defined therein [25]. Modern
versions of basic reactive capability can be found in the form
of the J2EE message driven beans, which consume event
notifications and allow the asynchronous processing of mes-
sages in the J2EE platform [45].

Reactive middleware benefited to some extent from work
on active databases and the attempts to unbundle active
functionality from active databases. Major insights gained
while unbundling were the need for interval semantics in-
stead of point semantics for many distributed environments,
the impossibility of using a central clock and the fact that
notification delays cause uncertainty. This resulted in the
2g–precedence model used in networks with bounded de-
lay and the imprecision interval model that distinguishes
between the stable past, the unstable past and present for
networks without an upper bound on delay.

3.5 Message Oriented Middleware
Message Oriented Middleware (MOM) covers basically no-

tification middleware built on the principles of the pub-
lish/subscribe paradigm. Publish/subscribe systems come
in many different flavours, both centralized and distributed.
A common distinction is based on the information carried by
the notification, and whether the content of the notification

is used for routing or only the information on the envelope
of a message [15].

Channel-based publish/subscribe is the most simple. Pro-
ducers place their notifications into a channel and consumers
subscribe to a channel of interest.

Subject-based publish/subscribe, pioneered in the 1990’s
by TIBCO [48], defines subject hierarchies according to which
messages are classified. A combination of subject hierarchy
levels with the use of wild cards allows for reasonably power-
ful subscriptions. One disadvantage, though, is the relative
inflexibility of subject hierarchies.

Content-based publish/subscribe uses the content of a mes-
sage to route the message from producer to subscriber [43].
Filters are placed as close as possible to the source to mini-
mize traffic. Predicates of different degree of expressiveness
can be specified. However, the more powerful the predicate
language and the more fine grained the filters are, the more
critical it becomes to control the size of the routing tables.
This in turn requires merging of filters.

Concept-based publish/subscribe finally addresses the prob-
lem of heterogeneity [12]. All the previous approaches to
publish/subscribe assume a common understanding of the
name space used. If this is not the case, then an addi-
tional layer of mediation that resolves semantic conflicts
based on an ontology service can be used. Concept-based
publish/subscribe uses predefined contexts. If notifications
are to be routed within a common context, i.e., publisher
and subscriber use the same context, no additional medi-
ation is needed. If publisher and subscriber use different
contexts, an additional mediation step is needed. Concept-
based publish/subscribe can be implemented on top of any
of the other publish/subscribe methods.

JMS as a de facto standard for MOM provides both queu-
ing and publish/subscribe type interaction. JMS’s flavour of
publish/subscribe, topic-based publish/subscribe, is a vari-
ant of channel based publish/subscribe with additional pred-
icates definable on the envelope data.

3.6 Identity and Location Detection
Common tagging systems use barcodes and radio frequency

identification (RFID) tags [21]. Barcodes can be simple lin-
ear codes or 2D. Linear barcodes typically encode a numeric
code that is optically scanned and the information attached
to the barcode is looked up. 2D barcodes can encode larger
information. RFID tags consist of a circuit and an antenna.
Passive RFIDs are activated by the energy of the reader
and with the induced current they emit a signal via radio
waves containing the tag identifier. Associated information
must be looked up. Active RFID tags can have their own
power supply and may store additional data. Common to
all tagging systems is that a reader produces a tag detection
event that is interpreted either at the device controller or in
the backend system. Typically, position information of the
reader is associated with a detection event.

Location detection in mobile systems typically relies on
the widely available Global Positioning System (GPS) in
a mobile device, or stationary beacons that communicate
with simpler mobile devices. GPS observes a user’s outdoor
location continually following a given frequency. Other ob-
servation semantics can be built on top of this continuous
observation. GPS delivers latitude and longitude of the cur-
rent device location. Beacons support passive client devices.
A beacon is installed in places of interest; devices in close



proximity receive its signal and can thus identify their logical
position in relation to the beacon

3.7 Wireless Sensor Networks (WSN)
WSN consist of large numbers of small computing devices

with one or more sensors on board that communicate over
radio frequencies forming ad-hoc networks [1]. Sensed data
can be filtered and aggregated in the network as it flows
from the source to the sink. Energy consumption is a ma-
jor issue, requiring energy conscious routing and minimiza-
tion of transmitted. Because of the unstable nature of the
communication and the risk of failure of individual nodes,
alternative routing strategies and redundancy are typically
provided in WSN. In modern WSN, nodes may be station-
ary or mobile, and heterogeneous sensor nodes are becoming
common. The boundary between basic sensor nodes and ac-
tive RFID tags is blurring.

MANets are mobile ad-hoc networks that form among
mobile devices (PDAs, smartphones, laptops) using wire-
less technologies (e.g., WLAN). The networks have a very
dynamic topology because their nodes (the mobile devices)
may be frequently changing location, causing connections to
fail and form newly. Moreover, the network nodes are unre-
liable as the mobile devices may be turned off or suffer from
energy constraints.

Sensor Fusion has its origins in military command and
control systems in which data coming from multiple sen-
sors must be combined to extract the information. This
information is often related to tracking of vehicles, vessels
or missiles, and for friend-foe-neutral identification. Sensor
fusion often combines automatic processing of sensor data
with humans in the loop.

3.8 Data and Web Mining
Data Mining is the process of finding correlations or pat-

terns among attributes in large datasets using techniques
rooted in statistical analysis or artificial intelligence [50].
Typical data mining techniques include: neural networks
(for trend analysis based on past performance); association
discovery (to identify similar occurrences within data sets
and express those as rules with a confidence factor, e.g.
associations based on medical data); classification (group-
ing data with similar characteristic defined by analyst, used
frequently in customer retention); clustering (grouping of
data sets based on discovered similarities, used frequently in
opinion analysis); and sequential discovery (discovers repeat
occurrences over predefined time window, e.g. buying pat-
terns, useful in fraud detection). Data mining is increasingly
applied to streaming data [18].

Web Mining uses the web as data source. Techniques are
based on clustering (natural groupings of users and pages),
associations (URLs being accessed together), and sequential
analysis (the order in which URLs are accessed). Click-
stream analysis is a form of data mining of the URLs ac-
cessed by a user while at a given web site. It can be used
off-line for analysis of customer behavior and for system per-
formance analysis and tuning, or it can be used on-the-fly
as part of recommender systems.

4. APPLICATIONS
We analyzed 17 applications for their event features. The

applications are discussed here and their identified features
in Section 5.

4.1 Content-awareness:
Mobile Tourist Information System

Mobile tourist information systems are location-based sys-
tems. Typically they provide their mobile users with feed-
back about their current location (e.g., indicated on a map)
and additional information about tourist sights that are re-
lated to the user’s location. The information may use travel
information and feedback previously given by this or similar
users. The systems are an extended form of mobile naviga-
tion systems. The user’s location or change of location are
triggering events for (1) display of the triggering information
(e.g., current user location on map), (2) retrieval and dis-
play of information relevant to the current location, and (3)
prediction of the user’s future location (e.g., for pre-fetching
and caching strategies). The location event may trigger an
action on each event, after a time-span, or after sufficient
change of location. Potentially every event may trigger an
action and has to be analyzed for the system. However,
missed events are tolerable.

A system may be implemented as a context-aware system
considering additional information such as the current time,
the user’s interest and background, and their travel history
[29]. The travel history is in fact an event history – the
system thus reacts differently depending on a combination
of past events. For example, the system may decide not to
display certain information because it has been displayed
before (assuming the tourist is familiar with the place) or it
may recommend certain sights based on the current location
and the past locations of similar users. Changes in context
are reported as events.

Mobile tourist systems are implemented as distributed
client-server systems, as peer-to-peers systems, or as stand-
alone client software. The software architecture influences
the available features and potential issues [27]. The users
are mobile; typically the location sensors are mobile with the
users (e.g., GPS). Other options are mobile receivers react-
ing to stationary beacons, or mobile readers sensing station-
ary or mobile RFID tags. The locations of users and items
may be identified by their location (geographic or layout) or
in relation to another object (e.g., to the car); physical or
logical coordinates may be used. The events considered in
the system are status events, such as the current position
reading of the GPS, or a combination of position and time
(and other contextual information). The time may be mea-
sured using a global time or a relative local time. Different
sensors may use different time systems. A combination of
software services may have to collaborate on the user’s mo-
bile device; context acquisition may use a variety of forms.
Systems have to incorporate changing sensors and a chang-
ing mobile environment.

4.2 Baggage Management
The main goal of baggage management in an airport is

to manage the transport of the luggage via conveyors, carts,
and planes to the right destination. To increase the degree of
automation, luggage is tagged at the Check-In, traditionally
with barcodes, nowadays more and more with RFID tags
[14]. When baggage passes a tag reader device, an event
containing the position and time is reported. Based on these
events, the luggage routing is managed by an event-triggered
environment [37]. Event information has to be made persis-
tent to allow later tracking of lost baggage.

A central enterprise system per airport is storing all the



tracking events and combines them with the flight data of
different airlines. Based on this information, routing plans
for the baggage are specified and updated, e.g., the baggage
has to be stored until the state of the airplane is ’ready
for loading’ (where the state change of the plane to ’ready
for loading’ is another event). Additionally, several other
types of data have to be taken into account, for example,
security checks, passengers on board, and containers where
the luggage is stored. All these data has to be accessible in
real-time. For example, the baggage is only allowed to be
loaded into the airplane, if it has passed all security checks
successfully.

Visibility and security of baggage events are challenging
issues to be addressed. For example, the airline A is not
allowed to see the baggage events of passengers of airline B
and vice versa. But the security staff is allowed to access
all the data, but not to add new passengers or modify flight
data. On the other hand, the airport service staff has access
to all tracking data and is allowed to trigger events such as
airplane ’ready for loading’. Visibility controlling concepts,
such as scopes, are needed [17]. Higher level events, for
example, a plane arriving at the gate, may trigger a whole
chain of activities.

4.3 Traffic Monitoring
Traffic monitoring is a rather broad application that en-

compasses a variety of tasks [30]. These range from simple
counting of vehicles during specific time windows for the
purpose of traffic planning and contingency road manage-
ment to the identification of individual vehicles for levying
of tolls and control of traffic restricted areas all the way to
searching for particular vehicles in support of police work.
Depending on the scope of a traffic monitoring system, the
complexity of the events and their associated information
varies greatly.

Traffic monitoring systems may be based on passive tags
detected by active readers, they may involve active devices
emitting beacons or some positioning signal or they may be
based solely on active detectors, such as cameras combined
with image recognition software.

The scope of a traffic monitoring system determines the
kind of event detection mechanism used. Conversely, de-
pending on the available event detection mechanism a traffic
monitoring system may be limited to fulfilling a single task,
such as access control to toll roads or bridges with monthly
billing (typical of passive tags) or may allow multiple func-
tions, such as anonymous counting of vehicles in a time win-
dow, the control of access to inner cities or the surveillance
and tracking of specific vehicles (typical of camera-based
systems).

The privacy and security issues related to the distribution
of events may vary. Simple toll control systems requiring the
installation of a tag or beacon on the part of the user implic-
itly have the user’s consent to be monitored, and therefore
minimize any privacy concerns. Camera-based multipurpose
traffic monitoring systems require a strict differentiation of
who is permitted to receive certain events, whether they
must be anonymized or not, and for how long certain events
may be tracked and stored. This has profound implications
on the kind of event aggregation permitted (tracking) or re-
quired (anonymization), and on the security requirements
posed on the event distribution mechanism, e.g., a secure
publish/subscribe system.

4.4 Environmental Monitoring:
Avalanche Warning System

Avalanche warning systems combine information about
snow conditions and weather information to predict avalanches
and send out alerts and warnings [41]. For local avalanche
warning systems, it is necessary to supplement meteorologi-
cal and manual observations by snow parameters measured
automatically in the release zones and at representative lo-
cations. The systems have to supply reliable data on the
development of dangerous snow covers between and during
storms. Typical approaches use a variety of sensors: mi-
crowave snow radars, ultrasonic snow depth gauges, snow
temperature and IR-surface-temperature measurements, com-
bined with measurement of reflected short wave radiation,
air humidity and temperature measurements. Alternatively,
an area can be monitored by simply distributing sensor nodes
to cooperatively determine the state of a field. Each indi-
vidual sensor node is equipped with a variety of application-
specific sensors to sample its physical surrounding, a micro-
controller to allow for further processing, some secondary
storage and a transceiver to enable ad-hoc wireless commu-
nication with other nodes in the network.

A large number of such mobile devices is distributed on
the mountain, where they form an ad-hoc network. With
their processing capabilities at the sources of data gener-
ation, these embedded devices can be used as a filter on
the incoming data streams of their sensors, for providing
event recognition locally on each node, or for complex, dis-
tributed event processing using spatio-temporal event pat-
tern matching. Computation is therefore performed either
distributed at the sensor level or centrally [47]. Events are
status reports. Only a few event constellations are sought
out in the filter process to trigger alert notifications. Dy-
namically changing weather conditions to be monitored in-
clude amount, thickness and weight of snow, temperature
and pressure, but also the history of these conditions. Trig-
gering events are combinations of concurrent and histori-
cal event reports – avalanches are influenced by snow con-
sistency and temperature as well as the progression of the
weather and snow situation over a time period.

4.5 Information Dissemination
Automatic systems for information dissemination have been

used by conventional libraries for about 50 years; they were
called awareness systems (SDI – selective dissemination of
information) and served for synchronization of library cat-
alogues. Metadata of new publications is filtered and dis-
tributed to library catalogues. Digital libraries use alerting
systems that follow similar principles, with extended func-
tionality [2]. A digital library consists of collections of docu-
ments that may be distributed over several heterogeneous
library installations. A Digital Library (DL) may use a
database for storing metadata of documents but typically
not for the items themselves. An alerting system may in-
form about changes in a set of documents, such as new doc-
uments, new parts of documents, new collections as well as
changed documents or metadata or deleted entries or docu-
ments. The system may inform of changes or support direct
ingest of information via an awareness service. Digital li-
brary documents are not just textual information but also
multimedia items; examples are images, such as maps or
photographs, structured information such as sheet music,
and music recordings in various storage formats.



The observation of events is crucial – it is performed ei-
ther by the digital library (integrated service) or by a third
party that may combine information from various sources
(meta-service). Event observation faces a number of issues
as in-place document updates may not be observable by an
external service and updates may be implemented as delete
followed by insert operation, which leads to false event mes-
sages. Event detection requires rich concepts of works and
documents to be supported by the digital library system and
the alerting system. It needs to identify the work (Shake-
speare’s plays or Mozart’s piece) in addition to the docu-
ment or item and be able to identify qualitative metadata
such as copies, editions, recordings, productions. Combin-
ing events from a variety of sources beyond simple event
occurrences requires in-depth knowledge of the DL systems.
Where a collection is spread over different servers, or dif-
ferent collections are brought together as a virtual entity,
we not only have to inform users when the content on one
machine changes, but also the other machines as well. This
is made particularly difficult as often DL do not cooperate
and the connecting networks are therefore unstable and frag-
mented. In a DL environment it is critical for the users to
have a single homogenous access point to all their profiles
and alert data.

4.6 Blog Information Mining & Dissemination
The ever-increasing flood of news and posts to regular

web-sites, and in the recent past to blogs, makes alerting
of new items of interest and presentation of this informa-
tion in the form of dashboards a necessity. The existence
of tracking services, such as spinn3r1, that crawl for new
blog postings and offer APIs to get at regular intervals the
new postings, can be exploited as event detectors. Other
services, such as Calais2, provide text analysis and quite
sophisticated annotations. Calais not only provides an anal-
ysis of the terms found in a submitted text, in this case the
text of a posting, but also enriches the relevant terms with
additional information from available sources. For example,
a posting about the merger of two companies will be enriched
with background information about the two. The analyzed
text and the annotations can then be further processed to
extract other high level events and report the findings in an
aggregated manner, for example, as a personal or thematic
dashboard to the subscriber. Filtering and annotation of
news paper articles for health-care professionals relies on
similar concepts of event enrichment [28]. The processing
of the streams can be done using existing event processing
engines, such as the Avaya EP engine3. Base techniques for
simple forms of update monitoring are RSS or atom feeds,
ajax and various readers implemented for monitoring and
displaying feeds. Blog mining is a simple version of min-
ing of heterogeneous information mining [10] and web-based
information dissemination methods discussed in [42].

4.7 Fraud Detection
Fraud detection is a highly profitable application of event

processing and has been studied and refined for some time
[16]. A typical class of fraud is known as superimposition
fraud, in which a fraudulent user gains access to a legitimate

1See http://spinn3r.com
2See http://opencalais.com
3See http://www.avaya.com/gcm/master-usa/en-us/
products/offers/event_processor.htm

user’s account or service and uses it alongside the legitimate
user. Examples of superimposition fraud are credit card
fraud, calling card fraud, and cloning fraud in mobile tele-
phony networks. Fraudulent use is detectable whenever the
legitimate user has a fairly regular usage pattern. A cell
phone being used for business purposes with a call pattern
of one to five minutes during business hours that suddenly
shows long calls at night shows such an anomalous pattern.
Other techniques used to detect fraudulent use require the
temporal and spatial correlation of calls traceable to the
same phone. Calls made within too small a time window
from two distant locations strongly indicate cloning fraud.
Superimposition fraud can be detected after the fact by min-
ing persistent call data or it can be detected by on-the-fly
processing of events. Mining persisted events does not pre-
vent the fraud but allows the company to avoid false charges
to the legitimate users and aggravating them as well as sav-
ing call center processing costs.

Superimposition fraud detection is typically done on large
volumes of fairly simple and homogeneous event records,
conditions that are typically well suited for stream process-
ing. Other kind of fraud, for example, detection of insider
trading, requires the correlation of unusual trading patterns
from ticker data with external information, such as earnings
reports, merger and acquisition or new product announce-
ments. This enrichment information may in turn be events
from news feeds or other information dissemination systems.
Tightly coupled with the topic of fraud detection is the prob-
lem of compliance management. Compliance management
deals with the pre-trade validation of transaction conditions
and could be considered fraud prevention. Pre-trade con-
ditions must be continuously monitored and compared for
compliance with internal and external policies that may be
derived from regulations, such as those established by the
SEC, or legislation, such as Sarbanes-Oxley or the US Pa-
triot Act.

4.8 Financial Applications
Many applications in the financial domain are event driven.

Examples are algorithmic trading, transaction cost analysis,
real-time profit and loss analysis, and compliance manage-
ment, which has been touched upon under fraud detection.
Algorithmic trading has become highly dependent on the
exploitation of timely information about worldwide trades.
Ticker services provide high-volume streams of homogeneous
transaction records from various markets that must be fil-
tered. The volume of ticker feeds that must be processed is
in the hundreds of thousands of events per second, thus mak-
ing the scalability of the event processing engine a primary
concern. Algorithmic trading attempts to obtain favorable
positions based on the real-time information from the vari-
ous markets filtered out from the event stream and subject
to trading policies that are based on value added analyt-
ics, such as Volume-Weighted Average Price, the ratio of
the value traded to total volume traded over a particular
time horizon. The computation of these value added met-
rics requires the definition of time windows and the track-
ing of transactions over this window to compute the de-
sired metrics. Algorithmic trading also requires making the
event streams persistent and the capability to replay event
streams. This is often done for testing of new trading strate-
gies on old trading data to compare performance before go-
ing life with a new strategy.



Real-time Profit and Loss (P&L) is emerging as a new
application of stream processing systems [20]. The volatil-
ity of the markets and sudden spikes in activity may lead
to unexpected exposures of companies and may confuse the
algorithmic trading systems. Daily P&L is inadequate un-
der these circumstances. To compute real-time P&L it is
necessary to integrate life feeds from multiple markets and
across assets, consolidated feeds, such as those provided by
Reuters or Bloomberg, direct feeds from stock exchanges,
internal feeds, and tie into the work-stream for processing
trades. Different streams must be homogenized, cleansed;
sometimes currencies must be adjusted, and common re-
porting bases must be created. Based on the combination
of trades and market conditions, the individual valuations
are computed and aggregated to compute profit and loss.
Individual positions may be rolled up to different levels of
aggregation (book or portfolio level) and the corresponding
alerts may be generated to traders.

4.9 Supply Chain Management
Supply chain management (SCM) integrates the processes

involved in the timely provisioning of goods. This involves
reacting to low stock of parts or supplies, ordering, inte-
grating the logistics process and tracking the status of ship-
ments, warehouse management, etc. Many modern SCM
systems depend on RFID technology. Because of the cost of
RFID tags this technology is mostly applied when dealing
with high value products or on aggregates, such as pallets of
lesser value products. Events are typically RFID tag read-
ings that must be supplemented by information from prod-
uct or shipment databases. Events are captured by readers
and processed along the chain between the peripheral detec-
tors and the backend systems [23].

Typical processing includes filtering and elimination of du-
plicates, aggregation, enrichment through database lookups,
correlation of tag readings and reader positions, mainte-
nance of traces, all the way to triggering of business rules.
Major problems are derived from noise in the detection pro-
cess, resulting in the use of multiple readers to reduce false
negatives at the expense of added cost for the removal of du-
plicates, uncertainty in the aggregation process where it is
often difficult to distinguish between a false negative and a
missing object, and the need for processing business rules as
close as possible to the periphery to allow for fast response
and to improve scalability. Alternative sources of events in
SCM systems are database events that may, for example,
trigger the reordering process when quantities on hand fall
below a threshold. Modern SCM systems are expanding
beyond simple RFID technology and include other sensors,
for example temperature sensors to insure that the cooling
chain is not broken when dealing with perishable goods or
for detecting tampering with containers.

4.10 Railway Scenario – Cargo
Freight-cars will be equipped with a variety of sensors that

may reach from temperature sensors to detect overheating of
axle bearings that might lead later to derailments, to sensors
signaling the position of a given freight car both in absolute
terms as well as relative to its neighbors in a given train,
and sensors monitoring the condition of the cargo [40].

Event signals from a large number of sensors need to be
detected, aggregated and distributed via a heterogeneous
wireless sensor network. One of the requirements on the

overlay network distributing the events from producers to
consumers is the need to form groups of nodes. Groups
of sensors must be definable in an easy manner, preferably
declaratively, based on static and dynamic predicates. A
typical grouping consists of all the nodes belonging to a sin-
gle train. Trains must communicate with the control sta-
tions as a unit but communication must exclude neighboring
trains that may be standing on adjacent tracks in a station.
For security applications, however, events must be propa-
gated across train boundaries to all reachable nodes. Con-
trolled visibility of events is a primary requirement in this
application.

Because of the safety-critical nature of some events and
the privacy requirements of others it is important to offer se-
cure event notification. Therefore, a secure publish/subscribe
mechanism is required. The railway scenario has many fea-
tures in common with sensors and event-based processing in
containers.

4.11 Piping Information to the Cockpit
While today’s communication with the airplane cockpit

is mostly based on voice communication between tower and
cockpit or notes-to-airmen (Notams) on paper handed to
the cockpit personnel, the future communication will be
through electronic distribution of information to the cockpit
[22]. Two basic requirements for the distribution of relevant
events to the cockpit are (a) that no relevant information
may be lost, and (b) no superfluous or irrelevant informa-
tion should be delivered to the cockpit. Relevance is defined
with respect to a flight and the proposed flight route and
the in-flight changes due to weather, air traffic control in-
structions or other external factors.

Relevant events that must be communicated could be chan-
ges to a runway at the destination airport, relevant weather
conditions, and other aircraft on collision course. Some of
these events are short-lived but have high priority while
other events, such as runway closings, may be planned in
advance, have a begin time and a validity interval. All in-
stances of flights to that destination airport must be notified
of the event during the duration of the validity interval.

Besides the delivery guarantees required in this applica-
tion, the event notification mechanism must fulfill two spe-
cific requirements: Event routing and delivery must occur
according to geo-spatial filters defined for the relevant in-
formation, and event notifications must be transmitted to
future subscribers, i.e., flights that are instantiated after an
event has occurred. This property requires the persistence of
events and symmetry between subscriptions and the adver-
tisements that announce the types of available event infor-
mation. A combination of push- and pull-based interaction
may be appropriate here.

4.12 Health Care: Health Monitor
Health care has many applications for event-based sys-

tems; a personal health monitor is one example application
[26]. A health monitor is a personalized system that al-
lows a person and their care givers to monitor the person’s
health status. Health monitors may be particularly useful
for chronically ill people as well as for elderly citizens [31].

The data may be captured from mobile sensors at the
person as well as from stationary sensors in their home.
Alarms are set up to alert the person and, if necessary, a
remote care-giver. Sensors automatically capture health-



related data such as heart rate and blood pressure, the lo-
cation of the person in reference to a room, or the intake
of medication. In addition, specific regular measurements
for particular health conditions are performed by the person
and the results are filtered for emergency situations as well
as kept for long term observation. The data needs to be
protected from tampering, from external unqualified access,
as well as being kept safe for long term storage.

Health monitors offer many challenges derived from the
high volume of low level events and the need to derive higher
level events that must be propagated. This application is
particularly sensitive to false negatives and false positives.
False negatives may lead to loss of life in the extreme and
false positives may trigger unneeded and costly emergency
responses. These liability issues are a major hurdle for the
widespread adoption of health monitors.

Security is a major concern, especially as monitoring data
may give rise to increased health insurance premiums or at-
tempts to limit services. Although publicly perceived as a
major threat, privacy is not reported to be a major concern
for senior citizens and the chronically ill who perceive that
the benefits outweigh the risks and the fear of being help-
less after suffering an incapacitating health event that is not
noticed.

4.13 Ambient Assisted Living, Smart Homes
Ambient assisted living aims at prolonging autonomous

living of a rapidly aging population through technological
support. It subsumes many of the functions already de-
scribed above as part of health monitoring but includes
many more, such as alarms when a person tries to leave home
without turning off the stove, voice activated devices or spe-
cial control panels aimed at persons with fading eye sight,
and emergency buttons. Smart homes on the other hand do
not target a particular age group but have been proposed
often for the media and technology savvy to provide remote
access to smart appliances, proactive appliances, seamless
personalized lighting and media coverage, network access
and application migration as a person moves around the
house, automatic synchronization among stationary and mo-
bile devices, etc. Smart homes also provide a large amount of
sensors that support energy efficiency by controlling shades
based on time of day and season, sophisticated cooling and
heating patterns, or security. Multiple projects addressing
different aspects exist in this domain, for example described
in [13, 46].

Events in smart homes are often based on detection of
presence of persons and/or devices in a room, external (wea-
ther) conditions, or temporal events exploiting known be-
havior patterns of the occupants. Event composition across
heterogeneous sensor readings is needed. Simplifying fac-
tors are the relatively low volume of events and a fairly self-
contained environment. A major problem is the integration
of new devices (i.e. consumers and producers of events) into
the environment due to standardization problems and the
widely diverging life cycles of smart devices and the physi-
cal plant (i.e. house and integrated sensors).

The commercial application of smart home technology is
found in facility management. In the same way, events are
related to locations (e.g., temperature somewhere, motion
detection) and buildings are equipped with (stationary) sen-
sors. Commercial buildings are often used for varying sce-
narios, requiring changes in event handling and setting. In

addition, large numbers of sensors of different types need
to be supported. The applications typically require reliable
logging and persistency for insurance purposes.

4.14 Smart Cities and Infrastructure for Am-
bient Intelligence

The vision of Ambient Intelligence (AmI) calls for the van-
ishing of the computational infrastructure and instead the
establishing of pervasively available, context-aware services
[3]. This in turn requires from the infrastructure to provide
seamless event processing capabilities across spaces and do-
mains, i.e., event detection and composition, reactive capa-
bilities, support for indoor and outdoor positioning, context
and user-profile management and matching, support for pri-
vacy and security, and support for mobility and event deliv-
ery with controllable quality of service. Because of the het-
erogeneous environment and the different life cycles of the
technologies involved, support for heterogeneity and multi-
ple technology stacks is a must. Event processing is also at
the heart of the Self-managing properties these systems must
exhibit, since any solution depending on manual and/or cen-
tralized management, configuration and adaptation will fail.

Rich context definition is necessary since context must
include, besides location, semantic annotations, user pref-
erences, time, resource availability and even social context.
Many of the challenges for event processing in this scenario
also stem from the scale of such a system, for example, if
the infrastructure is to cover a whole city, including public
spaces and means of transportation. The necessity to pro-
vide context-aware services independently of location and in
a seamless manner may provide us with the killer application
for event-based processing.

4.15 Autonomic Computing, Self-X Systems
Autonomic computing refers to the ability of systems to

self-configure, self-heal, self-optimize and self-protect. These
so-called self-CHOP properties are at the core of any self-
managing system. Self-configuration refers to dynamically
adapting to a changing environment according to defined
policies. Changes could be the addition or removal of compo-
nents or adaptation to changes in workload. Self-configuration
aims at providing stable system characteristics. Self-healing
refers to the ability to discover, diagnose and react to disrup-
tions. Corrective actions could be policy based and involve
a component changing its own state or effecting changes in
other components of the environment. Self-healing aims at
making the system as a whole more resilient. Self-optimization
implies the monitoring of resources and tuning of the pro-
cesses and components to meet the users’ and system’s de-
mands. Self-protection refers to the anticipation, detection,
identification and reaction to threats. The CHOP-properties
are not orthogonal and several interdependencies exist. Cor-
rective actions performed as a self-protecting measure may
be common to self-healing and the result of self-optimization
may consist in system reconfiguration.

Self-managing systems are typical sense-react systems, in
which the state of the system is continuously monitored and
compared to acceptable system states. Whenever a thresh-
old is crossed for any of the monitored parameters or a
certain pattern is detected, the system invokes predefined
reactions attempting to return to a normal operating condi-
tion. From an event-processing point of view, self-managing
systems require detection of simple events and their compo-



sitions, both over time (time series) to observe trends and
across event detectors. Monitoring may occur on derived
system parameters, such as utilization, or direct observa-
tions, such as arrival rates. Reactions may be triggered by
simple events, such as the access to a honey-pot or honey-
comb or it may be triggered by the observation of sudden
peaks in activity. Self-CHOP properties are much better
studied in closed, centralized systems but are a necessary
component of large, distributed and heterogeneous infras-
tructures for ubiquitous computing and ambient intelligence.

4.16 Threat Detection (Dirty Bomb, Spills)
Several scenarios are being considered that involve similar

requirements. Threats may be deliberate, such as is the case
with a terrorist carrying a dirty bomb in a crowded public
space or involuntary, as is the case with accidental spills of
dangerous substances [51]. In both scenarios the common
situation is that the source of the threat and the extension
and intensity of the radiation or concentration of the toxic
substance are to be determined through sensors mounted
on autonomous land and air vehicles. These vehicles can
get close to the source of the contamination and can send
measurements to a base station. In addition to the sensing
of toxic substances or radiation, the autonomous vehicles
are equipped with their own on-board sensors for navigation
purposes. Typical instrumentation for autonomous naviga-
tion include, but are not limited to, LIDAR, infrared sensors,
GPS and other complementary position determination, on-
board terrain models, image processing, etc. The measure-
ment events may have to be communicated either directly to
a sink, or they may have to be relayed by other nodes. Direct
communication among nodes may also be needed for rapid
homing in on the location(s) of the source(s). This implies
on-board processing as well as centralized processing that
allows further correlation of the measurements. This kind
of application typically involves a human in the loop at the
central control point.

4.17 Gaming
The gaming industry is rapidly becoming a major eco-

nomic force that surpassed the movie industry in revenue.
Large massively parallel multiplayer online games (MMOGs),
such as World of Warcraft, may have several million players.
Players react to game events, i.e., the actions performed by
other players. The game events may be simple movements of
the avatars, attacking or being attacked or solving some task
and acquiring certain weapon or capability. Game events
must be notified to those players who are affected by them.
Notification must occur prompt and to all affected parties
within tight timing bounds for fairness reasons. The typical
architecture of MMOGs is a classical client/server architec-
ture where game events are sent to the server controlling
a shard of the game world and from there they are propa-
gated to all the interested players within that shard. Event
distribution is conceptually a centralized publish/subscribe
mechanism with changing subscriptions as the players move
around in the virtual game space [32]. Game events must
be made selectively persistent: positions or position changes
must only persist to restore a certain (recent) game state
and old position events can be deleted. Acquired powers or
weapons must persist indefinitely or until lost or traded.
Game events must be protected and not tampered with.
This is particularly needed to avoid cheating. In addition to

avoiding the tampering with game events, analysis of event
streams can be used for detecting unusual activity patterns
that might be indicative of cheats. While the event aggre-
gation that occurs as part of the game is quite simple, the
aggregations needed for cheat detection may involve multi-
ple events over relatively large windows. Some game MMOG
providers are teaming up with providers of stream process-
ing engines.

Alternative architectures, mostly experimental at this stage,
consider using a Peer-to-Peer infrastructure instead of the
classic client/server architecture. A P2P substrate solves
the scalability problems that affect classic client/server sys-
tems but incurs new problems for maintaining game consis-
tency and controlling cheats. Event distribution now occurs
through a distributed publish/subscribe mechanism on the
P2P substrate.

5. FEATURES
The goal when analyzing an application is to extract the

key features a system must provide. Some features are essen-
tial while others are just nice to have. However, all too often
the required features are considered only in the immediate
context of an application. To provide adequate platforms or
development frameworks for event based systems we must
abstract from the immediate application and identify the
basic primitives and abstractions that are required. From
the applications we reviewed in Section 4 we abstracted the
most relevant features. These are briefly described below
and then correlated with the applications in Table 1.

Note that for each application domain, we necessarily had
particular examples in mind, and discrepancies with each
reader’s perception of an application are therefore possible.
An individual application may also require fewer features
than a set of applications in a domain. For example, for a
particular vehicle-based navigation support system it may
be perfectly acceptable to rely on GPS-based absolute posi-
tioning only. A navigation aid for pedestrians must also be
useful indoors and may depend not only on other position-
ing mechanisms for absolute position but also on relative
and logical positions as well as landmarks for localization.
In the broad category of navigation aids these distinctions
necessarily are lost.

The features we identified as relevant are briefly described
below together with examples taken from the analysed ap-
plication domains.

• Temporal Events refers to the need for absolute and/or
relative time events at varying granularities. Temporal
events can also be used for the definition of windows
on event streams.

• Absolute Position Events refers to the direct use
of coordinates as position events. Absolute positions
may have to be converted from logical positioning, for
example, converting from (RFID) indoor positions to
location events using GPS coordinates.

• Logical Positioning refers to the use of logical po-
sition identifiers and may require a lookup or conver-
sion from absolute position. These are often found in
applications relating to human dimensions, such as a
user being in certain location in ambient assisted liv-
ing situations or a suitcase being near to a tag reader
(baggage tracking).



• Spatio-temporal Correlation refers to the correla-
tion of spatial and temporal observations and is essen-
tial in tracking applications such as those for monitor-
ing the location of cargo on its journey over time.

• Other Forms of Contextual Information in Events
may be, e.g., social context, group memberships, or vi-
sual range in games.

• Change Events refers to the need of recognizing sig-
nificant changes of the environment as distinct events.
These were observed in all the analysed applications.

• Status Events refers to the need of recognizing that
sensor readings at different times, with or without a
change of sensor reading value, constitute significant
events. These events are observed, for example, when
tracking cargo: alerting to the fact that some items
stopped moving and where left behind.

• Interval Events refers to events that have a certain
duration and may carry a validity interval, such as a
road being closed due to an accident or a runway due
to scheduled repairs.

• Event Sequencing/Out of Order Events refers to
the need to establish the sequence of events, either
causal or temporal, and the need to deal successfully
with events that arrive late or out of order. This is
relevant in the processing of stock ticker data as well
as any application with transmission delays.

• Homogeneous Aggregation refers to the composi-
tion of homogeneous events, typically arriving as streams
of tuples from one source or multiple sources produc-
ing the same type of events. Two applications exhibit-
ing homogeneous aggregation are stream processing of
stock data and avalanche warning using a large number
of sensors of the same type.

• Heterogeneous Composition/Fusion refers to the
need of composing events from multiple, heterogeneous
events sources, typically different kinds of sensors. Event
fusion is required in applications that combine a vari-
ety of different aspects, such as in smart cities and
ambient living.

• Derived (higher abstraction) Events refer to the
need an application has to infer events of a higher ab-
straction level from the basic events that are detected,
for example, the interruption of the cooling chain dur-
ing the transport of perishable goods based on trends
in temperature readings.

• Event Enrichment refers to the combination of sim-
ple or composite events with external information to
derive more abstract events. External information may
be contextual information and may come from external
sources, such as newsfeeds. Event enrichment is typ-
ical for information mining applications, such as blog
mining and information cockpits.

• Event Re-use refers to the possibility of an event
being used in multiple compositions and the event’s
ability to trigger multiple reactions. This feature is
required in application scenarios that integrate mul-
tiple individual applications, such as traffic or health
monitoring.

• Outlier Handling refers to the ignoring or identi-
fying of outliers. Some applications specifically try to
detect outliers (e.g, environmental warning) while oth-
ers suppress them as miss-readings (e.g., tourism).

• Early Filtering happens near the source with for-
warding of only a fraction of the events vs. forward-
ing the complete stream of events and filtering at or
near the sink (late filtering). Typical for early filtering
are WSN-based applications while financial applica-
tions are typical for late filtering.

• Event Purging refers to the life-cycle of events and
the need or possibility of deleting events from the sys-
tem. Traffic surveillance, for example, imposes legal
limitations on the life of events.

• Event persistence is the need of making events per-
sistent for later analysis.

• Audit Trail refers to keeping an uninterrupted and
persistent trail of events for post-mortem analysis. This
is the case with financial and some medical applica-
tions.

• Event Propagation/Notification identifies if de-
coupled asynchronous event notification is required by
an application.

• Delivery Guarantees are the guarantees the noti-
fication mechanism must give to an application, may
range from best effort to exactly once, and may or may
not be time constrained.

• False Positives refers to the sensibility of an applica-
tion to false positives and the potential consequences
of false positives as identified in baggage tracking.

• False Negatives refers to the sensibility of an applica-
tion to false negatives and the potential consequences
of false negatives. These are particularly dangerous in
medical applications.

• Transaction Processing refers to the need of inte-
grating event processing with transactional processing.

• Point of Processing refers to the processing of events
and can be either distributed, in network processing,
or centralized.

• Heterogeneity of Platform refers to the degree of
heterogeneity of the platform that processes the events.
While centralized systems are by nature rather homo-
geneous, a wireless sensor network consisting of a single
kind of sensor nodes and a single more powerful sink
is also quite homogeneous while a sensor network con-
sisting of multiple types of sensors and several interme-
diate processing stages will be highly heterogeneous.

• Volume refers to the number of events that must be
processed per time unit. While it is a major differen-
tiator among applications its effect also depends on the
processing platform, since a large global volume may
traduce into small local volumes on highly distributed
platforms.



• Security refers to the need of securing the transmis-
sion and processing of events by guaranteeing the au-
thenticity of a source, the secrecy and integrity during
transmission, and the secure archival of events. Health
and traffic monitoring are prime examples.

• Privacy refers to the judicious handling of events to
protect the personal sphere of individuals and to pro-
tect their right to informational self-determination.

• Mobility of Event Source refers to the change of
position of the event source and the need for wireless
communication.

• Mobility of Event Subscriber refers to the change
of position of the event subscriber and the need to
adapt event delivery based on changing position and
context.

6. PLATFORMS
We analysed platforms used to implement the reviewed

applications and evaluated them according to their support
for the features identified in Section 5. Our analysis shows
some clear distinctions along the lines of homogeneity/hetero-
geneity, volume of events processed, the nature of the events,
the importance of the event distribution mechanism, and the
need for mobility and the concomitant use of wireless com-
munication.

6.1 Stream Processing Engines
These are typically used for processing very large volumes

of homogeneous events that are provided in the form of con-
tinuous and high-volume streams. Filters and continuous
queries are expressed in a SQL-based language. Scalability
and non-blocking behaviour are of paramount importance.
Stream processing engines exhibit a high degree of central-
ization and often run on large mainframes or clusters. Typi-
cal application domains are fraud detection, financial appli-
cations, and cheat detection in gaming.

6.2 (Wireless) Sensor Networks
These are typically used in small, well-contained appli-

cations in which homogeneous sensors are connected in the
form of multi-hop networks to a single sink. These plat-
forms at present do not scale and are typically used for low
volumes of events. Processing is done mostly in the net-
work with relatively simple filtering and event aggregation
and some composition across heterogeneous sensors. Com-
munication is wireless, low bandwidth, unreliable, and often
the limiting factor. Typical applications are environmen-
tal monitoring, such as the avalanche warning system, and
threat or contaminant detection at the high end including
mobility of the nodes.

6.3 Messaging Systems
These systems are based on reliable and scalable message

delivery systems that can connect stationary and/or mo-
bile event publishers and subscribers. Event filtering, com-
position and routing occur in the broker network and the
main goal is to decouple event sources and event consumers.
Most information dissemination applications use messaging
systems of different kinds as platform. Examples are infor-
mation dissemination into the cockpit using a geo-spatial

publish/subscribe system, conventional information dissem-
ination systems, or blog alerts, in which the broker nodes
carry out significant event enrichment.

6.4 Mixed-mode Systems
These platforms include a wide variety of nodes, ranging

from simple tag readers and sensors to high end servers.
Mixed-mode systems are typical for environments in which
multiple smaller applications are integrated. Among the re-
viewed applications, the infrastructure for smart cities, large
scale health monitoring and care systems, integrated traffic
monitoring and management systems all require mixed mode
platforms. The event streams are heterogeneous, both in
nature and volume. To scale, the communication must be
based on messaging systems, enrichment and event deriva-
tion may occur at different nodes in the network, and stream
processing engines may be required at selected nodes to de-
tect complex patterns on many event streams. The high
volume in mixed mode systems is often the result of many
converging low volume streams rather than a few high vol-
ume streams. The combination of mobility, heterogeneity,
and an extreme distribution compounds the problems these
platforms must deal with.

7. RESEARCH ISSUES
One of the lessons learned from the analysis of the ap-

plications of event-based systems is that all make particu-
lar, application-specific assumptions. These make it rather
difficult to generalize and reuse the systems for other ap-
plications, or make it very hard to integrate event-based
applications that grew separately. Here we try to identify a
few areas where research is needed and could yield benefits
for the whole area of event processing.

Event Algebra and Semantics.
Event algebras with their specification semantics were de-

veloped in various areas, such as active databases, temporal
or deductive databases, temporal data mining, time series
analysis, and distributed systems. Event rule specification
has been studied in active database systems for several years
with special focus on composite events and temporal condi-
tions. Active database systems can rely on the transactional
context for the composition of events. ECA conditions can
be defined based on the old and new state of the database.
Temporal interval operators have been used for the ordering
of database states. Ordering based on events, as opposed
to states, has been implemented in the SAMOS system [19].
Active database systems do not support adaptive system be-
havior; they are often implemented as centralized systems
that deal only with database-internal events. In the context
of active databases, temporal logic has been used to describe
the semantics of composition operators, e.g., Enhanced Past
Temporal Logic (PTL) that supports relative temporal con-
ditions and composite actions. The areas of temporal data
mining and time series analysis rely on temporal associa-
tion rules - from a set of data, rules verified by the data
have to be discovered. In distributed systems, events have
to be ordered based on possibly incorrect timestamps. This
may lead to uncertainty in event ordering. An extensive
number of event-based systems have been designed and im-
plemented. Most of those follow individual event semantics
that are not, or not completely, explicitly defined. This
makes comparisons or collaboration between systems chal-



T
a
b
le

1
:

A
p
p
lic

a
tio

n
s

a
n
d

th
e
ir

fe
a
tu

re
s

Mobile tourist IS

Baggage tracking

Avalanche warning

Info dissemination

Blog Info m & d

Fraud detection

Financial

Supply chain mgmt.

Railway cargo

Cockpit info syst.

Traffic monitoring

Health care

Ambient asst. living

Smart cities

Self-X systems

Threat detection

Gaming

T
em

p
o
ra

l
ev

en
ts

X
X

–
X

X
X

X
X

X
X

X
X

X
X

X
X

X
A

b
so

lu
te

p
o
sitio

n
ev

en
ts

X
–

X
–

–
X

–
–

X
X

X
lim

lim
X

–
X

X
L

o
g
ica

l
p

o
sitio

n
in

g
X

X
X

–
–

–
–

X
X

X
X

X
X

X
–

X
X

S
p
a
tio

-tem
p

co
rr.

X
X

X
X

–
X

–
X

X
X

X
X

X
X

–
X

X
O

th
er

co
n
tex

t
in

ev
en

ts
X

–
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

C
h
a
n
g
e

ev
en

ts
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

S
ta

tu
s

ev
en

ts
X

–
–

X
–

–
X

–
X

X
–

X
X

X
X

X
X

In
terva

l
ev

en
ts

X
–

X
–

–
X

X
X

X
X

X
X

X
X

X
X

X
E

v
en

t
seq

u
en

cin
g

–
X

X
lim

X
X

X
X

X
X

X
X

X
X

X
X

X
H

o
m

o
g
.

a
g
g
reg

a
tio

n
–

–
X

–
–

X
X

X
X

X
X

X
X

X
X

X
X

H
eter.co

m
p

o
sitio

n
/
fu

sio
n

–
–

–
X

–
–

–
X

X
X

X
X

X
X

X
X

X
E

v
en

t
en

rich
m

en
t

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

–
D

eriv
ed

ev
en

ts
X

–
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

E
v
en

t
re-u

se
X

–
X

–
X

X
X

X
X

X
X

X
X

X
X

X
–

O
u
tlier

h
a
n
d
lin

g
(d

/
s)

s
d

d
/

s
–

–
d

d
d
/

s
d
/

s
d

d
d

d
d

d
d

–
E

a
rly

fi
lterin

g
–

–
X

–
–

–
–

X
X

X
X

X
X

X
X

X
–

E
v
en

t
p
u
rg

in
g

X
X

–
X

–
X

X
X

X
X

X
X

–
X

X
X

–
E

v
en

t
p

ersisten
ce

X
lim

lim
X

X
X

X
X

X
X

X
X

lim
X

X
X

X
A

u
d
it

tra
il

–
–

–
–

–
X

X
X

X
X

–
X

X
–

X
–

–
E

v
en

t
p
ro

p
a
g
a
tio

n
/
n
o
tif.

X
X

X
X

X
–

–
X

X
X

X
X

X
X

X
X

X
D

eliv
ery

g
u
a
ra

n
tees

–
X

–
X

–
X

X
X

X
X

–
X

X
–

X
X

X
F

a
lse

p
o
sitiv

es
X

X
X

X
–

X
X

–
X

X
X

X
X

–
X

X
–

F
a
lse

n
eg

a
tiv

es
–

–
X

lim
–

X
X

–
X

X
–

X
X

–
X

X
–

T
ra

n
sa

ctio
n

p
ro

cessin
g

–
–

–
–

–
–

X
X

–
–

–
–

–
–

–
–

–
P

o
in

t
o
f

p
ro

cessin
g

(d
/

c/
n

)
d

c
d
/

c
d
/

c
c

c
c

d
d
/

n
d

d
d

d
d
/

n
d
/

c
d
/

n
d
/

c
H

etero
g
.

o
f

p
la

tfo
rm

m
/

h
l

l
m

l
l

l
m

h
l

m
m

/
h

m
h

l/
m

l/
m

l
V

o
lu

m
e

l/
m

m
h

m
h

h
h

m
/
h

h
m

m
/
h

l/
m

/
h

l
h

l/
m

/
h

l/
m

/
h

h
S
ecu

rity
X

X
X

–
X

X
X

X
X

X
X

X
–

X
X

X
X

P
riva

cy
X

–
–

–
–

X
X

X
X

–
X

X
X

X
–

X
–

M
o
b
ility

o
f

ev
en

t
so

u
rce

X
lim

–
lim

–
X

–
X

X
X

X
X

X
X

–
X

X
M

o
b
ility

o
f

su
b
scrib

er
X

–
X

lim
X

–
–

–
X

X
X

X
X

X
–

X
X

X
in

d
ica

tes
req

u
ired

fea
tu

res,
lim

a
fea

tu
re

th
a
t

is
ta

k
en

to
a

lim
ited

ex
ten

t,
d
/

c/
n

=
d
istrib

u
ted

/
cen

tra
l/

n
o
d
e,

l/
m

/
h

=
low

/
m

ed
iu

m
/
h
ig

h
,

d
/

s=
d
etect/

su
p
p
ress



lenging. The need for a complete event algebra to describe
event semantics has already been identified at the Dagstuhl
Seminar [8].

Operative Aspects.
Complementing the event algebra, operative aspects must

define issues, such as, the life cycle of events, their replica-
tion, consumption modes, event logging, validity intervals,
and when events can be discarded or disregarded, for exam-
ple, when they arrive late. While some early work on event
consumption was very useful in addressing these issues, there
is no common framework for expressing operational seman-
tics of event-based systems in a consistent manner. This
leads to inflexible systems and errors when new applications
subscribe to existing event streams.

Event Enrichment.
This is a wide-open and difficult research area dealing with

the combination of information from heterogeneous sources
to produce events of higher level of abstraction. To mean-
ingfully enrich events, metadata must be added, often au-
tomatically extracted from semi-structured data. Event en-
richment calls for an understanding of the semantics not
only of the events but also of the external sources of in-
formation. Depending on the degree of abstract knowledge
needed, this may call for human involvement in response to
automatically generated recommendations [28].

Mobility in Event-based Systems.
Mobility implies frequent disconnections and reconnec-

tions, less reliable wireless communication and the need to
guarantee delivery of events under these conditions. Open
issues exist on what guarantees can be given, in how to an-
ticipate movement, how to stage events in anticipation of
movement, how to persist event histories for replaying them
and about the semantics and the life-cycle of events with
deferred delivery.

End-to-end Security.
E2E security in event systems using dedicated communi-

cation channels is similar to any messaging system. How-
ever, when publish/subscribe notification is used, new mech-
anisms for delimiting the visibility of events, managing the
keys for type and attribute level encryption and the use of
role based access control are needed. E2E security is espe-
cially challenging in sensor networks based on low capability
nodes and broadcast communication. [39].

Privacy.
Privacy in this context refers on one hand to protecting

the information about subscribers, their interests (as defined
in rules and profiles) as well as the information about which
notifications they receive since these may be mined for pat-
terns. On the other hand, privacy requirements also apply to
event producers, especially in the health domain and when
events generated by wearable or portable devices can be used
for tracking. The success of many technically feasible and
potentially beneficial applications may hinge on proper han-
dling of the privacy concerns and the public perception.

Dealing with Heterogeneity in Mixed-mode Environ-
ments.

Little experience exists in integrating low end sensors with
high end stream processing engines. Cyber-physical sys-
tems pose special challenges for middleware, communication
substrates, and programming environments that often must
be aware of continuous and discrete computation models
and the highly dissimilar capabilities of the components but
must mask these and must provide the appropriate map-
pings across platforms.

Software Engineering of Event-based Systems.
Event systems are based on a different programming para-

digm. This requires new models, and, most important, a
coherent software engineering framework supported by ap-
propriate tools. Current research and development has ad-
dressed development of individual components, such as the
notification mechanism or the event processor. However, for
widespread acceptance a comprehensive process is needed
that addresses the design, captures functional and non-func-
tional requirements, integrates seamlessly event detection,
processing, communication and responders, provides guide-
lines for testing and deployment of event systems and estab-
lishes the policies for administration and governance.

Performance Modeling, Capacity Planning, Benchmark-
ing.

Industry is asking for reliable and unbiased performance
modeling and evaluation. This will require the involvement
of organizations, such as TPC and SPEC. STAC, an organi-
zation supported by financial institutions, is benchmarking
CEP engines. SPEC has released its SPECjms2007 bench-
mark [44]. Academic attempts include, e.g., [4] in the area of
benchmarking and [33] in the area of performance modeling.

References
[1] I.F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and

E. Cayirci. A survey on sensor networks. Communica-
tions Magazine, IEEE, 40(8), 2002.

[2] G. Buchanan and A. Hinze. A generic alerting service
for digital libraries. In 5th ACM/IEEE-CS Joint Con-
ference on Digital Libraries (JCDL’05), pages 131–140,
New York, 2005.

[3] A. Buchmann. Infrastructure for smart cities: The
killer application for event-based computing. In [8],
2007.

[4] A. Carzaniga and A. L. Wolf. A benchmark suite for dis-
tributed publish/subscribe systems. Technical report,
Department of Computer Science, University of Col-
orado, 2002.

[5] S. Chakravarthy and Q. Jiang. Stream Data Processing:
A Quality of Service Perspective. Springer, 2009.

[6] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-
K. Kim. Composite events for active databases: Seman-
tics, contexts and detection. In 20th Int. Conference
on Very Large Data Bases (VLDB’94), pages 606–617,
1994.



[7] S. Chandrasekaran and M. Franklin. Streaming queries
over streaming data. In 28th Int. Conference on Very
Large Data Bases (VLDB’02), pages 203–214, 2002.

[8] K. M. Chandy, O. Etzion, and R. von Ammon, editors.
Event Processing, number 07191 in Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 2007.

[9] K. Mani Chandy. Event-driven applications: Costs,
benefits and design approaches. Gartner Application
Integration and Web Services Summit 2006, San Diego,
CA, June 2006.

[10] K. Mani Chandy and M. Olson. Fed-
erated event systems: The event web.
http://www.ebizq.net/topics/cep/features/9428.html,
June 2008.

[11] J. Chen, D. DeWitt, F. Tian, and Y. Wang. Nia-
garacq: A scalable continuous query system for inter-
net databases. In SIGMOD International Conference
on Management of Data, pages 379–390, 2000.

[12] M. Cilia, M. Antollini, C. Bornhövd, and A. Buchmann.
Dealing with heterogeneous data in pub/sub systems:
The Concept-Based approach. In International Work-
shop on Distributed Event-Based Systems (DEBS’04),
Edinburgh, 2004.

[13] D. Cook and S. Das. Smart Environments: Technology,
Protocols and Applications. Wiley, 2005.

[14] P. DeVries. The state of RFID for effective baggage
tracking in the airline industry. International Journal
of Mobile Communications 2008, 6(2):151–164, 2008.

[15] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec.
The many faces of publish/subscribe. ACM Computing
Surveys, 35(2):114–131, 2003.

[16] T. Fawcett and F. Provost. Adaptive fraud detection.
Data Mining Knowledge Discovery, 1(3):291–316, 1997.

[17] L. Fiege, M. Mezini, G. Mühl, and A. Carzaniga. Buch-
mann. Engineering event-based systems with scopes.
In 16th European Conference on Object-Oriented Pro-
gramming (ECOOP’02), pages 309–333, 2002.

[18] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: you only get one look a tu-
torial. In SIGMOD International Conference on Man-
agement of Data, pages 635–635, 2002.

[19] S. Gatziu, A. Geppert, and K. Dittrich. The SAMOS
active DBMS prototype. In SIGMOD International
Conference on Management of Data, page 480, 1995.

[20] A. Giffords and M. Palmer. Streambase
real-time profit & loss white paper. http:

//complexevents.com/wp-content/uploads/2008/

09/streambase_whitepaper_real_time_pnl.pdf, last
accessed 16 September 2008.

[21] B. Glover and H. Bhatt. RFID Essentials (Theory in
Practice (O’Reilly)). O’Reilly Media, Inc., 2006.

[22] C. Grothe, S. Bauer, and U. Klingauf. Overcoming
the media breaks in ais: Dissemination of operational
change notifications by xnotam. In 1st Int. Workshop
on Aircraft System Technologies (SAT’07), Hamburg,
March, 2007.

[23] P. Guerrero, K. Sachs, M. Cilia, C. Bornhövd, and
A. Buchmann. Pushing business data processing to-
wards the periphery. In 23rd International Conference
on Data Engineering (ICDE’07), Istanbul, Turkey,,
2007.

[24] A. Gupta and I. Singh Mumick. Maintenance of mate-
rialized views: Problems, techniques, and applications.
IEEE Data Engineering Bulletin, 18(2):3–18, 1995.

[25] T. Harrison, D. Levine, and D. Schmidt. The design
and performance of a real-time CORBA event service.
In 12th ACM SIGPLAN Conf. on Object-oriented pro-
gramming, systems, languages, and applications (OOP-
SLA ’97), pages 184–200, 1997.

[26] W. Heinzelman, A. Murphy, H. Carvalho, and M. Per-
illo. Middleware to support sensor network applica-
tions. IEEE Network, 18:2004, 2004.

[27] A. Hinze and G. Buchanan. The challenge of creating
cooperating mobile services: experiences and lessons
learned. In 29th Australasian Computer Science Con-
ference, pages 207–215, Darlinghurst, Australia, 2006.

[28] A. Hinze, G. Buchanan, D. Jung, and A. Adams. HD-
Lalert – a healthcare DL alerting system: from user
needs to implementation. Health Informatics Journal,
12(2):121–135, June 2006.

[29] A. Hinze and A. Voisard. Location- and time-based
information delivery in tourism. In 8th International
Symposium in Spatial and Temporal Databases (SSTD),
Santorini Island, Greece, 2003.

[30] A. Joseph, A. Beresford, and J. Bacon et al. Intelligent
transportation systems. IEEE Pervasive Computing,
5(4):63–67, 2006.

[31] D. Jung and A. Hinze. A mobile alerting system for the
support of patients with chronic conditions. In First
European Conference on Mobile Government (EURO
mGOV), Brighton, UK, pages 264–274, 2005.

[32] P. Kabus and A. Buchmann. A framework for network-
agnostic multiplayer games. In EUROSIS GAME-ON
Int. Conf. on Intelligent Games and Simulation, 2007.

[33] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann.
A methodology for performance modeling of dis-
tributed event-based systems. In 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing
(ISORC), pages 13–22, Washington, DC, USA, 2008.

[34] L. Liu, C. Pu, and W. Tang. Continual queries for
internet scale event-driven information delivery. IEEE
Trans. on Knowl. and Data Eng., 11(4):610–628, 1999.

[35] D. C. Luckham. The Power of Events: An Introduc-
tion to Complex Event Processing in Distributed Enter-
prise Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston

”
2001.



[36] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-
Based Systems. Springer, 2006.

[37] M.C. O’Connor. San Francisco airport OKs RFID bag-
tracking pilot. RFID Journal, 2006.

[38] N. W. Paton, editor. Active Rules in Database Systems.
Springer, New York, 1999.

[39] L. Pesonen, D. Eyers, and J. Bacon. Encryption-
enforced access control in dynamic multi-domain pub-
lish/subscribe networks. In Int. Conf. on Distributed
Event-Based Systems (DEBS’07), pages 104–115, 2007.

[40] J. Reason and R. Crepaldi. Ambient intelligence for
freight railroads. IBM Journal of Research and Devel-
opment, 53(3), 2009.

[41] J. Rhyner. Avalanche warning: components of a well-
established warning system. Forum für Wissen, 2007.

[42] H. Roitman, A. Gal, and L. Raschid. On the chal-
lenges in event delivery. Fast abstract, Int. Conf. on
Distributed Event-Based Systems (DEBS’08), 2008.

[43] D. Rosenblum and A. Wolf. A design framework for
internet-scale event observation and notification. SIG-
SOFT Softw. Eng. Notes, 22(6):344–360, 1997.

[44] Kai Sachs, Samuel Kounev, Jean Bacon, and Alejan-
dro Buchmann. Performance evaluation of message-
oriented middleware using the SPECjms2007 bench-
mark. Performance Evaluation, 66(8):410–434, Aug
2009.

[45] Sun Microsystems, Inc. Java platform, enterprise edi-
tion (Java EE) specification, v5, May 2006.

[46] Georgia Tech. Aware home.
http://awarehome.imtc.gatech.edu/, 2009.

[47] K. Terfloth, K. Hahn, and A. Voisard. On the cost of
shifting event processing within wireless environments.
In [8], 2007.

[48] TIBCO. Tib/rendezvous. White Paper, TIBCO, Palo
Alto, CA., 1999.

[49] J. Widom and S. Ceri, editors. Active Database Sys-
tems: Triggers and Rules for Advanced Database Pro-
cessing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1994.

[50] Ian H. Witten and Eibe Frank. Data mining : practical
machine learning tools and techniques. Morgan Kauf-
mann Series in Data Management Systems. Elsevier,
Morgan Kaufman, 2005.

[51] M. Wu, A. Liu, and K. M. Chandy. Virtual envi-
ronments for developing strategies for interdicting ter-
rorists carrying dirty bombs. In 5th International IS-
CRAM Conference, 2008.


